
Video Super Resolution with Integrated 2D and 3D
Convolution Neural Network

Member :
CheukHin HO, The Chinese University of Hong Kong

JiaXin LI, The Chinese University of Hong Kong

Mentor :
Dr. Kwai Wong, Joint Institute of Computational Sciences

Abstract

In most deep-learning based video super-resolution algorithms, a 2D CNN model is applied to each
frame for image super-resolution and then a sequence of the super-resolved frames is taken as the
input of 3D CNN.

However, in each frame, the temporal information which is useful to super-resolve the middle frame is
different. As a result, using a single 2D model to pre-process all the frames in the sequence may not
preserve the diverse information in each frame. Therefore, the idea of pre-processing each frame by
different 2D CNN occurred to us.

In our video super-resolution model, each frame goes through a different 2D CNN model for
single-image super-resolution and temporal information extraction. Then, the processed frames are
packed as a sequence of images and put into the 3D model.

Further, we have proposed two candidates for the 2D CNN algorithms. We compare the limits and
advantages of each candidate and try to find the better structure as well as gain some insight into the
exact function of 2D CNN.

codes are available at https://bitbucket.org/cheukhinho/3dcnn-super-2021-pytorch/src/master/

Objective

Contemporary physical observation and simulation produces a large amount of images and videos.
Due to technology limitations, not all of them are in high resolution. Our objective is to design a
method to do video super-resolution on these kinds of data. First, we adopt climate data to compare
our models with previous ones; then diamond video data is used to adjust our model to adapt more
complex cases.

https://bitbucket.org/cheukhinho/3dcnn-super-2021-pytorch/src/master/

Definitions

In this section, the definition of some tools for measuring the performance of the model is introduced.

Given a ground truth image , suppose is the approximation of , then we have𝑚 * 𝑛 𝐼(𝑥, 𝑦) 𝐾(𝑥, 𝑦) 𝐼
the following definitions:

i. Mean squared error (MSE)

𝑀𝑆𝐸 = 1
𝑚𝑛

𝑖=0

𝑚

∑
𝑗=0

𝑛

∑ 𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)

which measures how close the pixel-wise difference is. The lower the MSE, the better the
approximation.

ii. Peak Signal to Noise Ratio (PSNR)

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔
10

(
𝑀𝐴𝑋

𝐼
2

𝑀𝑆𝐸)

where is the maximum possible pixel value. PSNR is a measure ratio in how close does pixel𝑀𝐴𝑋
𝐼

values of is close to . The higher the PSR, the better the approximation.𝐾(𝑥, 𝑦) 𝐼(𝑥, 𝑦)

iii. Structure Similarity Index(SSIM)

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2µ

𝑥
µ

𝑦
+𝑐

1
)(2σ

𝑥𝑦
+𝑐

2
)

(2µ
𝑥
2+µ

𝑦
2+𝑐

1
)(σ

𝑥
2+σ

𝑦
2+𝑐

2
)

where ; and0 ≤ 𝑆𝑆𝐼𝑀(𝑥, 𝑦) ≤ 1

and are average of andµ
𝑥

µ
𝑦

𝑥 𝑦

and are varience of andσ
𝑥
2 σ

𝑦
2 𝑥 𝑦

is the covariance of andσ
𝑥𝑦

𝑥 𝑦

and are constants to prevent division with small denominator𝑐
1

𝑐
2

The higher the SSIM, the better the approximation.

Model Idea/structure/explanation

5-parallel
The model 5-parallel has two parts: the first part consists of 5 2D convolution layers in parallel and the
second part consists of a stack of 3D convolution layers.

shape: (B,1,H,W)

Shape after 2d& conc.:
5*(B,1,H,W) ->(B,1,5,2H,2W)

Shape after 3d:
(B,C,5,2H,2W)->(B,32,1,2H-4,2W-4)

Shape when output:
(B,32,1,2H-4,2W-4)->(B,1,2H-4,2W-4)

Figure : Model Structure
(B: bach size, C: channel, H: height, W: width)

Figure : Structure of 3D stack

Figure : Structure of 2D stacks

Figure: Structure of Recurrent Res Block for 2d and 3d
(n : number of recurrent)

For every input stack of 5 frames, it splits and each frame goes through different 2D stacks for
independent 2D feature extraction of each frame. In particular, there is a small recursive block in the
middle of each 2D stack. The 5 outputs are then concatenated together and fed into the 3D part. The
3D part gathers the information obtained from 2D parts (of each frame) to perform superresolution.
Similarly, there are also two small 3D recursive blocks in the middle of the 3D stack. Throughout 2D
and 3D parts, ReLU layers are used to add non-linearity to the model after each convolution layer. The
output from the 3D part passes through a layer of conv2d and a output layer with the modified sigmoid
function :

𝑆(𝑥) = (𝑀𝐴𝑋 − 𝑀𝐼𝑁) * 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥/100) + 𝑀𝐼𝑁

where and are the maximum and minimum of each entry of the image data.𝑀𝐴𝑋 𝑀𝐼𝑁

Through training and back propagation while updating the weight of the network, we expect the 3D
part to interact with the 2D part and help each other to learn to super resolve the image. Upon testing,

we set .𝑛
2𝑑

= 𝑛
3𝑑

= 5

Delta

Similar to 5-parallel, the Delta model is also composed of 2D convolution layers and 3D convolution
stack.

The biggest difference between 5-parallel and Delta lies in the design of the 2D convolution part.
Instead of using 5 parallel 2D convolution networks, the Delta model achieves the target of processing
each frame differently in another manner to reduce the number of parameters. The idea is illustrated
by the picture below.

Figure : Structure of Delta
（note t-2,t-1,..,t+2 refer to the frame at time t-2,t-1,..,t+2）

With the idea of symmetry, the Delta model lets each frame pass through different numbers of 2D
layers in the 2D convolution network. In this way, the 2D stack extracts the information of each frame
respectively without introducing extra parameters.

In addition, Delta also adopts recursive learning to add complexity and depth. In Block 1 and Block 2,
deep recursive layers are used for information extraction, as shown in the following picture.

Figure : Structure of Block 1 and Block 2

Block 3 is composed of some 2D convolution layers and a 2D transpose layer, which is responsible for
enlarging the image size. The structure of Block 3 is explained in the following picture.

Figure : Structure of Block 3

Previous Work comparison (on climate dataset)

The major difference of 3 models can be summarized as follows:

Previous Delta 5-parallel

Is it a single CNN? No Yes Yes

Does it contain
multiple 2D layer
stacks?

No Yes Yes

Is the recurrent 2D
part involved?

No Yes Yes

Is the recurrent 3D
part involved?

No Yes Yes

Is the range of output
controlled?

No No Yes

Implementation Tensorflow Pytorch Pytorch

Number of parameters 10,577(2D)
63,129(3D)

83,702 259,938

Table : Comparison of three models

Transfering from Tensorflow to Pytorch

The previous work was implemented in Tensorflow. There are few reasons for transferring from
Tensorflow to Pytorch. First, many source code available are written in pytorch. If our code is also
written in pytorch, it will be easier for us to combine or test our work with others' models. Another
reason is that some features (e.g. obtaining 4d array from 5d array for future concatenation during
training) are not directly supported in Tensorflow directly, whereas Pytorch has no such problem. It
allows development of structure of complex networks easily. Also, parallel computation is emphasized
in Pytorch and it has good compatibility with cuda packages. Lastly, memory-wise, Pytorch has better
memory allocation than Tensorflow, which facilitates testing and training on local computers before
moving on to XSEDE.

On Climate dataset
From the project last year, Tianxiang GAO (CityU) and Zhipeng ZHU (CUHK) test their final model,
written in Tensorflow, mainly on the Climate dataset:

Figure : Climate Data Set

The results of their model in comparison with our preliminary model (before fine tune) on the testing
set are listed in Figure j2.

MSE SSIM PSNR

Raw 0.03296 0.6517 14.8202

Previous 4.9283e-05 0.9896 43.0746

Delta1 1.9801e-05 0.9943 46.0013

5-parallel2 2.8866e-05 0.9953 45.6618

Table : Comparison with Previous Model

However, as we can see that Climate is a computer-generated image, which is relatively smooth and
continuous. The performance of each model is satisfactory. Though training and testing on Climate
shows that our model is better than the previous one, it may not be good enough for general images.

Therefore, we proceed to work on a different target data set. In order to combine our model with
another project on a classification problem, the target data set should have the following features:

2 Model here is the preliminary version of 5-parallel

1 Model here is the preliminary version of Delta

- the video is filming a single diamond
- the camera is rotating with constant angular velocity (with the diamond as center)

Data preparation and target dataset

For preparing frames from video, we used the extractor.py, while we used ffmpeg for combining the
output as one video:

ffmpeg -framerate 30 -i %03d.png output.mp4

Data preparation

Generally, given a set of HR images:𝑁

}Γ = {𝐹
𝑡

∈ 𝑀
3×𝐻×𝑊

(ℝ) |0 ≤ 𝑡 ≤ 𝑁 − 1

with being the number of channels, we first blur with a Gaussian filter with sigma = 3. Then𝑐 = 3 𝐹
𝑡

use INTER_CUBIC interpolation to resize the image to half of the original to become . Then, for𝐹'
𝑡

each with for , pack with in order and form a 4-dimensional𝐹
𝑡

2 ≤ 𝑡 ≤ 𝑁 − 3, |𝑡 − 𝑗| < 3 𝐹'
𝑡

𝐹'
𝑗

tensor . Now, let and be the set used in training and testing respectively,𝐶 × 5 × 𝐻/2 × 𝑊/2 Γ
𝑡𝑟

Γ
𝑡𝑒

with and . To be precise, each element in is an ordered pair of theΓ = Γ
𝑡𝑟

∪ Γ
𝑡𝑒

Γ
𝑡𝑟

∩ Γ
𝑡𝑒

= ϕ Γ
𝑡𝑟

4-dimensional tensor input and the corresponding ground truth image of the target middle frame. Note

that contains also the validation set. The training:validation:testing ratio is up to choice.Γ
𝑡𝑟

Target dataset
With respect to the above requirements, we obtain the dataset Diamond in the following video:
https://www.youtube.com/watch?v=RSmSWGdjBmY

Figure : Diamond dataset

Figure : Blurred Image of Diamond Y-channel

300 frames are extracted from the video. 240 images are used for training and validation (with ratio

and the remaining are used for testing sets. Here we only use and use the Y-channel of YUV𝑐 = 1
decomposition of images for training and testing. In order words, we have

}Γ = {𝐹
𝑡

∈ 𝑀
1×𝐻×𝑊

(ℝ) |0 ≤ 𝑡 ≤ 𝑁 − 1

with , and .𝑁 = 300, 𝐻 = 300, 𝑊 = 450 |Γ
𝑡𝑟

| = 240 |Γ
𝑡𝑒

| = 60

Statistics
The performance of each model (on testing set) are as follows:

MSE SSIM PSNR

Raw 9193.6647 0.0392 8.5000

Delta 125.1786 0.9155 27.1675

5-parallel 127.5626 0.9184 27.0820

Table : Performance of Each Model on Diamond Dataset

For , we can see that the performance of Delta and 5-parallel are similar to each other.|Γ
𝑡𝑟

| = 240

5-parallel performs slightly better on SSIM while Delta performs better in PSNR. Indeed, the number
of parameters in 5-parallel is far more than that in Delta, which costs much more memory while
training and testing. However, 5-parallel can be implemented parallel, which means the computational
time cost of 5-parallel should be similar to that of Delta using similar layer depth.

A main problem that may cause bias to this result is that there are not enough samples for training and
testing. Currently, there is no universal benchmark for video super resolution problems. Therefore, is
it difficult to compare our result with codes available online. For the majority of papers, mostly they
are using a huge data set which contains real videos and training the network for at least more than 3
days on GPU. It is also not possible for us to do so on XSEDE.

In addition, we have tried to use more data for training. For instance, gives a satisfactory|Γ
𝑡𝑟

| = 300

increase in improvement of PSNR and SSIM. For on the 5-parallel, the result on testing|Γ
𝑡𝑟

| = 300

set (which differs from that in) gives a PSNR of 27.6 and SSIM of 0.972. Therefore, it|Γ
𝑡𝑟

| = 240

may be the case that both of the models converge to the best approximation that is possible to attain,
with solely the information from the given dataset.

Pytorch Code for Better Efficiency

In order to enhance efficiency for training, some features are added to ensure the training and
validation time cost and accuracy strikes a good balance.

1. use with torch.no_grad()
for some of the steps, for example calculating SSIM and PSNR or validation during training,
requires no grad information on variables. For each tensor in Pytorch, the defaulf of tensors
has attribute requires_grad = True, and that when performing forward propagation on the
model, the gradients of the operators are stored in the computational graph, which is a
directed acyclic graph. This uses up GPU memories and needs more time. Therefore, we use
with torch.no_grad to turn off such Pytorch features.

2. Automatic Mixed Precision (AMP) and grad scale
The Automatic Mixed Precision autocast operations to datatype float16 or float32 depending
on the operations. It can reduce the memory usage and runtime of the model.

However, the problem of AMP is that while the gradient is small and the operation datatype is
converted to float16, gradient “underflow” occurs. Therefore, grad scaling is used to prevent
this problem by scaling the gradient during training.

3. Modify the learning rate
Initially, we have set the learning rate of the Adam optimizer with 0.00001. The model
converges but with relatively slow manners. Therefore, we change the learning rate of the
Adam optimizer to 0.0005, which is two times the original. The final result of the model
converges with similar MSE, PSNR and SSIM with the one of learning rate = 0.00001, while
the training epoch needed for the validation data to reach PSNR = 26 has been greatly reduced
to ~100 epochs to 20.

Discussion

In this report, we have illustrated two models: 5-parallel and Delta. There are some common features
used in the model which found to be improving the result:

● Recurrent feature
Recurrent network is currently popular in many of the computer vision problems or NLP
problems. Here we used a similar idea and allowed the input image to pass through the same
block multiple times. However, using recurrent features will cause stacking up in gradients,
which uses up an immense amount of memory. As far as we know, there are currently no
analytical methods to determine the optimal value of the number of recursions. By testing, we
found that the number of recurrent that gives the best performance is 5 (for both 2D and 3D).

● Res feature
Res block is a common feature used in neural network models. It allows flow of information
from the previous layer, which is the starting layer of the Res block directly to the end of the
block. The main advantage is to prevent vanishing gradient, which is said to be the
degradation problem in deep neural networks, and in other words, Res block allows very deep
neural networks to learn effectively.

● 2D & 3D interaction
In previous project, Tianxiang GAO (CityU) and Zhipeng ZHU (CUHK) built a 2D + 3D
model. However, they did not combine both of them as a single network. The 2D network
works as a super resolution network, the output from the 2D CNN is being fed to the 3D
model, which helps the 3D model to converge. However, according to their statistics, most of
the reduction of error is done by the 2D model, whereas the 3D model has insignificant effect
in improving the PSNR and SSIM. Therefore, we tried to combine both of the networks
together, and hope that 3D network and 2D network can interact with each other to learn
better.

Indeed, we have printed out the auxiliary loss after the images has passed through the 2D
stacks, however, we discovered that the 2D part is not doing super resolution, since the PSNR,
MSE and SSIM of the input image did not improved as much as expected, and even worse
than solely the 2D network. However, the 3D network is responsible for the remaining and the
result PSNR is better than that of separating 2D and 3D models. We believe that the 2D parts
are extracting 2D features, which helps the model in 3D part.

● 5-parallel performs better in SSIM while Delta performs better in PSNR
For the climate and diamond dataset, we can observe the above result. 5-parallel obtains more
2D structural information from each frame since each frame passes through 2D CNN of same
length, while 2 of them is much deeper than that of delta. However, a huge number of
parameters might overfit the training and validation set, and the color of each pixel is not
accurately predicted. Therefore, Delta performs better in PSNR.

Future Works

There are mainly few ways that possible improve the result of the model, which illustrates below:

Optical Flow
Optical flow is commonly used in obtaining temporal information between frames. For each pixel, an

optical flow with respect to and frames record has two values, and , which𝑛 𝑡ℎ 𝑛 + 1 𝑡ℎ ∆𝑥 ∆𝑦
denotes the change in and respectively from the to the frame. In video, each frame𝑥 𝑦 𝑛 𝑡ℎ 𝑛 + 1 𝑡ℎ
is of dimension (channel, H, W) , therefore optical flow is a (2, channel, H, W) matrix.

Figure: Example of Optical Flow

Data-preprocessing

Intuitively, the clearer the image, the easier and more information can be obtained from the image.
Therefore, if we perform super resolution on the input dataset before inputting to the network the
performance of the whole model might be able to improve.

In view of the above two directions, we propose the following scheme:

Figure: Proposed Future Model

The proposed scheme takes the same input as in our current model, which is a package of 5 frames.
Instead of 2x super resolution, this proposed model gives a 4x super resolution.

FIrstly, given the 5 frames package, for every frame in the package, it passes through a 2D super
resolution process. It can be done by CNN or any other methods. Then, the 5 frames package passes
through an Optical Flow Net to obtain optical flow information between frames. The reason for doing
super resolution before the Optical Flow Net is that we want a preliminary result for the super
resolution to help us obtain clearer optical flow information between frames. Also, it can transform
our problem to CNN from 4x super resolution to 2x super resolution. Next, concatenate the optical
flow stack with the SR frames passed through the 2D SR and feed it to our 2D+3D CNN. The 2D+3D
CNN will gather all the information and output a single super resolution target frame.

References

1. Gao, T., & Zhu, Z. (2019). Reconstruction of High Resolution Movies using Transfer
Learning.

