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Abstract—This paper presents an LSTM implementation on
GPU computational platforms for the upcoming version release
of MagmaDNN, discussing the mathematical and computational
methods employed. These include caching reusable results and
support for accelerated, parallelized computation on NVIDIA
processing chips though the CUDA API.

Index Terms—lstm, cuda, magma, deep learning

I. INTRODUCTION

A. MagmaDNN Framework

MagmaDNN is an open-source, C++ deep-learning frame-
work, built using MAGMA and CUDA [1], which facil-
itates time-efficient training and execution through paral-
lelized Graphics Processing Unit (GPU) code. In order to
store data in an efficient manner for the given use case,
MagmaDNN employs MemoryManager objects to determine
how and where to store data. MemoryManager offers 4
options: HOST (main memory), DEVICE (GPU memory),
MANAGED (main and GPU memory with MagmaDNN pro-
tocol), and CUDA MANAGED (main and GPU memory with
CUDA protocol).

MagmaDNN has four main classes for creating a neural
network: Tensor, Operation, Layer, and Model. These classes
serve as the different levels of abstraction for constructing a
deep-learning model.

B. Tensor

The Tensor class is the primary data-storage unit in
MagmaDNN. It utilizes a MemoryManager to store data in
either main or GPU memory. A Tensor object offers various
initialization methods, a getter and a setter, and a method
to access a pointer to its storage address in memory. The
data of a Tensor, managed by the MemoryManager, is stored
sequentially in memory, allowing CUDA kernels to easily
index data stored inside a Tensor.

C. Operation

The Operation class is the superclass from which all
Operation classes inherit. Encapsulated within an Operation
are its output Tensor, computations to produce it, computations
for gradients with respect to its inputs (if any), and linkage
code, which identifies any Operation object inputs used in
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its own computations. Variable is an Operation which wraps
directly around a Tensor to store data. Operation classes
in MagmaDNN take any number of inputs and use those
inputs to produce an output Tensor. In practice, Operation
objects are superimposed as arguments into each other (e.g.
matmul(add(VarA,VarB),negative(VarC)), constructing a large
compute tree from which gradients with respect to its Variable
objects can be computed.

D. Layer

The Layer class is the superclass from which all Layer
classes inherit. Layer objects take an Operation for input and
then have a method to return an Operation, which serves as the
output for the Layer. A Layer also has a method that returns
a list of trainable weights and biases. Layer objects can be
connected by passing one Layer’s output to another Layer’s
input. In practice, a Layer’s initialization method receives
some input Operation object or objects and then superimposes
other operations on top of the input or inputs: this becomes
the Layer’s output Operation.

E. Model

The Model class is the superclass from which currently only
one class inherits, NeuralNetwork. A NeuralNetwork object
allows multiple Layer objects to be placed in a sequential
order, one Layer’s output feeding into the next Layer’s input
until the last Layer produces the NeuralNetwork’s output. A
NeuralNetwork accepts arguments to define how its loss is
calculated, how it updates the parameters of its Layer objects
to minimize the loss, and the number of epochs for training.
A NeuralNetwork can then be used, with either trained or set
weights, to evaluate inputs, feeding them through all its Layer
objects, to produce outputs.

II. CUDA

CUDA is a platform created by NVIDIA that provides
parallel-computing capabilities. CUDA allows programs to
use the GPU of a computer in order to perform various
calculations in parallel, resulting in less of a time requirement
for computations [2]. For this reason, CUDA is used in
many computationally-intensive applications such as climate
modeling and machine learning.



CUDA is supported for use in a number of programming
languages, including C++ and Fortran, in which functions
can call CUDA kernels that divide work amongst the many
threads and blocks in the GPU, parallelizing computations.
Neural Networks, including those with LSTM components,
require many independent and repeated calculations in order to
train and thus take strong advantage of the parallel computing
capabilities of CUDA.

III. MAGMA
MAGMA, Matrix Algebra on GPU and Multicore Archi-

tectures, is a lightweight linear algebra package with a focus
on using GPU and multicore devices [3]. Using these hard-
ware accelerators, it provides highly optimized linear algebra
operations such as matrix multiplication and transposition.
MAGMA is built on Fortran and C++. Its functionality is
similar to that of LAPACK (Linear Algebra Package) but with
GPU capabilities for parallel computing.

IV. LSTM
In the section which follows lie the background information,

the mathematical description, and the specific technical and
computational methods employed for this LSTM’s implemen-
tation in MagmaDNN. The mathematical description relates
directly to the programmed implementation.

A. Background

Jürgen Schmidhuber and Sepp Hochreiter first proposed
the LSTM architecture in 1997 [4]. The LSTM formulation
addressed a problem with conventional recurrent neural net-
works: calculating gradients over sequences would result in
either exploding or vanishing gradients. Such an issue made
training models to learn long sequence relationships inefficient
if not impossible. The original LSTM contended with this
problem by introducing a memory cell, which could carry
data from earlier sequence steps to later sequence steps. A
later by paper by Cummins the again Schmidhuber proposed
modifications which further improved LSTM’s ability to learn
relationships between both far and nearly separated sequence
steps, introducing a forget gate, which allows LSTM to learn
not only what data to propagate further into networks but to
learn also what data to cease propagating [5]. The present
paper describes the implementation of this later and improved
instantiation of LSTM into MagmaDNN.

B. Preliminary Implementation Details

Creating LSTM in MagmaDNN requires only that two
major components be implemented: the forward calculation
and the backward (i.e. gradient) calculation. These two com-
ponents are coded into an Operation. The Layer class then
encapsulates this Operation along with some basic logic to
determine what parameters, which are Layer weights, need
to be updated by the Optimizer, which is a component of
the Model in which the LSTM resides. Existent structures
in MagmaDNN such as the NeuralNetwork Model and the
Adam Optimizer facilitate updating weight values and han-
dling batches of data, leaving only the particulars of LSTM

calculations to implement. Thus, the Model utilizing LSTM,
for purposes of describing implementation, can be treated as a
black box that passes three-dimensional input into the Layer,
prompting a return of a two- or three-dimensional output; then,
the network passes the two- or three-dimensional gradient of
the network loss function with respect to the Layer’s output
into the Layer’s gradient function, prompting a return of the
gradient of the loss function with respect to the Layer input
and the weights.

Data for inputs, outputs, and weights, which may be repre-
sented as variables referencing matrices in the mathematical
formulation, are actually stored within n-dimensional Tensor
objects. These will be described more in the Implementation
section.

C. Mathematical Formulation

For this implementation of LSTM, input vectors are stored
as rows in matrices and weight vectors are stored as columns
in matrices. Let N , T , K, M ∈ N be the batch size, number
of sequence steps, number of values per input vector, and
number of nodes in an LSTM respectively. For input, the
LSTM receives tensor X ∈ RN×T×K . For output, if the
LSTM is returning sequences, the LSTM generates tensor
Y ∈ RN×T×M ; if it is not returning sequences, it generates
tensor Y ∈ RN×M .

1) Forward: Let xt ∈ RN×K and yt ∈ RN×M , the latter
defined only when returning sequences, be the inputs and
outputs for sequence step t, which are defined thus:

(xt)ij = Xitj ,

(yt)ij = Yitj .

Let ct, ht ∈ RN×M be the internal states for the tth se-
quence step; c0 and h0 are both initialized before computation,
typically to all zeros. Let Wf ,Wi, Wo, Wc ∈ RK×M and
Uf , Ui, Uo, Uc ∈ RM×M be weight matrices. Let bf , bi,
bo, bc ∈ RN×M be bias matrices, which are hence considered
“weights.” Aside from matrix multiplication, which is signified
by juxtaposing two matrices, all operations are element-wise.
“σ(x)” is a sigmoid function and “⊗” is multiplication.

The equations for forward propagation are as follows:

ft = σ(xtWf + ht−1Uf + bf ),

it = σ(xtWi + ht−1Ui + bi),

ot = σ(xtWo + ht−1Uo + bo),

c̃t = tanh(xtWc + ht−1Uc + bc),

ct = ft ⊗ ct−1 + it ⊗ c̃t,

ht = ot ⊗ tanh(ct).

If the LSTM is not returning sequences, its output Y is
hT ; if the LSTM is returning sequences, the output is tensor
H ∈ RN×T×M , with

Hitj = (ht)ij for t ∈ [1, T ].



2) Backward: The parameters of the LSTM are Wf , Uf ,
bf , Wi, Ui, bi, Wo, Uo, bo, Wc, Uc, and bc. To train these
weights, the gradients of the loss with respect to them must
be calculated. Additionally, if there are layers previous to the
LSTM layer in a network, the gradient must be calculated with
respect to the inputs.

Let L be the loss function for this network. Henceforth,
for any matrix A, let Ā be a matrix or tensor with equivalent
dimensions to A, with

Āi0i1...in =
δL

δAi0i1...in

.

The calculations below assume that Ȳ is provided by the
neural network in which the LSTM resides. Now, define the
following five variables:

γ̄ft = c̄t ⊗ ct−1 ⊗ ft ⊗ (1− ft),

γ̄it = c̄t ⊗ c̃t ⊗ it ⊗ (1− it),

γ̄ot = h̄t ⊗ βt ⊗ ot ⊗ (1− ot),

γ̄ct = c̄t ⊗ it ⊗ (1− c̃2t ),

η̄t = γ̄ft+1U
⊺
f + γ̄it+1U

⊺
i + γ̄ot+1

U⊺
o + γ̄ct+1

U⊺
c if t < T,

which can be calculated for t ∈ [1, T ] alongside these
equations:

βt = tanh(ct)

c̄t =

{
h̄t ⊗ ot ⊗ (1− β2

t ) if t = T,

h̄t ⊗ ot ⊗ (1− β2
t ) + ft+1 ⊗ ct+1 if t < T ;

h̄t =


ȳt if t = T,

η̄t + ȳt if t < T & returning sequences,
η̄t if t < T & not returning sequences.

Finally, the gradients with respect to the weights
and with respect to the inputs can be calculated
in this way, noting that “⊺” is a matrix transpose
while T is still the number of sequence steps:
W̄f =

∑T
t=1 x

⊺
t γ̄ft Ūf =

∑T
t=1 h

⊺
t−1γ̄ft b̄f =

∑T
t=1 γ̄ft

W̄i =
∑T

t=1 x
⊺
t γ̄it Ūi =

∑T
t=1 h

⊺
t−1γ̄it b̄i =

∑T
t=1 γ̄it

W̄o =
∑T

t=1 x
⊺
t γ̄ot Ūo =

∑T
t=1 h

⊺
t−1γ̄ot b̄o =

∑T
t=1 γ̄ot

W̄c =
∑T

t=1 x
⊺
t γ̄ct Ūc =

∑T
t=1 h

⊺
t−1γ̄ct b̄c =

∑T
t=1 γ̄ct

x̄t = γ̄ftW
⊺
f + γ̄itW

⊺
i + γ̄otW

⊺
o + γ̄ctW

⊺
c .

D. Implementation

Data is passed to and from the LSTM Layer as Tensor
objects, which provide access to memory stored on either
DEVICE or HOST. However, the current implementation only
supports calculations on DEVICE memory because aspects of
the CUDA code cannot directly operate upon HOST memory.
All variable names herein reference the variables defined in the
mathematical formulation, except the variable names should
be interpreted to be the names of Tensor objects, storing
data equivalent to the values represented by the mathematical
variables.

This LSTM implementation requires both the forward and
backward calculations. Many of the values calculated during
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Fig. 1. LSTM Computational Flowchart. The circles represent data sources,
destinations, or modifications and edges represent data flow. The graph
visualizes how this LSTM implementation reuses cached values from the
forward pass in the backward calculation.

the forward calculation are useful when calculating the back-
ward pass. Hence, these values are stored in variable caches
within the LSTM Layer class during the forward calculation.
The backward calculation then utilizes these cached values in
its execution. This caching process is visualized in Figure 1.

Before execution begins, h0 and c0 are by default initialized
to all zeros. A caller of the Layer may also initialize these
Tensor objects to contain particular values. Also, all weight
Tensor objects are by default initialized uniformly to contain
pseudo-random values between 0 and 1, leaving the option for
a caller to set particular initializations.

There are two modes in which an LSTM Layer can be
initialized, one for returning sequences, that is all of h1 . . . hT ,
and one for returning only hT as output, that is, not returning
sequences.

1) Forward: The following element-wise operations facili-
tate the LSTM forward pass calculation on Tensor input: lo-
gistic sigmoid, tanh, multiplication, addition, and subtraction.
Basic CUDA kernels each run one of these calculations. A
MAGMA function calculates the needed matrix multiplica-
tions. Finally, there are two special operations implemented
as CUDA kernels, slice and concatenate, which assist in
accessing data for particular sequence steps and constructing



the output sequence respectively.
The LSTM Layer receives a three dimensional Tensor as

input, X , from either the input of a Model or from the output
of a Layer previous to the LSTM Layer itself. This input is
then split into one Tensor per sequence step, which is one of
x1 . . . xT . To accomplish this, a CUDA kernel copies values at
appropriate indices out of Tensor X to populate each Tensor
xt. Next, the various functions previously listed calculate
each of h1 . . . hT . If the Layer has been initialized to return
sequences, the concatenation CUDA kernel concatenates every
ht, returning the output of that concatenation; alternatively,
it returns hT if it is not returning sequences. As stated in
Preliminary Implementation Details, many of the intermediate
calculations’ results are useful for the gradient calculation; so,
throughout computation, eight C++ vectors store the values
for each sequence step of xt, ct, ht, βt, ft, it, ot, and ct.
The forward calculation caches every xt, so that the backward
calculation does not need to re-slice X into its sequence steps.

2) Backward: The backward calculation’s efficiency de-
pends upon the eight caches stored in vectors by the forward
pass. In the absence of these cached values, the backward
calculation would need to recalculate much of what the
forward pass already evaluated.

To begin calculation, the Model object which contains this
Layer object will call the Layer’s gradient function, providing
it with Ȳ and the variable with respect to which the derivative
of the loss function should be calculated. Regardless of the
variable with respect to which the gradient is to be returned,
a full backward propagation through the sequence is required.
This propagation occurs starting at sequence step T and ends
once sequence step 1 has been calculated.

A variety of CUDA kernels supports the backward calcula-
tions, which differ from those used in the forward calculation.
Whereas the forward pass utilizes general kernels that evaluate
one operation at a time, those used for the backward pass
receive multiple of the cached values alongside some values
already computed in the backward pass to implement chains
of calculations. There are five specialized kernels to evaluate
γ̄ft , γ̄it , γ̄ot , γ̄ct , and c̄t. Slice and concatenate again transform
between three-dimensional and two-dimensional data. Addi-
tionally, there are two general utility kernels, one for setting
all values in a Tensor to 0 and one for summing an arbitrary
number of Tensor objects element-wise. As with the forward
pass, MAGMA computes the needed matrix multiplications.

If the LSTM Layer is returning sequences, slice works upon
Ȳ to attain every ȳt. If the LSTM Layer is not returning
sequences, Ȳ , which would already be two-dimensional, need
not be sliced and the values thereof initialize h̄T .

Once h̄T has been calculated, the backward propagation
through time begins, with the five specialized kernels running
for each sequence step. Depending on the variable with respect
to which the gradient is to be calculated, combinations of
cached values, the current values of the weights and inputs,
and the values computed by this backward pass combine by the
appropriate operations to evaluate and then return the gradient.

Fig. 2. Training speed of the LSTM in MagmaDNN and the LSTM in
TensorFlow compared for various batch sizes.

V. RESULTS

The calculations for this LSTM Layer were compared
against a Python script1 that simulated LSTM computations
for both the forward and backward propagation. The LSTM
Layer’s output values and gradients with respect to the input
and each of the parameters matched the expected correct
values.

This Layer was also given a basic test case to compare its
training speed to that of the LSTM in Google’s deep-learning
library, TensorFlow [6]. In both MagmaDNN and TensorFlow,
we created a model with two layers: a five unit (dimensionality
of output space) LSTM that returns sequences connected to a
one unit LSTM without returning sequences. The models were
given 300 uniform values between 0 and 1 for input and taught
to predict only 0’s as output in 200 epochs. The training speeds
for these models were measured in a Google Colaboratory
Notebook running on GPU hardware with varying batch sizes
from 10 to 300. The performances can be seen in Figure 2.

The MagmaDNN model performed faster for batch sizes of
100 or above while the TensorFlow model performed faster
for the smaller batch sizes.

VI. CONCLUSION

The LSTM herein presented offers MagmaDNN a needed
addition, that it may possess RNN functionality. While there
are still changes and improvements to be made before a release
version, the initial testing displays promising results toward
competitiveness with a leading deep-learning framework.

A. Future Work

More testing on this LSTM is required before firm con-
clusions about its performance can be drawn. It would be
greatly beneficial to test it against established data sets for
benchmarking purposes.

In other libraries’ implementations of LSTM, such as Ten-
sorflow’s [6], sequences of arbitrary length can be used as

1The Python script was verified against test cases of known LSTM
computation.



input into and returned as output from LSTM. In the current
development version, an LSTM’s input and output sequence
length must be set before training and cannot be changed. So,
to achieve these dynamic length capabilities, a user of this
LSTM must manually copy the weights of an LSTM trained
with one sequence length and then initialize another LSTM
with a different sequence length to have these copied weights.

Instead of first using a kernel to slice the sequenced data
into two-dimensional Tensor objects and then computing for a
sequence step, the CUDA code could be optimized to directly
use the three-dimensional input of Tensor objects in its kernels.

In the forward calculation, the computations could be
streamlined by combining multiple micro calculation kernels
into one. For example, instead of first multiplying with one
kernel and then adding with another, the two could be com-
bined to run at a more rapid pace.

In the backward calculation, many of the calculated values
needed to determine the derivative with respect to one variable
are also used for all others. For instance, every variable
requires all of γft , γit , γot , and γct to calculate the derivative
with respect to it. MagmaDNN’s methods for updating weights
is to calculate the derivative with respect to one variable
at a time. As it is implemented now, the LSTM does not
cache such values and instead recalculates each variable for
each derivative. Implementing a cache would greatly reduce
recalculating, leading to speed improvements.

VII. INTERNAL DEVELOPMENT NOTES

A. First Approach

For our first attempt at implementing the LSTM layer,
we chose to superimpose a number of previously existing
operations with our newly implemented slice and concatena-
tion operations. This approach resulted in correct calculations
and successful training on small data sets. However, this
implementation had many significant problems. First, our
method of superimposing operations, for reasons unknown
to us, resulted in the adding of the LSTM to a network
taking seemingly exponentially increasing amounts of time for
longer (¿10) lengths of sequences. We traced the slow down to
some code which calls some custream-related functions in the
Operation.h file. These lines of code became slower with each
operation that was passed into the next. Our hypothesis is that
our network created an amount of operations which was not
anticipated when MagmaDNN’s Operation class was created.

This implementation also encountered issues with the com-
pute tree when evaluating operations. Typically MagmaDNN
will check if a tree has already been evaluated up to a certain
point to avoid useful re-evaluation, but in the case of the first
LSTM layer, it would re-evaluate every operation despite these
checks, causing the program to be unusably slow on larger data
sets. For these reasons, the second implementation of LSTM
used one LSTM operation that performed all computations
without calling other operations.

B. Second Approach Issues

The new implementation of the LSTM addresses many of
the problems with the original implementation, notably the
operation overhead and unnecessary revaluations of compute
trees. However, this layer still has one notable problem:
memory usage. When training for extended periods of time,
such as on a large data set, the layer will eventually exhaust
all available memory, causing a segmentation fault. The reason
for this is not certain, but it is likely either a significant
memory leak in the LSTM operation or an issue with how
MagmaDNN’s model.fit() method trains large numbers of
weights (since the LSTM has 12 weights whereas other
implemented layers will typically have 2). Another issue is
that, in the current implementation of the LSTM, the bias
matrix learns different biases for each batch when each batch
should instead have the same vector of biases. That is, the
biases are currently of shape batch size by num nodes, when
they should be of shape num nodes and use broadcasting to
add with Tensor objects of shape batch size by num nodes.
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