
Parallel Computing for Partial Differential Equations
Student: Wu Tong Supervisor: Dr. Kwai Wong

1The Chinese University of Hong Kong 2The University of Tennessee, Knoxville

Abstract

Solving Partial Differential Equations(PDE) accurately and efficiently is of crucial im-

portance in Computational Mathematics and many other fields. Our group implement

Parallel Computing in solving common PDEs by Finite Element Method(FEM) using

PETSc, FEniCSx and MFEM library. Our group study the structure of parallel matrix

assembly process, and solving techniques such as FEM and iteration methods. Various

Krylov Subspace Methods(KSP) is applied to solve linear systems.

Introduction

• The main task of our group is solving Partial Differential Equations using parallel

computing techniques. Our group apply Finite Element Methods to PDEs by following

the reference → local → global framework. After transforming the PDEs to ODEs,

and ODEs to linear systems, KSP methods such as Conjugate Gradient Method(CG),

Preconditioned Conjugate Gradient Method(PCG) and Generalized Minimal Residual

Method (GMRES) are applied to solve large linear systems. Parallel matrix and vector

assembly process and solving skills are studied.

• For time-dependent problem, both Euler methods and Crank-Nicolson Method is

applied, and errors with respect to different time step are computed and analyzed.

• For nonlinear PDEs such as 2D/3D Burger’s Equation, Newton’s method and Picard

iteration are applied.

• For more complicated problems such as Incompressible Navier Stokes Equations,

different solving techniques such as projection method and velocity-vorticity formu-

lation are also studied. Further implementation are still need.

Methodology: Finite Element Method for Linear PDE

Step 1: Construct basis function φ and finite element space.

Figure 1. basis function in 1D Figure 2. 2D reference basis function

Step 2: Construct Weak Formulation and semi-discretization of PDEs.{
−∇ · (b(x, y)∇u) = f in Ω
∇u · n + pu = q(x, y) on ∂Ω (1)

Let bilinear form a and functional l be defined as

a(u, v) =
∫

∂Ω
bpuv +

∫
Ω

b∇u · ∇v, l(v) =
∫

Ω
fv −

∫
∂Ω

bqv

Let the approximate solution û be expressed by

û(x) =
N∑

i=1
uiφi(x)

We shall get from Equation (1)

N∑
i=1

a(φi, φj)ui = f (φj)

Put it into linear systems, let A be a N × N matrix such that

Aij = a(φi, φj)

Let F ∈ RN such that

Fi = f (φi)

for each i, we get:
AU = F

Step 3: Solve the linear system by using iterative solvers. Recover û from nodal values

vector U , and calculate the error norm.

Methodology: Parallel Computing

PETSc, the Portable, Extensible Toolkit for Scientific Computation, is for the scalable

(parallel) solution of scientific applications modeled by partial differential equations.

• Assembly matrix and vectors in parallel

Figure 3. Set Vector in parallel Figure 4. Set Matrix in parallel

• Storage Scheme: Coordinate Storage and Compressible Sparse Row Storage

A =


10 20 0 0 0 0
0 30 0 40 0 0
0 0 50 60 70 0
0 0 0 0 0 80



Figure 5. Coordinate Storage

Figure 6. Compressible Sparse Row

Storage

• Implementing Parallel Iterative Solvers

Solving a linear systemAx = bwith Gaussian elimination can take lots of time/memory.

Alternative: iterative solvers such as KSP solvers use successive approximations of the

solution.

• Convergence not always guaranteed.

• Possibly much faster / less memory.

• Also need a preconditioner.

Implementation Using MFEM and PETSc

Using Conjugate Gradient Method to solve−∆u + 2u = f in Ω
∂u

∂n
+ αu = g on ∂Ω

(2)

Desired solution: u(x, y) = cos(x + y). Number of finite element unknowns: 132225

Figure 7. L2 norm of error: 8.18589 × 10−6

Using Conjugate Gradient Method to solve{
−∆u + 2u + λ · ∇u = f in Ω

u = g on ∂Ω (3)

Desired solution: u(x, y) = exp(x + 0.2y). Number of finite element unknowns: 132225

Figure 8. CG does not converge

L2 error norm: 1.33 × 10−2
Figure 9. CG converges

L2 error norm: 7.7752 × 10−6

Implementation Using MFEM and PETSc

Using Conjugate Gradient Method to solve the 2D nonlinear PDE
∂u

∂t
− ∆u + u2 = f in Ω × [0, 1]

u = g on ∂Ω × [0, 1]
u = u0 at t = 0

(4)

Desired solution: u(x, y) = x2t + 10y3. Time step ∆t = 0.01. Number of finite element
unknowns: 2601 at each time step. Apply Picard Method and Newton’s Iteration at

each time step.

Figure 10. solution at t = 1, L2 norm of error: 1.14 × 10−2

Error Comparison

For Equation (3) with the desired solution u(x, y) = cos(x + y) and rectangular domain,
mesh refinements are applied.

Number of Refinement Number of Unknowns Error norm

0 132225 1.72495 × 10−5

1 526593 4.31147 × 10−6

2 2101761 1.077872 × 10−6

3 8397825 2.69495 × 10−7

Table 1. L2 Error norm Comparison

For Equation (4), different time step size are applied.

∆t Number of Unknowns Error norm

0.02 2601 1.85 × 10−2

0.01 2601 1.14 × 10−2

0.005 2601 7.84 × 10−3

0.0025 2601 6.09 × 10−3

Table 2. L2 Error norm Comparison

Incompressible Navier-Stokes Equations

The following two equations are the Momentum equation and Continuity Equation.

∂u

∂t
+

N∑
j=1

uj
∂u

∂xj
− ν∆u + ∇p = f (5)

∇ · u = 0 (6)

• Projection Method: One nonlinear evaluation, one poisson solve with Neumann

Boundary Condition, and one Helmoltz solve with Dirichlet Boundary Condition for

each time step.

• Velocity-Vorticity Formulation.

Future work

Benchmark problems from INS, such as Lid-driven Cavity need to be solved, and error

analysis also needs to be studied and examined.

Acknoledgements

I would like to express my gratitude to Dr. Kwai Wong for his guidance and support

throughout this research. Additionally, I extend my sincere thanks to William Lau and

Tony Cheung for their assistance and collaboration during the project. Their expertise

and experience have been instrumental in my progress.


