
What makes C++ and Python different?
Despite C++ and Python both being very popular 
programming languages, each tool possesses unique 
advantages and disadvantages. Notably, while 
computers can run C++ code very quickly, C++ syntax can 
be difficult for new programmers to understand. 
Conversely, Python sacrifices speed for a simple, easy-to-
read syntax.

What is a Python Interface?
We define a Python interface to be “any tool allowing 
code written in non-Python languages to be used with 
Python.” A prime example of such is NumPy, a popular 
Python library containing many functions for performing 
linear algebra computations. Despite being used with 
Python, NumPy code is mainly written in C. By using 
Python interfaces, programmers can combine the fast 
speeds of languages like C and C++ with the simple 
syntax of Python.

What is MAGMA?
Like NumPy, Matrix Algebra for GPU and Multicore 
Architectures (MAGMA) is a package of linear algebra 
operations. Unlike NumPy, however, MAGMA is largely 
written in C++. Furthermore, while NumPy code is suited 
for running on CPUs, MAGMA code is specialized for 
running on GPUs. These two differences result in 
MAGMA obtaining faster computational speeds than 
NumPy.

What is SWIG?
Simplified Wrapper and Interface Generator (SWIG) is a 
tool for building interfaces through which C/C++ code can 
be used in high-level languages (e.g., Python). SWIG 
accomplishes this task by creating “wrapper” code which 
translates C/C++ code to the target language.

PyMAGMA: A Python Library for MAGMA
Student: Delario Nance, Jr. (Davidson College)

Mentors: Stanimire Tomov (UTK), Kwai Wong (UTK)
Research Assistant: Julian Halloy (UTK)

SWIG Workflow

1) Record the performance of matrix-matrix 
multiplication (SGEMM) with PyMAGMA

2) Make PyMAGMA compatible with foreign data 
types (e.g., NumPy arrays) 

1) Use SWIG to build an interface through which 
MAGMA functions can be used with Python, by 
creating and importing a library of C++ functions 
from MAGMA

Future Work
This research project was sponsored by the National Science Foundation (NSF) through a 
Research Experience for Undergraduates (REU) grant for the Research Experiences in 
Computational Science, Engineering, and Mathematics (RECSEM) program held at the 
University of Tennessee, Knoxville (UTK). During the project, research assistance was received 
by researchers from the Innovative Computing Laboratory (ICL) and University of Tennessee, 
Knoxville. Also, the SWIG 4.0 Documentation was essential in learning how to use the tool.

Background

Python Interpreter

(English speaker)

C++ Code

(Mandarin speaker)

Wrapper Code

(Translator)

Figure 1. A real-life analogy of using SWIG with Python

File 1. Header 
File 

(pymagma.h)
A list of all the C++ 
functions from 
MAGMA we want 
to use with Python.

File 2. Interface File (pymagma.i)
The location where we specify the name 
of the Python library to create 
(PyMAGMA).

File 3a. Import File (pymagma.py)
The file used to import the PyMAGMA library once it is created. This 
file also contains the Python functions which users will call to use 
the C++ functions inside MAGMA.

File 3b. Wrapper Code (pymagma_wrap.cxx)
The file containing the “wrapper” code which will translate the C++ 
code in MAGMA to the Python interpreter, letting C++ code be used 
with Python after PyMAGMA is created and imported.

File 4. Shared Library (_pymagma.so)
PyMAGMA, the importable Python library containing the C++ 
functions we want to use from MAGMA and the compiled “wrapper” 
code from the Wrapper file.

Solving AX = B with PyMAGMA
We can use PyMAGMA to perform DGESV with simple 5 x 5 
matrices. DGESV is the task of solving matrix equations of the
form AX = B with double precision. An example of solving
DGESV on the GPU with PyMAGMA is shown below:

Research Goal Acknowledgements

Current Results


