EXTENDING MAGMAPORTABILITY

Final Presentation

Anna Fortenberry, UNT UTK RECSEM REU 2022

Mentors: Dr. Stan Tomov, UTK and Dr. Kwai Wong, UTK

CONTENTS

- Problem Overview
- Software and Hardware
- Methodology
- CUDA to DPC++ Translation
- Porting MAGMA SGEMM
- Hardware Usage
- Performance
- Conclusion

1 PROBLEM OVERVIEW

SIGNIFICANCE OF SUPERCOMPUTING

 Supercomputers provide the computational power necessary to resolve problems in a vast number of important domains

EVOLUTION OF SUPERCOMPUTER SYSTEM DESIGN

- NVIDIA opened a new door for supercomputing (SC) capabilities with the invention of the GPU in 1999
- NVIDIA Tesla K20X GPU powered the first successful hybrid SC system in 2012
- SC Systems are continually increasing in diversity

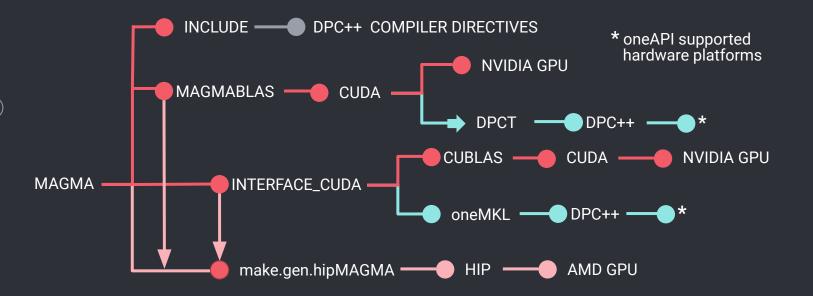
[4], [5]

TOP500 The List						
JUNE 2022	CPU/ Accelerator	JUNE 2019	CPU/ Accelerator			
Frontier	AMD, AMD	Summit	IBM, NVIDIA			
S.C. Fugaku	Fugaku	Sierra	IBM, NVIDIA			
LUMI	AMD, AMD	Sunway TaihuLight	Sunway			
Summit	IBM, NVIDIA	Tianhe-2A	Intel			
Sierra	IBM, NVIDIA	Frontera	Intel			
Sunway TaihuLight	Sunway	Piz Daint	Intel, NVIDIA			
Perlmutter	AMD, NVIDIA	Trinity	Intel			
Selene AMD, NVIDIA		ABCI	Intel, NVIDIA			
Tianhe-2A	Tianhe-2A Intel, NUDT		Intel			
Adastra	AMD, AMD	Lassen	IBM, NVIDIA			

FIRST INTEL GPU POWERED SUPERCOMPUTER

Anticipated for release in late 2022, Intel hopes to enter the supercomputer GPU vendor domain by powering the Aurora supercomputer at Argonne National Laboratory

[8]


INTEL ONEAPI

- Intel recently released a new programming model called oneAPI
- Applications that take advantage of oneAPI gain portability to all supported hardware platforms
 - CPUs (Scalar Architecture)
 - GPUs (Vector Architecture)
 - FPGAs (Spatial Architecture)
 - Other Accelerators (Matrix Architecture)

MAGMA STRUCTURE

- Designed originally to run on NVIDIA GPUs
- Extended to support AMD GPUs

- oneAPI includes tools for adopting the model
 - Data Parallel C++ (DPC++) Translation Tool (DPCT)
 - oneAPI Math Kernel Library (oneMKL)

RESEARCH QUESTIONS

- How well does the DPCT tool translate CUDA code to DPC++ code?
- What are the common translation errors?
- Can this tool be used to translate MAGMA?
- Is DPC++ portable to Nvidia and AMD GPUs, and multicore CPUs?
- What is the performance of DPC++ on each of these accelerators comparative to CUDA?

2 SOFTWARE AND HARDWARE

OPTIMIZED APPLICATIONS

OPTIMIZED MIDDLEWARE & FRAMEWORKS

DIRECT PROGRAMMING Data Parallel C++ (DPC++) API-BASED PROGRAMMING oneAPI Libraries

Analysis & Debug Tools

- DPC++ is a oneAPI implementation of the Khronos standard SYCL
- SYCL is an accelerator language that allows code reuse across hardware targets
- SYCL adds data
 parallelism and
 heterogeneous
 programming to
 standard ISO C++

SOFTWARE OVERVIEW

DPC++ Compatibility Tool (DPCT)

oneAPI tool to assist with migrating CUDA code to DPC++ code; translates with high accuracy

DPC++-LLVM (CLang-LLVM)

LLVM-based compiler project that supports SYCL language

oneAPI Math Kernel (oneMKL)

set of math routines for use in high performance computing on a variety of computational devices

DPC++ LLVM NVIDIA*

CLANG-LLVM build on Linux with CUDA NVIDIA support; allows DPC++ to port to NVIDIA GPUs

Compute Unified Device Architecture (CUDA)

NVIDIA parallel computing platform for harnessing power of GPUs

Intel DevCloud

Remote development environments that grant access to Intel hardware for testing oneAPI projects*

CENTRAL PROCESSING UNITS

AMD EPYC 7742 PROCESSOR

INTEL® XEON® PROCESSOR E5-2698 V4

Cores: 64 Cores: 20

Base Clock: 2.25 Ghz Base Clock: 2.20 Ghz

of Threads: 128 # of Threads: 40

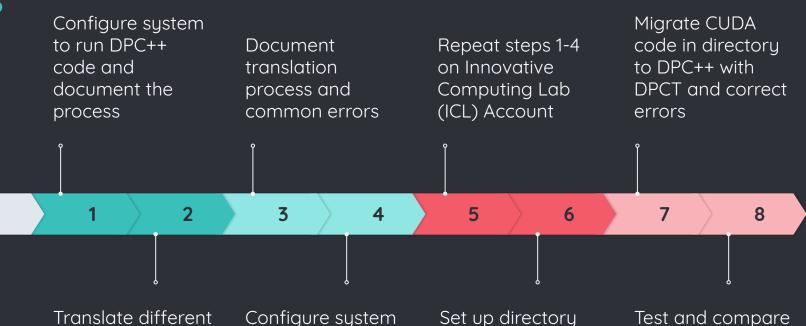
Cache: 256 MB Cache: 50 MB

GRAPHICS PROCESSING UNITS

NVIDIA GEFORCE RTX 3060 INTEL UHD GRAPHICS P630 (Discrete)

[0x3e96] (Integrated)

GPU Cores: 3584


Base Clock: 1320 MHz

Memory Size: 12 GB **GPU Cores:** 192

Base Clock: 350 MHz

Memory Size: Shared System

3 METHODOLOGY

structures of CUDA files to DPC++ with DPCT for correctness

Configure system to run DPC++ code on Nvidia GPU

Set up directory with MAGMA CUDA sgemm and dependencies

Test and compare performance of sgemm on available hardware

4 CUDA TO DPC++ TRANSLATION

SIMPLE KERNEL TRANSLATION

```
__global__ void VectorAddKernel(float* A, float* B, float* C)
     A[threadIdx.x] = threadIdx.x + 1.0f;
     B[threadIdx.x] = threadIdx.x + 1.0f;
     C[threadIdx.x] = A[threadIdx.x] + B[threadIdx.x];
void VectorAddKernel(float* A, float* B, float* C, sycl::nd_item<3> item_ct1)
     A[item_ct1.get_local_id(2)] = item_ct1.get_local_id(2) + 1.0f;
     B[item_ct1.get_local_id(2)] = item_ct1.get_local_id(2) + 1.0f;
     C[item_ct1.get_local_id(2)] =
     A[item_ct1.get_local_id(2)] + B[item_ct1.get_local_id(2)];
```

TEST 1: ISOLATED FILE

- Translated files for CUDA vector addition and vector-matrix multiplication
- 100% compilation and execution accuracy
- CUDA error handling dead code clean up for file readability

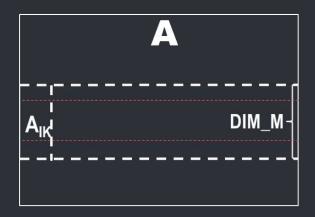
TEST 2: FILE WITH HEADERS

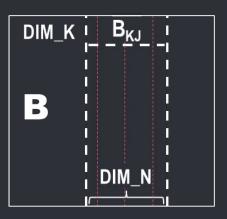
- Matrix-matrix multiplication file with six included headers
- 98.7% compilation accuracy and 98.0% execution accuracy in the main file
- 10% of the code needed dead code touchups
- Header files had 100% compilation accuracy and execution accuracies ranging from 75%-100%

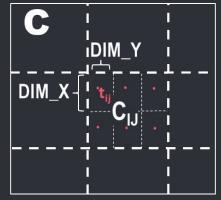
```
cudaGetDeviceCount(&device count);
                                        device count =
                                        dpct::dev mgr::instance().device count()
while (current device < device count) while (current device < device count)</pre>
    cudaGetDeviceProperties
                                             dpct::dev mgr::instance()
       (&deviceProp, current device);
                                              .get device(current device)
                                              .get device info(deviceProp);
    if (deviceProp.computeMode !=
                                            if (true)
         cudaComputeModeProhibited)
    else {
                                             else {
         devices prohibited++;
                                                 devices prohibited++;
     current device++;
                                             current device++;
```

5 PORTING MAGMA SGEMM

C = A B


template < DIM_X, DIM_Y, DIM_M, DIM_N, DIM_K, DIM_XA, DIM_YA, DIM_XB, DIM_YB>


For I = 1 .. M step DIM_M

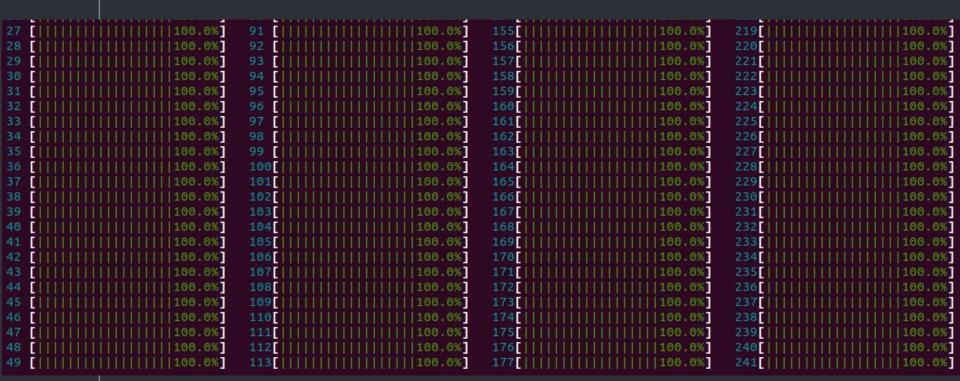

For J = 1 .. N step DIM_N

For K = 1 .. K step DIM_K

C_{I,J} += A_{IK} B_{K,J}

- Implementation is templated with 9 parameters
- Computation is done with thread blocks of size[DIM_X , DIM_Y]
- Thread t_{ij} computes
 [DIM_M / DIM_X, DIM_N / DIM_Y] elements of C_{IJ}
- A_{IK} gets loaded in shared memory by [DIM_XA , DIM_YA] threads
- B_{KJ} gets loaded in shared memory by [DIM_XB , DIM_YB] threads
- C_{IJ} is held and computed in registers

MAGMA SGEMM TRANSLATION PROCESS


- Collected MAGMA SGEMM CUDA code and dependencies in one directory
- Used DPCT to recursively migrate CUDA code to DPC++
- Translated header files that did not migrate independently in a separate directory and then copied them into the MAGMA SGEMM directory
- Implemented compiler directives as needed

6 HARDWARE USAGE

MULTICORE CPUS

```
user1@REU1901-HP-Z800-Workstation: ~/anna/mtxMtxMulCnvt/one/dp...
                                                                    user1@REU1901-HP-Z800-Workstation: ~/anna/mtxMtxMulCnvt/one/dp...
                                                                                       1111100.0%
                                                                                        100.0%
                                                                    Tasks: 207, 1038 thr; 12 running
                                                                    Uptime: 23 days, 05:45:41
    PID USER
                       NI
                           VIRT
                                   RES
                                         SHR S CPU% MEM%
                                                            TIME+
                                                          15h41:40 ./intelCpuExec -wA=8192 -wB=8192 -hA=8192 -hB=8192
3602527 user1
                   20
                        0
                                        267M R 99.4
                                                     3.4
                                                             18:57 ./intelCpuExec -wA=8192 -wB=8192 -hA=8192 -hB=8192
                                                             18:57 ./intelCpuExec -wA=8192 -wB=8192 -hA=8192 -hB=8192
3602528 user1
                   20
                        0
                                        267M R 99.4
                                                     3.4
                                                             19:05 ./intelCpuExec -wA=8192 -wB=8192 -hA=8192 -hB=8192
3602523 user1
                   20
                        0
                                        267M R 98.8
                                                     3.4
                                                             18:44 ./intelCpuExec -wA=8192 -wB=8192 -hA=8192 -hB=8192
3602526 user1
                   20
                        0
                                        267M R 98.8
                                                     3.4
                                                             16:11 ./intelCpuExec -wA=8192 -wB=8192 -hA=8192 -hB=8192
3602515 user1
                   20
                                        267M R 95.5
                                                     3.4
                                                             18:58 ./intelCpuExec -wA=8192 -wB=8192 -hA=8192 -hB=8192
3602521 user1
                   20
                                               99.4
3602519 user1
                   20
                        0
                                        267M R 98.8
                                                     3.4
                                                             18:47 ./intelCpuExec -wA=8192 -wB=8192 -hA=8192 -hB=8192
                                                             19:03 ./intelCpuExec -wA=8192 -wB=8192 -hA=8192 -hB=8192
3602534 user1
                   20
                                        267M R 98.8
                                                     3.4
3602518 user1
                   20
                                        267M R 96.2
                                                             18:50 ./intelCpuExec -wA=8192 -wB=8192 -hA=8192 -hB=8192
3602516 user1
                   20
                                        267M R 97.5
                                                     3.4
                                                             18:09 ./intelCpuExec -wA=8192 -wB=8192 -hA=8192 -hB=8192
3602525 user1
                   20
                                        267M R 99.4
                                                     3.4
                                                             18:23 ./intelCpuExec -wA=8192 -wB=8192 -hA=8192 -hB=8192
3603925 user1
                   20
                        0 11708
                                 5128
                                        3220 R
                                                2.6
                                                     0.0
                                                          0:16.55 htop
```

MULTICORE CPUS

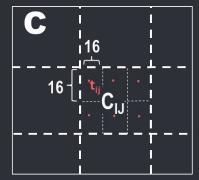
NVIDIA GeForce GTX 1650

i Jul	8 10	:16:5	8 2022				
NVIDI	A-SMI	470.1	29.06 Dri	iver Ve	ersion: 470.129.06 (CUDA Versio	n: 11.4
	Name Temp	Perf			Bus-Id Disp.A Memory-Usage		Uncorr. ECC Compute M. MIG M.
0 I 35%	===== NVIDIA 63C	GeFo P3	======== rce Of 60W / 10		======================================	100%	N/A N/A Default
				1			N/A
Proce	 sses:						N/A
	sses: GI ID	CI ID	PID	l ····+·· Type	Process name		
Proces	GI ID	ID					GPU Memory Usage
Proces	GI ID ===== N/A	ID ===== N/A	======== 1239	 G	 /usr/lib/xorg/Xorg		GPU Memory Usage ====================================
Proces	GI ID ===== N/A N/A	ID ===== N/A N/A	======================================	G G	/usr/lib/xorg/Xorg /usr/lib/xorg/Xorg		GPU Memory Usage ====================================
Proces GPU	GI ID ===== N/A N/A N/A	ID N/A N/A N/A	======================================	 G	/usr/lib/xorg/Xorg /usr/lib/xorg/Xorg /usr/lib/xorg/Xorg /usr/bin/gnome-she	ıı	GPU Memory Usage ======== 23MiB 241MiB 25MiB
 Proces GPU ===== 0 0	GI ID ===== N/A N/A N/A N/A	ID N/A N/A N/A N/A	======================================	 G G	 /usr/lib/xorg/Xorg /usr/lib/xorg/Xorg /usr/bin/gnome-she RendererForSite	ll PerProcess	GPU Memory
 Proces GPU 0 0 0	GI ID ===== N/A N/A N/A	ID N/A N/A N/A	======================================	G G G	/usr/lib/xorg/Xorg /usr/lib/xorg/Xorg /usr/lib/xorg/Xorg /usr/bin/gnome-she	ll PerProcess irefox	GPU Memory Usage ======== 23MiB 241MiB 25MiB 13MiB

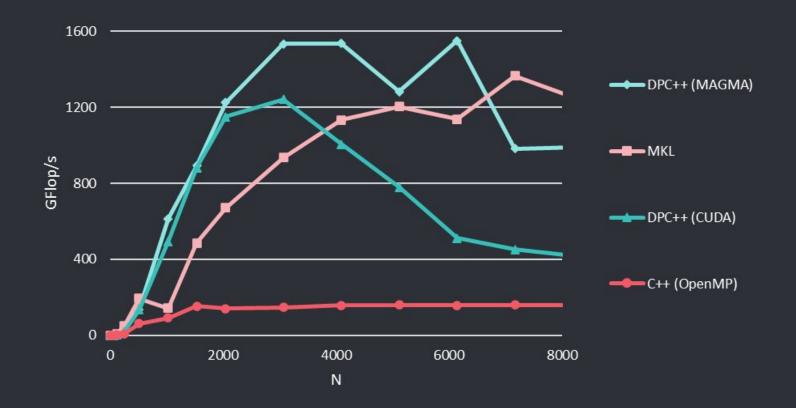
7 PERFORMANCE

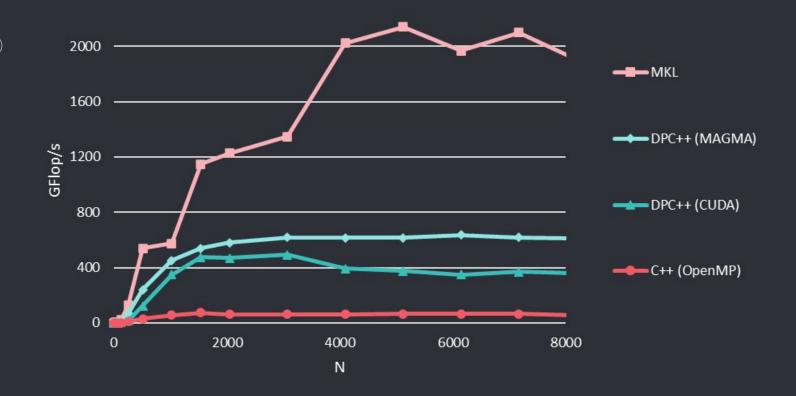

TEST PARAMETERS

cuda =

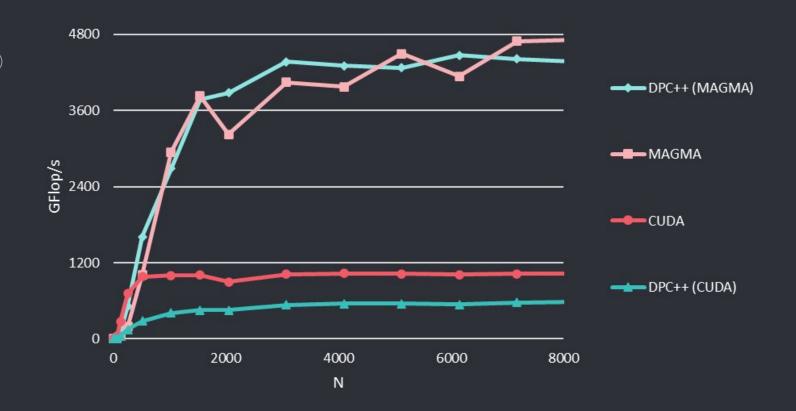

- -DMAGMA_TUNING
- -DDIM X=16
- -DDIM_Y=16
- -DBLK M nn=96
- -DBLK_N_nn=96
- -DBLK_K_nn=16
- -DDIM XA=32
- -DDIM_YA=8
- -DDIM XB=8
- -DDIM_YB=32

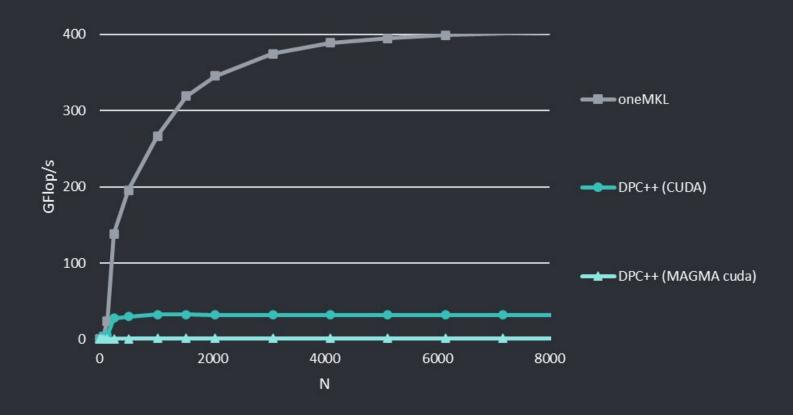
template < 16, 16, 96, 96, 16, 32, 8, 8, 32>



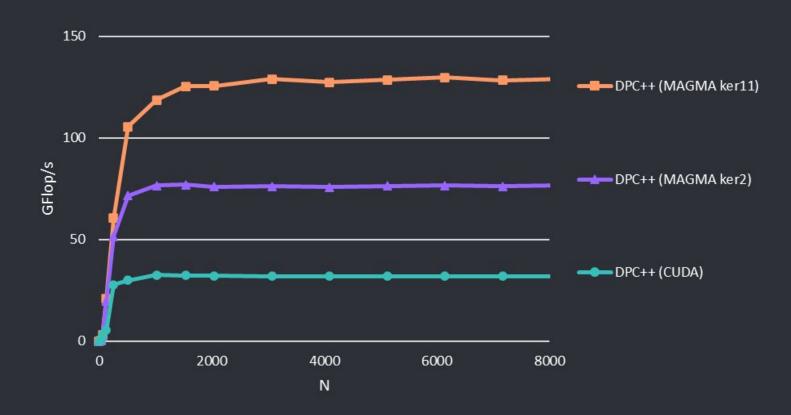


- Thread t_{ii} computes [96 / 16 , 96 / 16] elements of C_{IJ}
- A_{IK} gets loaded in shared memory by [32, 8] threads
- B_{KJ} gets loaded in shared memory by [8, 32] threads
- C_{IJ} is held and computed in registers


AMD EPYC 7742 64-CORE PROCESSOR @ 2.25GHZ


INTEL® XEON® CPU E5-2698 V4 20-CORE PROCESSOR @ 2.20GHZ

NVIDIA GEFORCE RTX 3060


INTEL UHD GRAPHICS P630 [0x3e96]

ADDITIONAL TEST PARAMETERS

	DIM_X	DIM_Y	DIM_M	DIM_N	DIM_K	DIM_XA	DIM_YA	DIM_XB	DIM_YB
cuda	16	16	96	96	16	32	8	8	32
ker2	16	16	64	64	8	32	8	8	32
ker11	12	4	48	48	2	24	2	24	2

INTEL UHD GRAPHICS P630 [0x3e96]

8 CONCLUSION

SUMMARY

- oneAPI is a promising approach for parallel programming across various architectures
- DPCT tool can be used successfully for an initial port of CUDA code to DPC++
- Large numerical libraries like MAGMA, originally written in CUDA to support Nvidia GPUs, can be easily translated to DPC++ to provide functional portability to different vendor GPUs, as well as multicore CPUs

SUMMARY

- Initial migrated code tuned for Nvidia GPUs performs well on multicore CPUs
- Initial migrated code tuned for Nvidia GPUs retains performance on Nvidia GPUs
- Initial migrated code tuned for Nvidia GPUs performs poorly on the available Intel GPU
 - Tuning is required, but optimal parameters are difficult to find without further knowledge on the hardware design

ONGOING AND FUTURE WORKS

- Full translation of MAGMA
- ICL account configuration
- Finding near optimal parameters for the Intel integrated GPU
- Testing migrated code on discrete Intel GPU upon release

ACKNOWLEDGEMENTS

This research was funded by the National Science Foundation.

This research was conducted at the University of Tennessee at Knoxville through the RECSEM REU.

Home University
University of North
Texas

- [1] Advancing computing and data capabilities for scientific discovery and continued U.S. technological leadership. Oak Ridge National Lab. https://www.ornl.gov/directorate/ccsd
- [2] https://thenounproject.com/search/icons/?iconspage=1&q=quantum
- [3] Computing at LLNL. Lawrence Livermore National Laboratory. https://computing.llnl.gov/
- [4] NVIDIA HISTORY. Nvidia. https://www.nvidia.com/en-us/about-nvidia/corporate-timeline/
- [5] New Titan Supercomputer Named Fastest in the World. Department of Energy.

 https://www.energy.gov/articles/new-titan-supercomputer-named-fastest-world-0
- [6] June 2019. The Top 500 List. https://www.top500.org/lists/top500/2019/06/
- [7] June 2022. The Top 500 List. https://www.top500.org/lists/top500/2022/06/

- [8] Aurora: HPC and AI at Exascale. Intel.

 https://www.intel.com/content/www/us/en/high-performance-computing/supercomputing/exascale-computing.html
- [9] Compare Benefits of CPUs, GPUs, and FPGAs for Different oneAPI Compute Workloads. Intel.

 https://www.intel.com/content/www/us/en/developer/articles/technical/comparing-cpus-apus-and-fpgas-for-oneapi.html#gs.83gstn
- [10] Intel oneAPI Programming Overview. Intel.

 https://www.intel.com/content/www/us/en/develop/documentation/onea-pi-programming-quide/top/introduction-to-oneapi-programming/intel-on-eapi-programming-overview.html
- [11] Data Parallel C++: the oneAPI Implementation of SYCL*. Intel. https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html#gs.83xmmq

- [12] Intel® DPC++ Compatibility Tool. Intel.

 https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-c_ompatibility-tool.html#gs.83zp77
 - [13] oneMKL. Intel.

 https://spec.oneapi.io/versions/latest/elements/oneMKL/source/index.ht
 ml
 - [14] What Is CUDA? NVIDIA. https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
 - [15] Compiling SYCL* for Different GPUs. Intel.

 https://www.intel.com/content/www/us/en/developer/articles/technical/compiling-sycl-with-different-gpus.html
 - [16] AMD EPYC™ 7742. AMD. https://www.amd.com/en/products/cpu/amd-epyc-7742

- [17] Intel® Xeon® Processor E5-2698 v4. Intel. https://ark.intel.com/content/www/us/en/ark/products/91753/intel-xeon-processor-e52698-v4-50m-cache-2-20-ghz.html
- [18] GEFORCE RTX 3060 FAMILY. Nvidia. https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3060 -3060ti/
- [19] Intel UHD Graphics P630. TechPowerUp. https://www.techpowerup.com/gpu-specs/uhd-graphics-p630.c3676
- [20] Intel® DevCloud. Intel® DevCloud

Presentation Template:

Catalina, J. (n.d.). Minimal business. Free PowerPoint Template & amp; Google Slides theme. SlidesCarnival. Retrieved July 5, 2022, from https://www.slidescarnival.com/eleanor-free-presentation-template/308#preview