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The current version of the LSTM layer performs the correct 
calculations expected from the LSTM equations.
Below we have an example of such testing.

MagmaDNN is a deep learning engine built atop the computational 
framework Magma. Until now, MagmaDNN has lacked features 
which are necessary for learning from and predicting sequences of 
data. A recurrent neural network (RNN) is a neural network that 
takes sequences of data as input and uses each step of the 
sequence to determine the next output. The long short-term memory 
network (LSTM) is an RNN that addresses the vanishing gradient 
problem prevalent in RNN architectures. The vanishing gradient 
problem, in the context of 

The LSTM layer implementation needed two operations: Slice and 
Concat (concatenation). Slice is used to cut three-dimensional input 
data, Tensors, along the time axis, returning two-dimensional data. 
Concat is used to concatenate the many two-dimensional outputs of 
the LSTM into one three-dimensional output; this is used to feed the 
outputs of an LSTM layer into the inputs of another Layer that 
expects three-dimensional inputs. Each of these operations is 
implemented on CPU and GPU. The CPU implementations perform 
calculations in C++. The GPU implementations instead use CUDA 
kernels to parallelize computation of outputs. These operations are 
paired with pre-existing operations for sigmoid, tanh, matrix 
multiplication, element-wise multiplication, and addition to create the 
LSTM layer. 

Background

Architecture
MagmaDNN is a deep learning framework written in C++ with the 
intent easily integrating with Magma, a linear algebra package. 
MagmaDNN has four main levels of abstraction: Tensors, 
Operations, Layers, Models. Tensors are multidimensional arrays 
which abstract the process of memory allocation and management 
on both main memory and GPU memory. Operations store input 
data as Tensors and compute outputs, which themselves are 
Tensors; Operations can be superimposed to create complex 
compute trees, which allow for gradients to be automatically 
computed. Comprised of Operations, a Layer receives input data in 
the form of Operations either directly or from another Layer; using its 
comprising Operations, a layer compute an output which can be 
either accessed directly or passed to another layer for further 
computation. Finally, Models are built using layers: these can be 
trained on data to learn accurate mathematical models for natural 
and synthetic phenomena.

As discussed in implementation, the LSTM is implemented as a 
Layer in MagmaDNN, requiring use of the above abstractions.

Implementation

Testing

Analysis
The LSTM implemented into MagmaDNN currently works on CPU 
and GPU for both forward and backward propagation but only for 
small time sequences since, as the sequence length increases, the 
layer becomes exponentially slower. Also, the input and output 
sequence lengths must be constant. This requirement of constant 
length prevents this LSTM from acting in many of the use cases 
typical of LSTMs, such as being trained on one input length and 
then later accept input sequences of any length. 

Future Work
As mentioned in the analysis, this LSTM does not support arbitrarily 
sized input sequences. For this to be implemented, the current 
compute-tree architecture within MagmaDNN must be modified to 
be dynamic. Also, to circumvent the computational inefficiency of 
Operation overhead mentioned in performance, we have begun 
work on an LSTM implementation which does not utilize external 
Operations; that is, all computations are to be implemented from 
scratch, both forward and backward.

Performance
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RNNs, occurs when time- 
consecutive gradient calculations 
result in the gradient value 
approaching zero. The LSTM 
addresses this by having a forget 
gate that links early time steps to 
later time steps. The equations 
defining an LSTM cell are given 
by the following, where for 
sequence step t,  x_t is the input, 
c_t and h_t are internal states, i_t 
and f_t are hidden weights, and 
o_t is the output.
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The current LSTM performs rather poorly with a time complexity of 
about O(5^n) with n being the number of time sequences. As a 
result of this, the LSTM struggles to construct any 
test with more than 10 time steps. 
This issue is in part due to the 
overhead that is necessary for the 
many Operations the LSTM layer 
uses.  


