
Attention Algorithm: Implementation in MagmaDNN
Wing-Lim Lau 1 Xiao-Yang Li 2

1The Chinese University of Hong Kong 2City University of Hong Kong

Abstract

MagmaDNN is a neural network library in C++ aiming at optimiz-

ing towards heterogeneous architectures, i.e. multi-core CPUs and

GPUs. Currently, no implementation of the multi-head attention

layer, which is a core component of transformer models, is pro-

vided by MagmaDNN library, despite the popularity and signifi-

cance of transformer models in various tasks including vision tasks

such as medical segmentation [1, 2], image recognition [3], seman-

tic segmentation [4], and natural language processing tasks such as

machine translation [5].

To bridge the gap, we present an implementation of the multi-head

attention layer in MagmaDNN framework. Our implementation

improves the prediction loss by 20.41% comparedwith Tensorflow

implementation, despite consuming extra training time (epoch =
1000, learning rate = 10−3, batch size = 8, input size = [3 × 8 × 8]).
Compared with PyTorch implementation, our method also outper-

forms it by a clear margin in terms of prediction loss.

Formulation

The multi-head attention can be formulated as follows:

MHA(Q, K, V ) = [h1, . . . , hn]W O (1)

hi = Attention(QW Q
i , KW K

i , V W V
i ) (2)

Attention(Q, K, V ) = softmax
(

QK>

α

)
V (3)

where Q, K and V are the query, key and value matrices, α is a
scaling parameter, and all the W ’s are learnable weights.

Figure 1. Structure of multi-head attention

Figure 2. Multi-head attention flowchart

Results

We conduct pseudo training experiments to compare the average

training speed of different implementations for one single batch

input of size [3 × 4 × 4], [3 × 8 × 8], [3 × 16 × 16], [3 × 32 × 32]
(epoch = 3000).
As shown in the figures 3, 4, 5 and 6, our multi-head attention

layer has a faster training speed when the input size is [3 × 4 × 4],
[3 × 8 × 8] or [3 × 16 × 16], but has a slower training speed when
the input size is [3 × 32 × 32].

Figure 3. input size = [3 × 4 × 4] Figure 4. input size = [3 × 8 × 8]

Figure 5. input size = [3 × 16 × 16] Figure 6. input size = [3 × 16 × 16]

To further compare the performance, we sampled 800 data (batch

size = 8) from a uniform distribution X ∼ U [−1, 1] and trained all
the models to predict all-zero masks for 1000 epochs. We demon-

strate the best-epoch prediction losses of the three in Table 2.

Input Size Ours (s) Pytorch (s) Tensorflow (s)

3 × 4 × 4 448.6 854.4 845.4

3 × 8 × 8 583.0 854.5 841.6

3 × 16 × 16 937.5 858.2 850.9

3 × 32 × 32 1550.5 865.5 862.6

Table 1. Training time for 1000 epochs (#batch = 100, batch size = 8)

Input Size Ours (10−4) Pytorch (10−4) Tensorflow (10−4)

3 × 4 × 4 2.634 0.467 0.341

3 × 8 × 8 0.554 1.956 0.697

3 × 16 × 16 0.0565 5.523 3.638

3 × 32 × 32 0.0555 11.03 3.595

Table 2. Quantitative comparison on prediction loss, lower loss being better (↓)

Implementation

Initialization All options and configurations are initialized. The

memory space required is allocated and initialized via tensor de-

scriptors.

Forward pass Refer to section Formulation.

BackpropagationThe trainable parameters ofmulti-head attention

layer are the projection weights Wq, Wk, Wv and Wo. The gradi-

ent of attention output w.r.t. projection weights is given by ∂out
∂W =

∂out
∂[Q̂,K̂,V̂ ] × ∂[Q̂,K̂,V̂ ]

∂[Wq,Wk,Wv] = ∂out
∂[Q̂,K̂,V̂ ] × ∂[Q̂,K̂,V̂ ]

∂W . We introduce two sep-

arate functions, mha_grad_data_device and mha_grad_data_de-

vice_weights, to calculate the two terms simultaneously.

Figure 7. Overview of multi-head attention implementation

Conclusion

Our contributions can be concluded in two aspects:

(1) We present an implementation of the multi-head attention

layer inMagmaDNN framework, making the development of trans-

former architecture possible for MagmaDNN library.

(2)We compare the performance of our multi-head layer with Py-

Torch’s and TensorFlow’s implementations. Compared with them,

our layer outperforms them by a clear margin in the best-epoch

prediction loss, despite reasonable extra training time for large-

scale data.

References

[1] Y. Gao, M. Zhou, and D. N. Metaxas, “UTNet: A hybrid transformer architecture for

medical image segmentation,” CoRR, vol. abs/2107.00781, 2021.

[2] Y. Gao, M. Zhou, D. Liu, Z. Yan, S. Zhang, and D. N. Metaxas, “A data-scalable transformer

for medical image segmentation: Architecture, model efficiency, and benchmark,” 2023.

[3] Z. Shen, I. Bello, R. Vemulapalli, X. Jia, and C. Chen, “Global self-attention networks for

image recognition,” CoRR, vol. abs/2010.03019, 2020.

[4] Z. Huang, X. Wang, Y. Wei, L. Huang, H. Shi, W. Liu, and T. S. Huang, “CCNet: Criss-cross

attention for semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 6,

pp. 6896–6908, 2023.

[5] J. Song, S. Kim, and S. Yoon, “AligNART: Non-autoregressive neural machine translation by

jointly learning to estimate alignment and translate,” in Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta

Cana, Dominican Republic, 7-11 November, 2021 (M. Moens, X. Huang, L. Specia, and S. W.

Yih, eds.), pp. 1–14, Association for Computational Linguistics, 2021.


