

UNIVERSITY OF

TENNESSEE

KNOXVILLE

Abstract

MagmaDNN is an open-source deep-learning library written in C++. It is based on Magma, a linear algebra package and is designed to handle supervised problems. MagmaDNN is unique in that it is tailored for parallel computing and, consequently, supercomputing applications.

A U-Net is a convolutional neural network developed originally for biomedical image segmentation to detect tumors. It can be defined in terms of down-sampling and up-sampling layers. Our U-Net implementation is called semantic segmentation. It aims to learn the classifications of individual pixels in an image.

Introduction

- A U-Net is a convolutional neural network developed originally for biomedical image segmentation to detect tumours. It can be defined in terms of down-sampling and up-sampling layers. Our U-Net implementation is called semantic segmentation. It aims to learn the individual pixels in an image.
- Similar to PyTorch and Keras, MagmaDNN is a machine learning package. It is still in the development phase, so it is very limited in its scope. Take the loss function as an example, MagmaDNN only supports categorical cross-entropy loss and MSE. MagmaDNN can only do classification but not segmentation and hence the Output Layer of a neural network must be a flattened two-dimensional tensor or else errors will occur. Therefore, the main task of our research is to implement segmentation in MagmaDNN.

We will train our neural network with the Oxford-IIIT Pet Dataset. The dataset contains around 7000 cats and dogs classified by breed. Each image has its corresponding masking. The masking is in trimap format. Trimap is in three colors only: 1 for foreground, 2 for background and 3 for not classified.

MagmaDNN was only able to input MNIST, CIFAR10, CIFAR100 data and one-hot encoded ground-truth data. Moreover, MagmaDNN is only able do classification instead of image segmentation. Therefore, we need to use a custom dataset for the training and testing for the U-Net. After, we can integrate OpenCV with MagmaDNN so it can input data from ImageNet and Oxford-IIIT Pet Dataset.

We have adopted convolution transpose instead of using bilinear interpolation for upsampling in the U-Net. Convolution transpose is better than bilinear interpolation because convolution transpose will learn when it is training. However, up-sampling using bilinear interpolation will consume less resources Still, we still adopt the convolution transpose because it overperform bilinear interpolation theoretically.

Implementing a U-Net Architecture in MagmaDNN Students: Chow Tsz Ching, Edward Karak, Spencer Smith Chinese Univ. of Hong Kong, Baruch College at City Univ. of New York, Univ. of Nor Mentors: Dr. Kwai Wong, Dr. Stan Tomov

Methodology

Data

Data Extraction

Model

	=
InputLayer	
Conv2d	
BatchNormLayer	
RELU	
Conv2d	
BatchNormLaver	
RELI	
Pooling	
Conv2d	
BatchNormLayer	
RELU	
Conv2d	
BatchNormLayer	
RELU	
Pooling	
Conv2d	
BatchNormLaver	
RELII	
Conv2d	
Deteblermlever	
BatchwormLayer	
RELU	
Conv2dTranspose	
Conv2d	
Concat	
Conv2d	
BatchNormLaver	
RELU	
Conv2d	
BatchNorm aver	
BELLI	
RELU Convolt	
Conv2dTranspose	
Conv2d	
Concat	
Conv2d	
BatchNormLayer	
RELU	
Conv2d	
BatchNormLaver	
RELI	
Conv2d	
CONVER	
SUFIMAX	
OutputLayer	
	=
Total number of p	a
n_samples: 199	
loss = 0.840868	
loss = 0.960302	
loss = 0.919261	
loss = 1.059976	
loss = 1 191010	
loss = 1, 151010	
1.132314	
Epoch (1/10): acc	u

1 ml El

Results

tput Shape # Params
3, 32, 32) 0
.6, 32, 32) 432
.6, 32, 32) 32
.6, 32, 32) 0
.6, 32, 32) 2304
.6, 32, 32) 32
.6, 32, 32) 0
.6, 16, 16) 0
2, 16, 16) 4608
2, 16, 16) 64
2, 16, 16) 0
2, 16, 16) 9216
2, 16, 16) 64
2, 16, 16) 0
32, 8, 8) 0
64, 8, 8) 18432
64, 8, 8) 128
64, 8, 8) 0
64, 8, 8) 36864
64, 8, 8) 128
64, 8, 8) 0
4, 16, 16) 36864
2, 16, 16) 18432
4, 16, 16) 0
2, 16, 16) 18432
2, 16, 16) 64
2, 16, 16) 0
2, 16, 16) 9216
2, 16, 16) 64
2, 16, 16) 0
2, 32, 32) 9216
.6, 32, 32) 4608
2, 32, 32) 0
.6, 32, 32) 4608
.6, 32, 32) 32
.6, 32, 32) 0
.6, 32, 32) 2304
6, 32, 32) 32
6, 32, 32) 0
1, 32, 32) 16
1, 32, 32) 0
1, 32, 32) 0

loss=1.295e-10 time=3

orth Texas	
he Reversity New York	
Implementation	
$L_{det} = \frac{-1}{N} \sum_{c=1}^{C} \sum_{i=1}^{H} \sum_{j=1}^{W} \begin{cases} (1 - p_{cij})^{\alpha} \log(p_{cij}) & \text{if } y_{cij} = 0 \\ (1 - y_{cij})^{\beta} (p_{cij})^{\alpha} \log(1 - p_{cij}) & \text{otherwise} \end{cases}$	1 e
We used a modified cross-entropy loss function to calculate the loss of the network. It uses a 2-d gaussian distribution (pictured above) to calculate help the model converge on the predictions of the foreground pixels.	
Our upsampling method of choice in transposed convolution. We implemented it using the cuDNN C++ API.	
<pre>Input Tensor: Tensor size of {1, 1, 4, 4} {</pre>	
Tensor size of {1, 1, 8, 8} { { { { { { { { { { { { { { { { { { {	
Next Steps	
 Finish the implementation of U-Net HDF5 implementation in MagmaDNN ResU-Net implementation 	
Acknowledgements/References	
This project was sponsored by the National Science Foundation through Research Experience for Undergraduates (REU) award, with additional support from the Joint Institute for Computational Sciences at University of Tennessee Knoxville. This project used allocations from the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation. In addition, the computing work was also performed on technical workstations donated by the BP High Performance Computing Team.	
Computer-Assisted Intervention MICCAI 2015 (pp. 234241). Springer International Publishing. Nichols, Wong, K., Tomov, S., Ng, L., Chen, S., & Gessinger, A. (2019). MagmaDNN: Accelerated Deep Learning Using MAGMA. Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning), 16. https://doi.org/10.1145/3332186. 3333047 Dumoulin, & Visin, F. (2016). A guide to convolution arithmetic for deep learning.	