
MagmaDNN LSTM Implementation
Students: Pierluigi Cambie-Fabris (UTK), Joshua Zingale (SDSU)
Mentors: Kwai Wong (UTK)

The current version of the LSTM layer performs the correct
calculations expected from the LSTM equations.
Below we have an example of such testing.

MagmaDNN is a deep learning engine built atop the computational
framework Magma. Until now, MagmaDNN has lacked features
which are necessary for learning from and predicting sequences of
data. A recurrent neural network (RNN) is a neural network that
takes sequences of data as input and uses each step of the
sequence to determine the next output. The long short-term memory
network (LSTM) is an RNN that addresses the vanishing gradient
problem prevalent in RNN architectures. The vanishing gradient
problem, in the context of

The LSTM layer implementation needed two operations: Slice and
Concat (concatenation). Slice is used to cut three-dimensional input
data, Tensors, along the time axis, returning two-dimensional data.
Concat is used to concatenate the many two-dimensional outputs of
the LSTM into one three-dimensional output; this is used to feed the
outputs of an LSTM layer into the inputs of another Layer that
expects three-dimensional inputs. Each of these operations is
implemented on CPU and GPU. The CPU implementations perform
calculations in C++. The GPU implementations instead use CUDA
kernels to parallelize computation of outputs. These operations are
paired with pre-existing operations for sigmoid, tanh, matrix
multiplication, element-wise multiplication, and addition to create the
LSTM layer.

Background

Architecture
MagmaDNN is a deep learning framework written in C++ with the
intent easily integrating with Magma, a linear algebra package.
MagmaDNN has four main levels of abstraction: Tensors,
Operations, Layers, Models. Tensors are multidimensional arrays
which abstract the process of memory allocation and management
on both main memory and GPU memory. Operations store input
data as Tensors and compute outputs, which themselves are
Tensors; Operations can be superimposed to create complex
compute trees, which allow for gradients to be automatically
computed. Comprised of Operations, a Layer receives input data in
the form of Operations either directly or from another Layer; using its
comprising Operations, a layer compute an output which can be
either accessed directly or passed to another layer for further
computation. Finally, Models are built using layers: these can be
trained on data to learn accurate mathematical models for natural
and synthetic phenomena.

As discussed in implementation, the LSTM is implemented as a
Layer in MagmaDNN, requiring use of the above abstractions.

Implementation

Testing

Analysis
The LSTM implemented into MagmaDNN currently works on CPU
and GPU for both forward and backward propagation but only for
small time sequences since, as the sequence length increases, the
layer becomes exponentially slower. Also, the input and output
sequence lengths must be constant. This requirement of constant
length prevents this LSTM from acting in many of the use cases
typical of LSTMs, such as being trained on one input length and
then later accept input sequences of any length.

Future Work
As mentioned in the analysis, this LSTM does not support arbitrarily
sized input sequences. For this to be implemented, the current
compute-tree architecture within MagmaDNN must be modified to
be dynamic. Also, to circumvent the computational inefficiency of
Operation overhead mentioned in performance, we have begun
work on an LSTM implementation which does not utilize external
Operations; that is, all computations are to be implemented from
scratch, both forward and backward.

Performance

t1
t2
.
.

o1

o3

o2

o2

o3

o1

RNNs, occurs when time-
consecutive gradient calculations
result in the gradient value
approaching zero. The LSTM
addresses this by having a forget
gate that links early time steps to
later time steps. The equations
defining an LSTM cell are given
by the following, where for
sequence step t, x_t is the input,
c_t and h_t are internal states, i_t
and f_t are hidden weights, and
o_t is the output.

SliceOp ConcatOp

Ferlay, J., Héry, C., Autier, P. & Sankaranarayanan, R. (2010). Global burden of
breast cancer. Breast cancer epidemiology, 1–19, Springer.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C.
(2016, October). Ssd: Single shot multibox detector. European conference on
computer vision (pp. 21-37). Springer, Cham.
Ting, F. F., Tan, Y. J., & Sim, K. S. (2019). Convolutional neural network
improvement for breast cancer classification. Expert Systems with Applications,
120, 103-115.

Acknowledgments

The current LSTM performs rather poorly with a time complexity of
about O(5^n) with n being the number of time sequences. As a
result of this, the LSTM struggles to construct any
test with more than 10 time steps.
This issue is in part due to the
overhead that is necessary for the
many Operations the LSTM layer
uses.

