
PyMAGMA - A Python Library for MAGMA
1st Nance, Jr., Delario

Mathematics and Computer Science
Davidson College

Davidson, North Carolina
denance@davidson.edu

2nd Tomov, Stan
Innovative Computing Laboratory
University of Tennessee, Knoxville

Knoxville, Tennessee
tomov@icl.utk.edu

3rd Wong, Kwai
Mechanical, Aerospace, and Biomedical Engineering

University of Tennessee, Knoxville
Knoxville, Tennessee

kwong@utk.edu

4th Halloy, Julian
Electrical Engineering and Computer Science

University of Tennessee, Knoxville
Knoxville, Tennessee

julian.halloy@gmail.com

Abstract—Despite C and Python both being very popular
programming languages, each tool possesses unique advantages
and disadvantages. Notably, computers can run C code very
quickly, but C syntax can be difficult for new programmers to
understand. Python code, however, sacrifices speed for an easy-
to-understand syntax. Thankfully, it is possible to combine the
benefits of Python and C. For example, NumPy is a popular
package of linear algebra operations written in C but used with
Python. Such a combination allows programmers to not only
utilize the fast speeds of C code but also Python’s simple syntax.
NumPy’s potential, however, is limited by its inability to run on
graphics processing units (GPUs), processors specialized for han-
dling computations. On the other hand, a linear algebra library
known as Matrix Algebra on GPU and Multicore Architectures
(MAGMA) is suited for running its code on GPUs. Coupled with
the fact that its code is written in C++ (with speeds similar to
C), MAGMA offers extremely fast computations. To combine
MAGMA’s speed with Python’s easy-to-understand syntax, I
researched how to use C++ code with Python. By studying a tool
known as Simple Wrapper and Interface Generator (SWIG), I
created PyMAGMA - a library of MAGMA functions which can
be imported in Python for use.

Index Terms—C++, MAGMA, Python, SWIG, wrapper

I. BACKGROUND

A. Matrix Algebra on GPU and Multicore Architectures

Matrix Algebra on GPU and Multicore Architectures
(MAGMA) is a computational library of C++ functions for
performing linear algebra operations such as matrix-matrix
multiplication and LU decomposition. MAGMA’s main ad-
vantage over other linear algebra libraries, such as Linear
Algebra PACKage (LAPACK), is that it contains functions
which can run on not only central processing units (CPUs)
but also graphics processing units (GPUs). Whereas CPUs are
computer processors tasked with most processing roles like
handling input and output (I/O), GPUs focus on performing
computations, resulting in GPUs running code much faster
than CPUs. Because LAPACK code is designed to run on
CPUs but not GPUs, MAGMA obtains a higher performance
than LAPACK (Fig. 1).

National Science Foundation

TABLE I
SGEMM TIME PERFORMANCE

Size LAPACK (ms) MAGMA (ms)
1088 16.47 1.49
2112 104.55 8.05
3136 342.17 25.79
4160 771.77 60.31
5184 1490.97 113.10
6208 2456.86 198.38
7232 3835.59 298.79
8256 5743.81 414.99
9280 8164.28 565.60
10304 11077.56 775.99

Fig. 1. For ten sets of random square matrices, we calculated the time
taken by LAPACK and MAGMA to perform Single-precision GEneral Matrix
Multiplication (SGEMM). Because MAGMA’s SGEMM function runs on the
GPU whereas LAPACK code runs on the CPU, MAGMA performs SGEMM
much faster than LAPACK.

B. Simplified Wrapper and Interface Generator

Simplified Wrapper and Interface Generator (SWIG) is one
of many tools for interfacing C/C++ code with other program-
ming languages. For example, programmers can use SWIG to
create interfaces through which C/C++ functions can be used
in Python. Unlike other interface tools, however, SWIG can
generate interfaces in many high-level languages (e.g., Java,
Perl, Ruby, PHP), not only Python [1]. This unique feature
makes SWIG suited for programmers who might interface
C/C++ functions with multiple languages in the feature.

For Python in particular, SWIG builds interfaces by gener-
ating three files: a wrapper file containing code for translating
C/C++ functions to the Python interpreter, a shared library
containing the compiled C/C++ code to interface as well as
the compiled wrapper file’s code, and a Python import file
allowing users to import the shared library into Python and
use the C/C++ functions inside.

II. SIMPLIFIED WRAPPER AND INTERFACE GENERATOR
WORKFLOW

To illustrate the process of using SWIG to generate a
Python interface for C++ functions, we describe the main steps
and files involved when using SWIG on a Linux machine.
Information about interfacing C functions or using SWIG
with different target languages is detailed in the SWIG 4.0
Documentation [2].

A. Installation

To install SWIG on the Linux operating system, users
can write the command apt-get install swig in the
Linux command line and then press Enter. To check if the
latest version of SWIG, 4.0, is in use, users should input the
command swig -version into the Linux command line
after SWIG is installed.

B. Header File (.h)

To use SWIG after installing it, the Python user must decide
what C++ functions they want to use with Python. Once the
functions have been chosen, a header file must be created. This
file should contain the declarations of all the C++ functions to
interface with Python. In addition to function declarations, the
header file should include any macro definitions or typedefs
used by the C++ functions.

By creating the header file, a SWIG user can organize
C++ functions which they want to use into a single file. By
maintaining one file of C++ functions, the user can easily
add or remove a function to/from the Python interface after it
is created by simply adding or removing its declarations (or
definitions) in the header file and then regenerating the SWIG
wrapper, import, and shared library files.

C. Interface File (.i)

After the Python user creates a header file of declarations
for all the C++ functions they want to interface, the user must
create a special SWIG file known as the interface file.

At minimum, the file should contain two include state-
ments for the header file and the name of the Python interface
which the user wants to create. Additionally, optional features
known as typemaps can be added to the interface file to give
SWIG specific directions on how to convert between specific
C++ and Python types. Typemaps are further discussed in
Sections 11, 12, and 13 of the SWIG 4.0 Documentation [2].

D. Import File (.py)

The Python file which we refer as the “import file“ contains
Python’s import command, which will let Python users im-
port the C++ functions into Python once the shared library file
is created. Also, inside the import file is a Python function for
each C++ function whose declaration was put into the header
file. Each of these Python functions its call the corresponding
C++ function inside the shared library, letting Python users
can use a desired C++ function by simply calling its Python
counterpart.

To create the import file, the user should use the SWIG
command swig -c++ -python NAME.i, where NAME
represents the name of the interface file.

E. Wrapper File (wrap.cxx)

SWIG generates the wrapper file when it creates the import
file. Inside the wrapper file is its namesake wrapper code
which will translate the C++ functions, which were declared
in the header file (.h), to the Python interpreter. The file
also incorporates any specific type conversions which the user
enforced with typemaps in the interface file (.i). Like the
import file (.py), the wrapper file is generated with the Linux
command swig -c++ -python NAME.i.

F. Compiled Wrapper File (.o)

Before the SWIG-generated wrapper code can translate
C++ functions to the Python interpreter, the code must
first be compiled into object code. To compile the wrapper
file, users can run the line -fPIC -c NAME_wrap.cxx
PATH_TO_PYTHON. NAME and PATH_TO_PYTHON both
represent the same meaning from the C version above. In this
command, NAME represents the part of the wrapper file’s name
before _wrap.cxx and PATH_TO_PYTHON represents the
path to the ‘Python.h in the user’s Linux machine.

G. Shared Library (.so)

To create a shared library for import the original C++
fuunctions into Python, the SWIG user should ensure
that they have the compiled wrapper file (wrap.o) and
object code for all the C++ functions declared in the
header file (.h). Assuming the user already has a li-
brary containing object code for the chosen C++ functions,
they can create the Python interface’s shared library with
the Linux command ld -shared OBJECT_LIBRARY
COMPILED_WRAPPER.o -o _MODULE.so. It is vital that
the Python user writes an underscore () before MODULE.so.

In this command, OBJECT_LIBRARY represents the
existing library of object code to use with Python,
COMPILED_WRAPPER.o represents the name of the com-
piled wrapper file (.o), MODULE is the name of the Python
interface specified in the interface file (.i), and _MODULE.so
represents the name for the generated shared library file. It
is vital that the Python user writes an underscore () before
MODULE.so.

Because SWIG has generated the compiled wrapper file (.o),
import file (.py), and shared library (.so), the Python interface
has been created.

III. CREATING PYMAGMA

We now discuss the process of creating the first version
of PyMAGMA, the SWIG-generated library of C++ functions
from MAGMA to be used with Python. While the first version
of PyMAGMA could be successfuly imported into Python,
we could not be use it to call MAGMA functions containing
pointer arguments. Our work to solve this problem is detailed
in Part IV.

Fig. 2. The code inside the pymagma.i interface file. Notably, we specify the
name of the PyMAGMA library and use include statements for the pymagma.h
header file.

Fig. 3. On lines 13 and 15, the import statement in the pymagma.py import
file for importing the PyMAGMA library into Python.

A. Header File (pymagma.h)

Our original header file contained declarations of MAGMA
functions for managing memory and queues, sending data
between CPUs and GPUs, multiplying matrices of doubles,
and performing LU factorization.

B. Interface File (pymagma.i)

The interface file (pymagma.i) for the first version of
PyMAGMA simply contained two include statements for the
pymagma.h header file and the name of the Python library we
wanted to create: PyMAGMA (Fig. 2).

C. Import File (pymagma.py)

After creating the pymagma.h header file pymagma.i inter-
face file, we used SWIG to generate the pymagma.py import
file. With this file, we could try importing the first version of
PyMAGMA after we building it (Fig. 3). For each MAGMA
function whose declaration was listed in the pymagma.h header
file, the import file contained the corresponding Python func-
tion for calling the C++ function (Fig. 4).

To create the pymagma.py import file and
pymagma wrap.cxx wrapper file, we entered the

Fig. 4. Examples of Python functions in the pymagma.py import file which
users will call to use the corresponding C++ functions from MAGMA in
PyMAGMA

Fig. 5. A list of Linux commands in our Makefile used to create the
pymagma.py import file and pymagma wrap.cxx wrapper file (line 12), create
the pymagma wrap.o object file, and create the pymagma.so shared library.

Fig. 6. The low-level wrapper code for MAGMA’s magma malloc() function
in the pymagma wrap.cxx wrapper file

following SWIG command into the Linux terminal:
swig -DSWIG_NO_CPLUSPLUS_CAST -c++ -python
pymagma.i (Fig. 5).

D. Wrapper File (pymagma wrap.cxx)

As its name suggests, the pymagma wrap.cxx wrapper file
contained wrapper code for translating the MAGMA functions
(declared in the pymagma.h header file) to the Python inter-
preter.

To create the pymagma wrap.cxx wrapper file
and pymagma.py import file, we entered the
following SWIG command into the Linux terminal:
swig -DSWIG_NO_CPLUSPLUS_CAST -c++ -python
pymagma.i (Fig. 5). Initially, we did not include
the -DSWIG_NO_CPLUSPLUS_CAST text in the
Linux command; however, we obtained an error
when trying to compile the Wrapper File without
-DSWIG_NO_CPLUSPLUS_CAST. Specifically, SWIG’s
use of C++ typecasting (i.e., static, const, and reintepret) in
the wrapper file was invalid, preventing the wrapper file from
being compiled.

Thus, to prevent SWIG from using the C++
typecasts at all, we forced SWIG to use C typecasts
by including -DSWIG_NO_CPLUSPLUS_CAST
in the Linux command used to generate the
pymagma wrap.cxx wrapper file. By creating the
pymagma wrap.cxx Wrapper File with the Linux command
swig -DSWIG_NO_CPLUSPLUS_CAST -c++ -python
pymagma.i, we successfully compiled the
pymagma wrap.cxx wrapper file.

Fig. 7. A list of errors which occurred when trying to compile the
pymagma wrap.cxx wrapper file after it was creating a Linux command ex-
cluding −DSWIG NO CPLUSPLUS CAST . SWIG used C++ type-
casting in the wrapper file in an invalid way, resulting in the errors shown.

E. Compiled Wrapper File (.o)

To compile the pymagma wrap.cxx wrapper file into
the pymagma wrap.o object file, we used the Linux
command !g++ -fPIC -c pymagma_wrap.cxx
-I/home/user1/anaconda3/include/ python3.9.
In the command, the -I/home/.../python3.9 path is
the path to the Python.h on our Linux machine (Fig. 5).

F. Shared Library (pymagma.so)

In the first version of PyMAGMA, the pymagma.so shared
library contained object code from the pymagma wrap.o file
and libmagma.so file - a shared library of object code from
MAGMA.

To create the pymagma.so shared library, we successfully
ran the following Linux command: ld -shared
/home/user1/magma/lib/libmagma.so
pymagma_wrap.o -o _pymagma.so (Fig. 5).

G. Testing

After successfully importing PyMAMGMA with Python,
we tried calling the following three functions to test the
functionality of PyMAGMA:

• magma_init()
• magma_print_environment()
• magma_finalize()

Even though we could successfully call magma_init()
and magma_finalize() in a Python environment on the
Linux terminal (Fig. 8), magma_print_environment()
was not initially functional. Specifically, when trying to locally
call magma_print_environment() with the Linux ter-
minal, correct output was displayed before the warning ***
stack smashing detected *** appeared. Somehow, data in the
computer’s stack memory was getting incorrectly overwritten.

Since locally calling magma_print_environment(),
we tried creating PyMAGMA on Google Colab and call-
ing magma_print_environment() with Google Colab’s
command line. Correct output was displayed with no warnings.
While we do not know exactly why Google Colab did not
display any warnings, we think that it could be because Google
Colab used SWIG 3.0.12. Specifically, whereas SWIG 4.0.1
was used to create PyMAGMA locally, SWIG 3.0.12 was used
to create PyMAGMA on Google Colab. Possibly, the newer
4.0.1 version of SWIG contained code for giving “stack smash-
ing” warnings while the older 3.0.12 version did not. Neverthe-
less, we wanted to call magma_print_environment()
locally without seeing stack smashing occur because the
version of PyMAGMA created locally used the newer SWIG
version.

After relinking all the object files in the libmagma.so
library and creating PyMAGMA locally again, we could
run magma_print_environment() without any errors or
warnings (Fig. 8).

Fig. 8. Successfully calling the MAGMA functions magma init(),
magma print environment(), and magma finalize() with PyMAGMA in a
Python environment after relinking the object files in the libmagma.so library

Fig. 9. Attempting to call PyMAGMA’s magma malloc() function, which
dynamically allocates a block of user-specified amount of GPU memory
starting at a given address. Because the first argument is of the pointer type
magma ptr * but Python users cannot normally create pointers, calling the
function produces a TypeError.

IV. ADDED FUNCTIONS TO PYMAGMA

Python users do not normally have the ability to create
pointer types, but many MAGMA functions in PyMAGMA
require pointer arguments. Therefore, Python users would
somehow need a way to create the pointers (Fig. 9). To combat
this issue, we added to the pymagma.h header file new versions
of MAGMA functions which would require Python users to
pass in pointer arguments. Other than requiring arguments
of pointer types, many of these new versions operate nearly
identically to their MAGMA counterparts.

Furthermore, to test the accuracy of the linear algebra func-
tions DGESV (Double-precision GEneral matrix SolVe) and
SGEMM (Single-precision GEneral Matrix Multiplication)
which would eventually be added to PyMAGMA, we created
PyMAGMA functions for creating, editing, and printing C++
arrays on both the CPU and GPU.

For simplicity, we will provide one function which we added
to PyMAGMA to avoid the pointer arguments necessary to
use many PyMAGMA functions. Also, we will provide three
functions we created for managing arrays on the CPU. Overall,
however, we added many functions to PyMAGMA to avoid
using pointer arguments and to manage arrays of both floats
and doubles on the CPU and GPU.

A. pymagma malloc()

The magma malloc() function is designed to dynamically
allocate memory on the current GPU but requires a ptr ptr
argument of type magma ptr* (identical to the void** type
in C++). Therefore, we created a pymagma malloc() func-
tion with the same purpose as the MAGMA version but
does not require the ptr ptr argument (Fig. 10). Specifically,
pymagma malloc() declares a pointer of type void*, passes

Fig. 10. The definition for the pymagma malloc() function which we added
to the pymagma.h header file to let users create dynamically allocate GPU
memory.

Fig. 11. The definition for the pymagma sarray cpu() function which we
added to the pymagma.h header file to let users create arrays of C++ floats
on the CPU.

the memory address of that pointer into the magma malloc()
function to allocate GPU memory, and then returns the pointer.

B. pymagma sarray cpu()

To test the results of performing SGEMM, we wanted a
way to create arrays of C++ floats on CPUs. We achieved
this by creating the pymagma sarray cpu() function (Fig. 11).
After a Python user passes height and width arguments into
the function, the functions calls pymagma malloc cpu() to
dynamically allocate a height x width block of CPU memory
and then return the base address of that array as a float*
pointer.

It should be noted that the return type of py-
magma sarray cpu() is float* instead of void*. If the return
type was void* instead, then inputting the returned pointer in
the pymagma sset cpu() function would return an error would
void pointers cannot be de-referenced in C++.

C. pymagma sset cpu()

To test the results of performing SGEMM, we wanted a way
to change values in arrays of floats on CPUs. We achieved this
by creating the pymagma sset cpu() function (Fig. 12). After
an user passes A, row, col, lda, and value arguments into
the function, the functions sets the float value in the position
at row row and column lda x col in the array A returned by
pymagma sarray cpu().

Fig. 12. The definition for the pymagma sset cpu() function which we added
to the pymagma.h header file to let users change values in arrays of C++ floats
on the CPU.

Fig. 13. The definition for the pymagma sprint cpu() function which we
added to the pymagma.h header file to let users print arrays of C++ floats on
the CPU.

D. pymagma sprint cpu()

To test the results of performing SGEMM, we wanted a
way to print arrays of floats on CPUs. We achieved this
by creating the pymagma sprint cpu() function (Fig. 13).
After an user passes m, n, A, and lda arguments into the
function, the functions calls a MAGMA function known as
magma sprint(), which we also added to PyMAGMA, to print
the first m rows and n columns in the array A generated with
pymagma sarray cpu().

V. USING PYMAGMA
After adding all functions for managing arrays on the CPU

and GPU and avoiding pointer errors, we performed Single-
precision GEneral Matrix Multiplication (SGEMM) with Py-
MAGMA and compared its performance to MAGMA’s. Over-
all, MAGMA performed SGEMM both faster (Fig. 14) and
with more floating point operations per second (Fig. 15)
than PyMAGMA. However, the differences in both time
and floating point operations per second between MAGMA
and PyMAGMA were not large, showing that we can use
PyMAGMA can perform very fast computations despite being
having to be imported into Python.

TABLE II
MAGMA AND PYMAGMA SGEMM COMPARISON (TIME)

Size MAGMA (ms) PyMAGMA (ms)
1088 1.49 1.49
2112 8.05 8.10
3136 25.79 26.01
4160 60.31 60.81
5184 113.10 113.6
6208 198.38 194.19
7232 298.79 285.85
8256 414.99 396.34
9280 565.60 573.74
10304 775.99 782.41

Fig. 14. Comparing MAGMA’s and PyMAGMA’s time performances of
performing Single-precision GEneral Matrix Multiplication (SGEMM).

Fig. 15. Comparing MAGMA’s and PyMAGMA’s floating-point-operations-
per-second performances of performing Single-precision GEneral Matrix
Multiplication (SGEMM).

VI. CONCLUSION

As discussed in Section 4.2, we can successfully perform
DGESV and SGEMM with PyMAGMA, showing that Py-
MAGMA is functional. Furthermore, PyMAGMA’s perfor-
mance of SGEMM is very similar to MAGMA’s performance

TABLE III
MAGMA AND PYMAGMA SGEMM COMPARISON (GIGAFLOP RATE)

Size MAGMA (gflop/s) PyMAGMA (gflop/s)
1088 1729.54 1729.54
2112 2341.09 2326.64
3136 2392.08 2371.85
4160 2387.66 2368.03
5184 2463.79 2452.95
6208 2412.25 2464.30
7232 2532.03 2646.65
8256 2712.24 2839.86
9280 2826.10 2786.01
10304 2819.76 2796.62

of SGEMM, showing that our PyMAGMA Python interface
has sufficient performance to where Python users should
use it. Also, we have an easy way to add functions to or
remove functions from PyMAGMA by simply changing the
list of function declarations and definitions included in our
pymagma.h Header File.

VII. WAYS FOR IMPROVEMENT

A. Use Typemaps

As detailed in section 4, to use MAGMA functions which
required pointer arguments, we created “pointerless” versions
of the functions. Ideally, however, we would not create any
new functions at all. Rather, we would like to tell SWIG
how to wrap the input and output types for our MAGMA
functions. A SWIG tool for doing this is known as “typemaps.”
For more information on what typemaps are and how to use
them, please refer to Sections 11, 12, and 13 in the SWIG 4.0
Documentation [2].

B. Follow Python Enhancement Proposal 8

Because PyMAGMA is a Python library, we should make
sure that the Python functions in the pymagma.py Import File
which users call from the library follow the PEP 8 style
guidelines [3].

Notably, we should change the case of every Python
function in the Import File to snake case). For example,
the pymagma getdevice() function should be named as py-
magma get device() instead. One possible way of accom-
plishing this is to directory change the names of the Python
functions in the Import File. However, these changes would
disappear each time PyMAGMA is regenerated with a new
Header File or Interface File. Alternatively, we could create
new C++ functions with snake case in the pymagma.h Header
File which call their non-snake case equivalents. Such changes
would not disappear everytime PyMAGMA is regenerated.

Furthermore, we could shorten the names of Pyton functions
in the Import File. For example, the pymagmablas sgemm()
function should be simply named sgemm(). One possible
way of accomplishing this is to directly shorten the names
of the Python functions in the Import File. However, these
changes would disappear each time PyMAGMA is regenerated
with a new Header File or Interface File. Alternatively, we
could create new C++ functions with shortened names in

Fig. 16. Combining the magma malloc() and magma malloc cpu() functions
into a single malloc() function

the pymagma.h Header File which call their non-snake case
equivalents. Such changes would not disappear every time
PyMAGMA is regenerated.

C. Combine CPU and GPU Versions of Functions

Reducing the number of PyMAGMA functions available to
users could make using PyMAGMA less overwhelming for
Python users. Therefore, rather than having separate CPU and
GPU functions for performing a given task (e.g., allocating
memory), we could create a single function which a “proces-
sor” argument 16. The default value of the argument would
be “CPU” and the CPU version of the function would be
performed whenever the function is called. However, if the
user inputs the value “GPU” instead, the GPU version of the
function would be performed whenever the function is called.
To do this, we could add the new function directly to the
pymagma.h Header File.

D. Use PyMAGMA with Foreign Data Types

To increase the usability of PyMAGMA, we should find a
way to use foreign data types with PyMAGMA. Specifically,
we should learn how to input NumPy arrays and Python lists
into functions which expect pointer arguments for an array.
One way in which NumPy arrays can be used with SWIG
interfaces is with typemaps inside the numpy.i interface file.
However, using numpy.i depends heavily on the number and
order of arguments in functions. Therefore, numpy.i should
only be used if PyMAGMA is finalized and will not receive
any other changes.

ACKNOWLEDGMENT

This research project was sponsored by the National Sci-
ence Foundation (NSF) through a Research Experience for
Undergraduates (REU) grant for the Research Experiences in
Computational Science, Engineering, and Mathematics (REC-
SEM) program held at the University of Tennessee, Knoxville
(UTK). During the project, research assistance was received by
researchers from the Innovative Computing Laboratory (ICL)
and University of Tennessee, Knoxville.

REFERENCES

[1] Welcome to SWIG. (2019, April 18). Retrieved from https://swig.org/.
[2] SWIG-4.0 Documentation [PDF file]. Retrieved from

https://swig.org/Doc4.0/SWIGDocumentation.pdf.
[3] PEP 8 — the Style Guide for Python Code. Retrieved from

https://pep8.org/

