
Implementing a U-Net Architecture in MagmaDNN
T. Chow

Dept. of Mathematics
The Chinese University of Hong Kong

Hong Kong, China
nicolechow08@gmail.com

E. Karak
Dept. of Mathematics

Baruch College, City University of New York
New York City, USA

edward.karak@baruchmail.cuny.edu

S. Smith
Dept. of Computer Science
Univeristy of North Texas

Denton, USA
spencersmith4@my.unt.edu

Abstract—MagmaDNN is an open-source deep-learning library
written in C++. It is built on top of MAGMA, a parallel,
supercomputing-specific linear algebra package used by Oak
Ridge National Laboratory (ORNL). MagmaDNN is unique in
that it is tailored for parallel computing and, consequently, to
supercomputing applications.

A U-Net is a convolutional neural network (CNN) developed
originally for biomedical image segmentation to detect potential
tumors in humans. It can be defined in terms of down-sampling
and up-sampling layers, which are abstractions of the underlying
complexity. Our implementation of the U-Net in MagmaDNN is
called semantic segmentation—it aims to learn the classification
of every pixel in an image.

This paper will give a brief overview of MagmaDNN. Then we
will look at our implementation of the U-Net, followed by the
results of our network. We will end with a discussion of future
directions.

Index Terms—U-Net, supervised learning, semantic segmenta-
tion, image segmentation, CUDA, HDF5

I. INTRODUCTION

U-Net is a type of neural network that is commonly used
in computer vision. U-Net is employed chiefly for image
segmentation—that is, detecting objects in an image. To test
the performance of our U-Net implementation, we input im-
ages from the CIFIAR-10, CIFAR-100 and MNIST datasets.
In implementing a U-Net, we have integrated the function
of segmentation into MagmaDNN. MagmaDNN is designed
completely in C++ for better performance.

For the upsampling, we have implemented transposed con-
volution with a normal convolution. Transposed convolution is
a type of convolution that “undoes” what a regular convolution
has done [1]. Theoretically, only transposed convolution will
be able to decode after convolution is applied. Therefore, hav-
ing transposed convolution in MagmaDNN will be important.

For the loss function, we have taken reference from Face-
book AI Research [2] and have integrated it into MagmaDNN.
We may be the very first few to have implemented this
unique kind of focal loss [2]. This is a type of cross entropy
loss that will focus on learning hard misclassified examples.
Cross-entropy with a four-dimensional tensor is also integrated
into MamgaDNN. Additionally, MagmaDNN is now able to
produce to four-dimensional tensors as the output of any

neural network. Cross-entropy for four dimensions is also
implemented.

We have also enhanced the I/O capabilities of MagmaDNN.
It now works with HDF5 and ImageNet. While TensorFlow
in C++ has an incomplete library lacking major functionality,
we are among the few U-Nets written purely in C++ with
comparable results to PyTorch and TensorFlow. With the I/O
features implemented in MagmaDNN, it would be easier to
use the data on different platforms including TensorFlow and
PyTorch. We can also implement different image segmentation
networks including ResUnet and RetinaNet.

Since we have limited GPU memory, we have trained our
model with a small dataset that contains only 31 images.
To test and compare the result of U-Net in MagmaDNN
with PyTorch, we have put it into PyTorch with the same
training parameters with the same dataset we used for U-
Net in MagmaDNN. U-Net in MagmaDNN performs better or
similarly compared to the PyTorch version of U-Net, proving
the accuracy and efficiency of our U-Net.

II. BACKGROUND

A. MagmaDNN

Similar to PyTorch and Keras, MagmaDNN is a machine
learning package designed and developed by the Institute for
Computing Laboratories (ICL) at the Univerisity of Tennessee
at Knoxville [3]. It is driven by Magma, a dense linear
algebra package. It is an open-source software that has been
developed by a number of different students, professors, and
professionals. It is still in the development phase, so it is very
limited in its scope; however, through constant improvements
and continued documentation, it can have comparable perfor-
mance to PyTorch and Tensorflow. Throughout this section on
MagmaDNN, we will be talking about the structure of the
framework and the setbacks found in MagmaDNN.

1) Structure of MagmaDNN: Like other machine learning
libraries, MagmaDNN is built around a compute graph, which
stores the operations of a network as nodes. The graph can
then be evaluated and produce a result.

In Fig. 1, you can see an example of the piece of a U-Net’s
compute graph in MagmaDNN. Everything in MagmaDNN is



Figure 1. Compute Graph Example

built on top of tensors; however, a tensor can not be evaluated
in a compute graph. So, in order to create and keep track
of the compute graph in MagmaDNN, everything must be an
Operation. Take the A variable in Fig. 1 for instance:

op :: var(”A”, tensor ptr); (1)

The tensor ptr corresponding to A, must be wrapped in an
Operation before being added to the compute graph. op::var(
) is the most basic operation there is in MagmaDNN and
is used to create variables like A and B from Fig. 1. Each
Operation must have a grad and eval function built into it.
The grad function is what writes into the Operation’s gradient
tensor, and returns the gradient tensor after it is done. The
eval is simply responsible for the evaluation of the Operation.
It should return a tensor pointer with the same shape and
memory type as defined in the Operations constructor. Now
that we have covered some basics of Operations, lets build
on top of that. Operations are an abstraction of the underlying
math functions that come from Cuda, Cudnn, or Magma. Well
Layers are an abstraction of the Operations. We know that a U-
Net is a deep learning tool that has many layers. Furthermore,
in MagmaDNN, to build a neural network we must keep
track of the layers we define and add them to the model. In
Fig. 2, there is a list of all the layers currently in MagmaDNN.
There are most of the basic layers that you would find in a
typical neural network. To make the framework more user-
friendly, every Layer class has a function that is called if the
programmer wants to create a layer. This allows for cleaner
and more human-readable code. A layer function can be called
like any other function in C++. For example, if we wanted to
create a conv2d layer as we see in Fig. 2, then we would do
it like this:

layer::conv2d(op, {3, 3}, 32, SAME); (2)

This will return a layer, and what is typical in MagmaDNN
development is to use auto layer1 to store the result of
the conv2d layer function. To sum up our discussion over

Figure 2. Layers in MagmaDNN

the structure of MagmaDNN, we can see that a lot of the
functionality stems from Layers and Operations. In order to
successfully create a U-net model, we will have to develop
Layers, Operations, and underlying math functions. We will
talk more about the implementation of these new Layers and
Operations in a later section.

2) Setbacks of MagmaDNN: Since MagmaDNN is still in
the development phase, documentation and the overall guide-
lines for development are very limited. Therefore, developers
who are new to MagmaDNN, will need to spend some time
exploring the code to understand the structure. Also, there are
a few known bugs in MagmaDNN; however, given the limited
documentation, we have stumbled across them ourselves and
typically just try to work around them if they are not an easy
fix. The functionality in MagmaDNN is very limited. Take
the loss function as an example, MagmaDNN only supports
categorical cross-entropy loss and MSE. MagmaDNN can only
do classification but not segmentation and hence the Output
Layer of a neural network must be a flattend two-dimensional
tensor or else errors will occur. We will discuss in a later
section, how we have overcome the setbacks and limitations
of MagmaDNN.

B. U-Net

U-net is a convolutional network developed originally for
biomedical image segmentation for cancer and problematic
cell detection [4]. After the paper is published, U-net is com-
monly used for image segmentation and object identification
so that it can work with fewer training epochs but with a
more accurate segmentation. The network is a modification of
a fully convolutional network. The network is different from
other convolutional networks since it does not require a fully
connected layer to do the pixel-wise classification. Moreover,



each class label is assigned to each pixel, while most of the
convolutional networks do classification to an image.

U-net consists of contracting and expanding parts. For each
part, they are consists of around three to four encoders or
decoders in each part respectively. The number of encoders or
decoders will be determined according to the size of the input
image.

1) Encoder: For the encoder part of the U-Net, it is used to
capture and classify objects to pass on to the decoder part. It
consists of a combination of convolution, batch normalization
and ReLU activation layers. Then it is down-sampled with a
convolution of kernel size 2 with stride 2. The image size will
get halved while the channels get doubled after each block of
encoders.

2) Decoder: The decoder part of the U-Net, is symmetric to
the encoder part. The decoder will locate the object precisely.
It contains a large number of channels. Those channels can
propagate features of the images to the upper layers. The
decoder consists of a combination of upsampling, convolution
and ReLU activation layer. The image size will get doubled
while the channels get halved after each block of decoders.
There are two choices of up-sampling methods that are com-
monly used with U-Net. The first one is convolution transpose,
another one is bilinear interpolation.

3) Up-sampling Method: We have adopted convolution
transpose instead of using bilinear interpolation for up-
sampling in the U-Net. Convolution transpose have an advan-
tage compared to bilinear interpolation because convolution
transpose will learn when it is training. However, up-sampling
using bilinear interpolation will consume less resources. How-
ever, when implementing the U-Net using PyTorch, we do see
a small different in the resulted prediction after training for five
epochs (Fig. 4, Fig. 5) . Bilinear interpolation out performed
convolution tranpose with the Carvana Image Masking Chal-
lenge dataset. However, we still adopt the convolution tranpose
because it overperform bilinear interpolation theoretically.

In fact, convolution transpose can be implemented with
normal convolution theoretically. However, the implementation
of convolution in MagmaDNN originally does not support
down-sampling tensor. And then we have attempted to add
padding to the tensor that is going to be convolutioned. How-
ever, this cannot be implemented to work with U-Net since
adding padding to the tensor cannot pass on gradient from
the previous layer to the next layer. Therefore, convolution
transpose layer is required to be implemented for the U-Net
to work properly.

The forward gradient for the convolution transpose is the
same with the backward gradient of convolution since convo-
lution transpose is the revserse progress of convolution. While
the backward graidne for the convolution transpose is the same

with the forward gradient of convolution.

(a) (b) (c)

Figure 3. (a) Car 1 (b) Car 2 (c) Car 3

(a) (b) (c)

Figure 4. U-Net Prediction using Bilinear Interpolation (a) Car 1 (b) Car 2
(c) Car 3

(a) (b) (c)

Figure 5. U-Net Prediction using Convoluntion Transpose (a) Car 1 (b) Car
2 (c) Car 3

4) Skip Connection: For some deep convolution neural
networks, the gradient may vanish after a lot of layers. It
affects the performance of the neural network. Therefore,
a skip connection will be useful in this kind of neutral
network. It provides an alternative for passing gradient in the
backpropagation so that the gradient can move more freely in
the model. In the U-Net, skip connection is for persevering
and recovering original features in the image in the decoder
part. There are a few skip connection options that are currently
being used in the field in U-Net. First, it is add. The second
is concat.

For the add skip connection, it is possible adopts the residual
similar to the ResNet (Fig. 6). However, it will change the
structure of the U-Net completely. It requires adding the
previous layer with the convolution of the layer passed through
the skip connection. It will be non-sequential for all the layers.
Therefore, we have adopted the concat skip connection since
MamgmaDNN cannot accept non-sequential layers currently.

For the concat skip connection, it is concatenating the output
of each layer to the upsampled layers. Since in the input, we
have resized every single image to a square. Therefore, the
tensor will maintain to be a square tensor and we did not
need to crop any tensor in the process of concatenating.



Figure 6. ResNet Skip Connection

C. CUDA

CUDA is a platform developed by NVIDIA Corp. in 2006 to
facilitate GPGPU, or general-purpose computing on graphics
processing units. Formerly, GPUs were used only to perform
graphics operations. But because these graphics operations
are expressible as matrix algebra, it is possible to translate
arbitrary linear algebraic operations into graphical operations.
CUDA is the framework that allows programmers to execute
these computations on the GPU. By running operations on
the GPU, one is able to exploit the GPU’s faster floating-
point arithmetic and its parallelization capabilities, leaving the
CPU to perform more general operations for which it is better
suited.

The CUDA language is a superset of the C++ language,
which makes it naturally extensible from serial C++ code
(Strictly, it is a subset of the features defined in Appendix
D of [5]). Furthermore, the CUDA compiler, nvcc, integrates
well with existing build systems by invoking the local compiler
(i.e., gcc, g++) for host code (code which is to run on the
CPU) and its own compiler for device code (code which is
to run on the GPU). As such, MagmaDNN uses CUDA in its
implementation of fundamental tensor operations on the GPU.
These tensor operations are used extensively in convolutional
neural networks, of which U-net is an example.

D. HDF5

HDF5 is an open-source file format that can contain a large
amount of complex data. It was developed by the National
Center for Supercomputing Applications and is currently sup-
ported by The HDF group. It is commonly use in the field
of machine learning because of the fact that it is machine
independent and the ability to store scientific data in files.

MagmaDNN was only able to input MNIST, CIFAR10, CI-
FAR100 data and one-hot encoded ground-truth data. However,
we have tried to use MNIST data as the dataset and the
masking. Unfortunately, it does not have much success with
the U-net since both of them are the same data and the neutral
network cannot learn from the dataset. Moreover, MagmaDNN
is only able do classification instead of image segmentation.
Therefore, we need to use customize dataset for the training
and testing for the U-Net. After we have intergrate OpenCV

with MagmaDNN such that it can input data from ImageNet
and Oxford-IIIT Pet Dataset.

We have put our target to intergrating the HDF5 API with
MagmaDNN such that MagmaDNN can accept a wider range
of dataset without needing to readjust the code in MagmaDNN
to accept other input format.

E. Loss Functions

In machine learning, there must be a way to determine how
far the model’s prediction was from the actual value. This is
where loss functions come in. The loss function defines how
far the predicted value was from the ground truth and then the
weights of the network are updated accordingly. Models with
different purposes will have different loss functions. Currently
in MagmaDNN, it has cross-entropy and mean squared error
loss functions already implemented. U-net architectures use
cross-entropy loss; however, the cross-entropy that is imple-
mented in MagmaDNN has a few drawbacks. First, it only
works for image classification not pixel-wise classification;
secondly, it only accepts 2-dimensional tensors, which is a
problem because the ground truth of most image segmentation
datasets would a 3-dimensional or 4-dimensional tensor. In a
later section, we will be looking at how we implemented a
cross-entropy loss function specific for image segmentation
problems.

III. IMPLEMENTATION

A. Structure of our U-Net

Our U-Net consists of one double convolution, four en-
coders, four decoders and one out convolution. For the encoder
part, one of the differences from the original U-net paper is
that each convolution is followed by a batch normalization
besides the last output convolution. The reason for adopting
batch normalization is the advantage of higher learning rates
and to be less careful about initialization. It also make using
dropout optional.

For the down-sampling method, we use the same method as
the original paper, which uses maxpooling instead of strided
convolution. It will be to pass on gradient easier than strided
convolution. Maxpooling will prevent problems with gradient
propagation.

B. Transposed Convolution

Our implementation of the transposed convolution relies on
the cuDNN C++ API functions. This allows for the transposed
convolution to run on the GPU and in parallel, which is ideal
for super computing applications. When using these cuDNN
functions, we had to think about how normal convolution is
performed, since all cuDNN convolution functions are meant
for normal convolution. In essence, convolution either shrinks
or keeps the same dimensions based on the parameters you



pass it. Furthermore, the API does not have functions specifi-
cally for transposed convolution; so, we had to figure out how
to manipulate the normal convolution functions to perform the
transposed convolution that we desired. Our suspicion was that
we could use the backward pass of the normal convolution to
perform the forward pass of the transposed, and the forward
pass of the normal convolution to perform the backward pass
of the transposed.

template <typename T>
void conv2dtranspose_device
(Tensor<T> *x, Tensor<T> *w, Tensor<T> *out,
conv2dtranspose_cudnn_settings settings)
{

T alpha = static_cast<T>(1);
T beta = static_cast<T>(0);
cudnnErrchk(cudnnConvolutionBackwardData(
MAGMADNN_SETTINGS->cudnn_handle, &alpha,
filter_desc, w->get_ptr(),
x->get_cudnn_tensor_descriptor(),
x->get_ptr(),
conv_desc, bwd_data_algo.algo,
grad_data_workspace,
grad_data_workspace_size, &beta,
out->get_cudnn_tensor_descriptor(),
out->get_ptr()));

}

In the code above, we show how we used cuDNN to implement
the forward pass of the transposed convolution. Given that
the API function cudnnConvolutionBackwardData()

computes the gradient of the input tensor for a normal
convolution, it can be said that sometimes it must up-scale
the output tensor to the size of the original input tensor.
Given this fact, if we pass in the appropriate parameters
for the API function, then we could theoretically perform
a forward pass of the transposed convolution and in turn
double the height and width of the tensor. We compared
our transposed convolution with the transposed convolution
in Keras and found that ours produced the same results. We
looked into the source code for Keras, since they also use
cuDNN, and found that they used the cuDNN functions in
the same way we did. So this confirmed that our theory was
correct and our implementation of the transposed convolution
works. This code is for anyone looking to implement their
own transposed convolution, as there is little documentation
and cuDNN does not directly support this process through
any API functions. To compute the gradient of the input
tensor, for transposed convolutions, during the backward pass,
one simply uses the forward pass of the standard convolu-
tion, cudnnConvolutionForward(). Furthermore, when
computing the gradient of the filter tensor during the backward
pass, one can use the same function that is used for normal
convolution, cudnnConvolutionBackwardFilter().
Determining this method of implementation was crucial for
the success of our implementation, as the back half of the

U-Net relies on the up-sampling method.

C. Concatenation

We implement a skip connection in our U-Net by using
concatenation. Our task is to concatenate two 4D tensors.
MagmaDNN stores these tensors in NCHW (batch, channels,
height, width) format. Here is MagmaDNN’s implementation
of concatenation on the CPU, written by Sedrick Keh. It is
located in src/math/concat.cpp.

while (curr_pos >= 0) {
curr_pos = target_shape.size() - 1;
if (target_shape[axis] < A->get_shape(axis)) {

C->set(target_shape, A->get(target_shape));
} else {

target_shape_copy = target_shape;
target_shape_copy[axis]
-= A->get_shape(axis);
C->set(target_shape,
B->get(target_shape_copy));

}
target_shape[curr_pos]++;
while (target_shape[curr_pos]
== C->get_shape(curr_pos)) {

target_shape[curr_pos] = 0;
curr_pos--;
if (curr_pos < 0) break;
target_shape[curr_pos]++;

}
}

The GPU version, written in CUDA C++, is similar. Mag-
maDNN determines whether to call the CPU or GPU version
by examining output_tensor->get_memory_type().
output_tensor is a protected variable defined
in the Operation class. A MagmaDNN user
specifies whether to use the CPU or the GPU by
passing the value magmadnn::memory_t::HOST or
magmadnn::memory_t::DEVICE, respectively, to the
magmadnn::Tensor constructor.

D. Loss Function for Pixel-wise Classification

The loss function is the most important part of any deep
learning network. Without it, the network will not be able
to learn from its training and will ultimately not function
as intended. The loss function used for image segmentation
is typically cross-entropy. Whether the loss function is cat-
egorical or binary depends on the goal of the model. For
the initial implementation of the U-Net, we decided to use
binary classification, where 1 represents the foreground of the
image and 0 represents the background. MagmaDNN already
has a cross-entropy loss implemented; however, it is only able
to handle flattened inputs and ground-truths. Given that the
goal of a U-Net is image segmentation, we thought it would
be appropriate to implement a cross entropy that can handle
4D Tensors in addition to 2D. Furthermore, since we were
already making a new cross-entropy function, we decided



to modify it in a way that tailors it to image segmentation.
We followed the approach used in [2], where they added
a variable to calculate the distance from the foreground.
We called this approach distance aware cross-entropy. This
allowed the network to be more lenient on background pixels
that were classified incorrectly, but were relatively close to
the foreground. However, background pixels that were far
away from the foreground were punished severely for incorrect
classifications. This allowed for the network to focus training
onto the foreground and it would in turn converge in fewer
epochs. Since our time in this program is limited, we stopped
this implementation of the loss function, and we had to
settle for a normal cross-entropy approach. Everything for the
distance-aware cross entropy to work has been implemented;
however, we ran out of time and could not reimplement it in
CUDA. Our results reflect the fact that standard cross-entropy
is not optimized for image segmentation.

E. HDF5 I/O

For efficient access to trained models on disk, we use HDF5
(Hierarchical Data Format 5). An HDF5 file stores tensors
in a hierarchical structure consisting of groups and datasets.
A group consists of zero or more groups (groups nest), or
zero or more datasets (datasets do not nest). A dataset is an
arbitrary-dimensional tensor and its accompanying metadata.
The dataset is the deepest level of structure in an HDF5 file.

A group or dataset is uniquely identified by its path. An
HDF5 path is analogous to a filesystem path and can be
relative (to some particular group) or absolute. The root node
is denoted /; the path separator is the same character.

The HDF Group, which maintains the HDF5 standard,
provides a low-level C API for accessing HDF5 files. We wrote
a set of C++ templates and classes that adds a thin layer of
abstraction over this API. These templates are interchangeable
with the C API structures and functions, granting MagmaDNN
users both abstraction and access to a large and stable API.
These templates allow the user to write and read arbitrary-
dimensional host magmadnn::Tensors, std::vectors
and plain C arrays.

In the future, we intend to add support for writing portions
of tensors and reading portions of datasets. This functionality
is already supported by the underlying API. This will improve
performance by reducing the number of I/O operations needed.
We additionally plan to use the HDF5 C API’s file access
property lists in order to have control over file locking and
parallel file access. However, this functionality is not currently
needed in MagmaDNN.

IV. RESULTS

The data set we are using is the Oxford-III Pet data set.
We are using an 80/20 training-testing split with 31 randomly

chosen images for training, and 7 images used for testing our
model. We chose image dimensions of 256 by 256 pixels and
the input is in RGB format. Furthermore, we used a batch
size of 1 because of the limited GPU memory we had access
to. In the future, we would like to experiment with a larger
batch size and training set. All results were gathered on an
Nvidia-RTX 3060 with 12GB of memory. We decided to test
these exact specification on two different optimizers: one is
Stochastic Gradient Descent with Momentum, and the other
is the Adam optimizer. It is important to note that we trained
the PyTorch U-Net and our U-Net on the same dataset for
consistency.

IoU Dice Pixel
30 epochs 0.2703989 0.23404101 0.189038
60 epochs 0.7130330 0.26042986 0.4059788
90 epochs 0.7820648 0.25603748 0.4331681

Table I
PYTORCH U-NET USING ADAM

IoU Dice Pixel
30 epochs 0.4309651 0.50146092 0.2908932
60 epochs 0.7270899 0.74655103 0.4190377
90 epochs 0.6567489 0.70364418 0.3932231

Table II
OUR U-NET USING ADAM

IoU Dice Pixel
30 epochs 0.394911641 0.45857022 0.272548213
60 epochs 0.697989235 0.732576941 0.408179616
90 epochs 0.677266841 0.717351087 0.400935175

Table III
OUR U-NET USING SGD W/ MOMENTUM

We compared our model to a PyTorch model so we could
get an accurate measurement of how our implementation
compared to a reputable deep learning library. We have used
IoU (intersection of unions), dice loss and pixel accuracy to
measure the accuracy of our segmentation. IoU is a mea-
surement of degree of overlap between the ground-truth and
the predicted mask (Equation 3). A number larger than 0.5
is consider a good prediction. We can see from Table IV
and Table IV that for 30 epochs, the prediction is not very
accurate. However, after 60 epochs, the IoU score is better.
It has comparable results compared to PyTorch. And after 90
epochs, it becomes overfit for our model.

IoU =
TP

TP + FP + FN
(3)

TP: true positive, FP: false positive, FN: false negative



Dice coefficient computes the similarity between the ground-
truth and the predicted mask (Equation 4). We can see from
Table IV that our model performs better than PyTorch does,
meaning that our predicted mask is more similar to the ground-
truth than the output of PyTorch.

DSC =
2TP

2TP + FP + FN
(4)

TP: number of true positive pixels, FP: number of false
positive pixels, FN: number of false negative pixels

For pixel accuracy, the algorithm visits each pixel and
measures how many other pixels have its ground-truth value.
It is a measurement of predicting the value of the pixel. We
could see that the pixel accuracy is not that high for PyTorch
and our U-NET. However, they have a comparable result.

(a) (b) (c)

Figure 7. Groundtruth
(a) Cat 1 (b) Cat 2 (c) Cat 3

(a) (b) (c)

Figure 8. Our U-Net Prediction using Adam after 60 epochs
(a) Cat 1 (b) Cat 2 (c) Cat 3

(a) (b) (c)

Figure 9. Our U-Net Prediction using SGD w/ Momentum after 60 epochs
(a) Cat 1 (b) Cat 2 (c) Cat 3

The model trained with the Adam optimizer proved to be
more accurate, converged in fewer epochs and needed less

Figure 10. Loss of SGD with momentum vs with Adam optimizers

memory to train. You can see in Fig. 10 a comparison of
the two models’ losses. Adam has a smooth curve which is
expected, and SGD seems to find its minima relatively quickly,
but there could be room for tuning. When looking at the results
of the model with Adam in Fig. 8 versus the results of the
model with SGD in Fig. 9, we saw that they both had an
easier time with Cat 3; however, the model with Adam did
have a slightly higher accuracy score at 96%. We can also
clearly see that with Cat 2, the model with Adam had a far
easier time separating the foreground from the background,
and the accuracy score reflects that. In Fig. 8 on Cat 2, it
got an accuracy of 93%, where in Fig. 9 the accuracy rating
was only 83%. In regards to Cat 1, we can see that both
models had a hard time segmenting the foreground from the
background. There were a few testing samples that turned out
similarly that one, and we could pin that result on a number of
different factors. Perhaps the small training set did not expose
the model to enough variety, and therefore it encountered
difficulty segmenting some cats as opposed to others. We could
also deduce it to the loss function and the fact that we ended
up using standard cross-entropy. Perhaps the model was not
able to focus the training onto the foreground and therefore
we ended up with sub-optimal results on a few images. We
would like to test both of these theories and gain more results.

V. FUTURE DIRECTIONS

We believe that the distance-aware cross-entropy will help
our network gain better results through focusing the training
onto the foreground of the image. In the future, we would
like to adjust our implementation of the distance-aware cross-
entropy to make it more efficient and then proceed with writing
it in CUDA code. This would allow our network to run
completely on the GPU and in parallel, which is ideal for
super computing applications.

Additionally, from the discussion above we see that PyTorch
has good results from the up-sampling method, bi-linear



interpolation. It would be interesting to implement that method
in MagmaDNN and to compare the results of the two up-
sampling methods.

With respect to the tuning of our model, we believe that there
is a lot of improvement left on the table. We would like to test
our model with a larger data set and batch size. Even though
the accuracy of our model was good, compared to PyTorch,
we believe that we could see better results if our model was
exposed to a greater variety of samples. Also with a bigger
batch size, the model would be able to converge in a smaller
number of epochs.

Due to limited time, we have not implemented the GPU
version of distance-aware cross entropy and using CUDA to
calculate the gradient of the concatenation operation. There-
fore, we would like to implement those in the future to do
segmentation with speed comparable to PyTorch and Tensor-
Flow.

VI. CONCLUSION

MagmaDNN is an up-and-coming deep learning framework
that has gained traction over the years. Given that it is an in-
house development by the ICL at UTK, we believe that it will
gain popularity as development continues. MAGMA is also
currently in the process of being imported as a library into
Python (the PyMagma project), and is looking to extend its
support to Intel GPUs with the help of oneAPI. Our U-Net
implementation will further help MagmaDNN as a reputable
deep learning package.

REFERENCES

[1] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” ArXiv, vol. abs/1603.07285, 2016.

[2] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollr, “Focal loss for dense
object detection,” in 2017 IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 2999–3007.

[3] D. Nichols, N.-S. Tomov, F. Betancourt, S. Tomov, K. Wong, and
J. Dongarra, “Magmadnn: Towards high-performance data analytics and
machine learning for data-driven scientific computing,” in High Perfor-
mance Computing, M. Weiland, G. Juckeland, S. Alam, and H. Jagode,
Eds. Cham: Springer International Publishing, 2019, pp. 490–503.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” arXiv e-prints, p.
arXiv:1505.04597, May 2015.

[5] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv e-prints, p. arXiv:1609.04747, Sep. 2016.


	Introduction
	Background
	MagmaDNN
	Structure of MagmaDNN
	Setbacks of MagmaDNN

	U-Net
	Encoder
	Decoder
	Up-sampling Method
	Skip Connection

	CUDA
	HDF5
	Loss Functions

	Implementation
	Structure of our U-Net
	Transposed Convolution
	Concatenation
	Loss Function for Pixel-wise Classification
	HDF5 I/O

	Results
	Future Directions
	Conclusion
	References

