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ABSTRACT 

Most existing deep-learning based super-resolution algorithm use 2D CNN to do 

super-resolution on single image. Different from 2D CNN, 3D CNN could accept a sequence 

of images as input, therefore is able to extract the correlations within the image sequence. 

Hence, 3D CNN is a good choice for performing super-resolution on videos, in which 

consecutive frames share significant similarities that cannot be ignored.  

We propose a video super-resolution algorithm consisting of a 2D model and a 3D 

model. We do super-resolution twice. First, we use the 2D model to do single-image 

super-resolution on every frame and save the results. Then, we pack the processed frames as 

sequence of images and put them into the 3D model to do super-resolution again.  

We perform transfer learning with respect to the 2D model. The structure of the 2D 

model is based on existing super-resolution models that have achieved good performance in 

single image super-resolution. We use parameters trained by others as the initializer of some 

layers of our model, and then we fine tune the model on our own dataset. 

 

Objective 

Contemporary physical observation and simulation produces a large amount of 

images and videos. Due to limit of current technology, not all of them are high-resolution 

ones. Our objective is to design a method to do video super-resolution on these kinds of data. 

We mainly focus on climate data; later we can move to data in other fields of physics. 

 

Method 

Our main idea is to append a 2D super-resolution model with a 3D one. The 2D 

model is for basic reconstruction, processing frames independently. And the 3D model uses 

information from pre-frames and post-frames, adding more details to the reconstructed 

sequential of images. By combining a 2D super-resolution model with a 3D one, we hope to 

achieve a better result than that of traditional models. 
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1. Dataset Selection and Pre-processing 

a. Shepp-logan Phantom 

Shepp-logan phantom is a model of human 

head, using ellipsoids to represent different tissues. To 

generate a sequential set of images suitable for our 

neural network to process, we make the ellipsoids 

slightly change in shape and location over time. 

Consecutive frames will have high similarity, and 

easy for frames to learn information from each other. 

 

b. Independent Images Taken from Reality 

To test the performance of 2D neural networks, there are no restrictions on 

consecutiveness of input images. The basic 2D model we used are trained over images taken 

from daily life. We input similar real-life images to see the performance of the basic model, 

and how much improvement we can get by doing transfer learning. 

 

c. Movies from Real-life Scenes 

To test 3D neural network, input should be sequential images with some similarities 

within time domain. There is a website mentioned by the paper about 3D SRnet, providing 

movies with main features slightly moving over time. Doing 3D convolution takes longer 

time than 2D convolutions. The size of each frames from different movies are fixed and 

small, and thus are more suitable to be test cases of 3D neural networks. 

 

d. Climate Data Generated by Shallow-Water-Equation 

Shallow water equations are usually used for 

describing the flow under a pressure surface. The function 

generates different floating numbers when time changes, 

plotting slightly fluctuating waves among time. 

 

Since the purpose of our project is to reconstruct 

computer-generated movies, we use the climate data for the final testing of all the models. 
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However, computer-generated video data is easier for neural network to learn. Considering 

the difference between these data and the videos token from reality, performance of real-life 

scene dataset may not be as good as the current results. 

 

2. 2D super-resolution model 

In the past few years, researchers have proposed many deeping-based super resolution 

models. We design 2 models for our 2D super-resolution part, based on two of existing single 

image super-resolution models, the Super-resolution Convolutional Neural Network model 

(SRCNN) and the Fast Super-resolution Neural Network model (FSRCNN). 

The SRCNN model is the first super-resolution model using deep learning. It is 

well-known for its simple structure and efficient performance. SRCNN only have three 

layers, all of which are convolutional layers. The first layer is designed for feature extraction, 

which has 64 filters, with size 9*9. The second layer is a non-linear mapping layer, which has 

32 filters, with size 64*1*1. The third layer is designed for reconstruction, which has 1 filter, 

with size 32*5*5. All of the three layers use ‘ReLU’ activation function. Further, It is worth 

noting that the input of SRCNN should be of the same size of the output, which requires us to 

resize the low-resolution image to the size of the high resolution one using bicubic 

interpolation before putting it into the neural network.  

In our own model, we preserve the structure of SRCNN. Also, we use the filters of the 

first layer , which is trained by the author of SRCNN,  as the initializers of our first layer. The 

initializer of the second and third layers are just the default setting of Keras. We change the 

activation function to ‘pReLU’ to solve the problem of vanishing gradient. Then, we 

fine-tune the first layer, and self-train the second and third layer on our own dataset. Further, 

we tries to add more layers to SRCNN model, but it is not satisfactory because performance 

is not improved much, and the training and processing time is increased. 

The FSRCNN model is the improved version of SRCNN. Different from SRCNN, 

FSRCNN do not require the low-resolution images to be resized before processing. Instead, 

FSRCNN use a deconvolution layer as the last layer to upsample images to a bigger size. The 

deconvolution layer has another name ‘transpose convolution layer’. It can be considered as 

the inverse transform of classic convolution. The explicit process of deconvolution can be 
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depicted by the following picture. We add zeros between entries of a matrix to get a new 

matrix, and do convolution on the new matrix with respect to some filter. 

 

 

The explicit structure of FSRCNN is as follows. FSRCNN has 4 convolutional layers 

and one deconvolution layer. The first layer is designed for feature extraction, which has 32 

filters, with size 5*5. The second layer shrinks the size of the result of the first layer, which 

has 5 filters, with size 32*1*1. The third layer do non-linear mapping, which has 5 filters, 

with size 5*3*3. The fourth layer expands the size of the result of the third layer, which has 

32 filters, with size 5*1*1. The last layer is a deconvolution layer with stride equal to the 

upscaling factor,  which has 1 filter, with size 32*9*9. All of the 5 layers use ‘pReLU’ 

activation function with alpha initialized to be zero. 

We derive our own model based on the idea behind the FSRCNN model. In our 

model, the first and the fourth layers are preserved. The number of filters of the second and 

the third layer is changed to 8 to extract more information from the low-resolution image. 

Also, we find that it is difficult for the parameter to converge to a good local minimum if the 

size of the filter is set to be too large in the deconvolution layer. Therefore, we increase the 

number of filters of the deconvolution layer to 32, and reduce the size of it to 32*2*2. Also, 

we add a non-linear layer after the deconvolution layer to add more non-linearity to our 

model after upsampling images. This layer has 1 filter, with size 32*5*5. Same as other 

layers, this layer uses ‘pReLU’ activation function. We set the parameters of the first four 

layers, which are trained by the authors of FSRCNN, as the initializers of first 4 layers. Then, 

we fine-tune these 4 layers, and self-train the last two layers using our own dataset. 
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3. 3D super resolution model 

For current videos with fps equal to 60, consecutive frames are almost the same 

because the temporal interval between them is only 1/60 second. Hence, when performing 

super-resolution on one single frame, we can also leverage the information from frames 

nearby. With more information, we intend to improve the quality of the super-resolution. The 

idea illustrated above can be implemented using 3D convolution. 

Our idea of the 3D model is based on the 3D SRNet model proposed by Kim et al. 

The 3D model is used for video super-resolution. Different from 2D model, the input of the 

3D model is a 3D matrix, rather than a 2D matrix. The filter of a 3D convolution is also a 3D 

matrix. Therefore, when performing 3D convolutions, we can extract information from more 

than one matrix, which is suitable for finding the correlations between consecutive frames. 

For each frame in a video, we pack it with 2 frames before it and 2 frames after it to obtain a 

3D matrix with size height*width*5. By doing this, we can train the network on both the 

spatial and the temporal domain. Our goal is to leverage the correlations between one frame 

and 4 frames nearby to add more details to the high-resolution image. 

The structure of our 3D model is as follows. Similar to 2D models, the first layer is 

designed for feature extraction, which has 32 filters, with size 5*5*3. The second layer is for 

shrinking, which has 8 filters, with size 32*1*1*3. The third and fourth layer are designed for 

nonlinear mapping, which both have 8 filters, with size 8*3*3*3. The fifth layer is for 

expanding the interim result for later processing, which has 32 filters, with size 8*3*3*3. 

Until now, all the layers are used for extracting features from input images, and choose 
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important features from them. Also, we set the padding option to be ‘same’ in all these 5 

layers, which means that the size of the result right after the fifth layer is 32*height*width*5. 

After the fifth layer, we start to derive our final result from the information we collect. The 

sixth layer has 32 filters, with size 32*3*3*3. We set the padding option to be ‘valid’, which 

means that the interim result of the sixth layer is 32*(height-2)*(width-2)*3. The seventh 

layer also has 32 filter, with size 32*3*3*3, padding to be ‘valid’. After this, the interim 

result has size 32*(height-4)*(width-4)*1, which means that we have obtained one single 

frame from 5 consecutive frames. We add one non-linear layer as the last layer to obtain one 

single image. The last layer has 1 filter, with size 32*5*5. For all the layers mentioned above, 

we use ‘prelu’ activation function with alpha initialized to be 0. 

 

4. Combine 2D Network and 3D Network 

As mentioned before, our main idea is to combine 2D model with 3D model. We 

propose 2 methods to implement our idea. 

The first method is to train 2D model and 3D model separately. First, we train the 2D 

model using climate data. Then, we process the raw data using the saved 2D model. After 

that, we pack the processed data as the input of the 3D model for training. By doing so, we 

hope we could increase the quality of super-resolution twice. 

This method has several advantages. First, it is easy to train and implement because 

we are actually training two separate models. Second, we can set different hyperparameters 

for each models to ensure convergence of both the 2D and 3D model. But this method also 

has one disadvantage. That is the lack of interaction between 2D and 3D models because we 

train 2D and 3D models separately.  

The structure of the training process overall is illustrated by the picture below. 
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Another method is to concatenate the 2D model and 3D model in one single neural 

network. We add a layer between 2D model and 3D model to process the data from single 

frames into packages consisting of 5 consecutive frames. For example, if the output of the 2D 

network have size M*N*AMOUNT, where M is the height of the images, N is the width of 

the images, and AMOUNT is the total amount of frames, then 

after processed by the middle layer, the size will become 

M*N*5*AMOUNT. 

Concatenating 2D and 3D models mean that when can 

train the 2D model and 3D model at the same time. Since 2D 

and 3D models could interact each other during training, we 

probably could obtain a better result. But this method also have 

some disadvantages. First, a deeper neural network is less 

likely to converge to a good local minimum, which require us 

to tune hyperparameters more carefully to ensure convergence. 

Second, we have to set same hyperparameters for 2D and 3D models, which may decline the 

performance of 2D or 3D models slightly compared to training them separately.  
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Experiment and Results 

1. Main Idea 

To test how good a reconstruction algorithm is, when processing data we leave one 

set of uncompressed images as ground truth. 

We compare the similarity and clarity of compressed or shrinked images with the 

ground truth twice: before neural network processing and after neural network processing. If 

images after processing is more similar than the one before, means the algorithm is more 

suitable for performance improvement. 

Considering the limitation of computing resources, we are training on 120 images and 

testing on 50 images. 

 

2. Indexes Information 

● MAE: Mean Absolute Error 

Mean absolute error is used to measure the difference between two variables. For our 

cases, we are using MAE to see the difference between two images and see their similarity. 

The lower MAE is, the similar two images should be. To achieve better performance, we 

want MAE to be the smaller the better.  

● MSE: Mean Squared Error 

Mean squared error is used to measure 

squared difference between two variables. This 

is also an index to measure the loss of information among images, but the difference will be 

amplified by the operation of “square”. We determine MSE to be our loss function when 

training neural network. During training, we want to decrease the MSE. 

 

● PSNR: Peak Signal-to-Noise Ratio 

The index is a logarithmic-scaled 

representation, measuring the ratio between 

the maximum possible power of a signal and 

the power of corrupting noise. 
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For the formula, ​MAX​I​ is the maximum possible pixel value of the image. 

According to the formula, the less MSE is, the larger PSNR should be. Our goal is to 

increase PSNR by processing. 

 

● SSIM: Structural Similarity Index 

Structural similarity index is widely used in digital-image processing to predict the 

quality. Our purpose is to improve similarity, thus SSIM should be the larger the better. 

 

 

 

 

 

 

 

3. Training and Results 

In our training process, we use high resolution data collected as the ground truth. We 

downscale the ground truth by scale factor 2 using bicubic interpolation to get low-resolution 

images. Our goal is to obtain high-resolution images from low-resolution images through the 

network. We compare the reconstructed high-resolution images with the ground truth to 

measure the performance of our models. 

1. 2D Model 

Since the image size of input size and output size are different before neural network 

processing, we cannot know how similar the raw data (compressed images) and the ground 

truth (uncompressed images) are. 

● Epoch = 100 

Totally 120 
images in data 
set 

Train Set (80% of all train pictures) Validation Set (20% of all train pictures) 

MSE SSIM PSNR MSE SSIM PSNR 

Epoch = 0 0.1787 0.0206 7.6772 0.0853 0.0334 10.6893 

Epoch = 100 1.3292e-4 0.9764 38.9665 1.4266e-4 0.9744 38.4576 
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Table 1 

 

● Epoch = 150 

Totally 120 
images in data 
set 

Train Set (80% of all train pictures) Validation Set (20% of all train pictures) 

MSE SSIM PSNR MSE SSIM PSNR 

Epoch = 0 0.1787 0.0206 7.6772 0.0853 0.0334 10.6893 

Epoch = 150 6.4832e-5 0.9871 41.8839 7.0370e-5 0.9859 41.5278 

Table 2 

 

2. 3D Model 

a. 3D SRnet Model trained with Raw Data 

The neural network is complicated to learn and requires a lot of computing resources. 

The training result, however, is not better than to simply use 2D network. 

 

(a-0). 3D SRnet Model trained with Climate Data 

● Raw data quality: PSNR = 13.8458 dB;  SSIM = 0.5304; MSE = 0.0413 

Totally 120 
images in data 
set 

Train Set (80% of all train pictures) Validation Set (20% of all train pictures) 

MSE SSIM PSNR MSE SSIM PSNR 

Epoch = 0 0.0342 0.6628 14.7373 0.0280 0.6572 15.5334 

Epoch = 100 0.0226 0.7377 16.4686 0.0231 0.7262 16.3682 

Table 3 

 

(a-1). 3D SRnet Model trained with Movies from Real-life Scenes 

At the first stage, we used movies from real-life scenes rather than climate 

data. This is because of the smaller size of these movies’ frames, which shortens the 

time to finish one epoch in 3D cases. Real-life scene videos are also in worse qualities 

than the videos constructed by computer. This helps us to clearly see how much 

improvement 3D SRnet model could achieve. 

● Images are in shape 64 x 64 

Totally 236 Train Set (80% of all train pictures) Validation Set (20% of all train pictures) 
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images in data 
set 

MSE SSIM PSNR MSE SSIM PSNR 

Epoch = 0 2504.1546 0.4550 16.4601 518.8638 0.5568 20.9809 

Epoch = 100 99.3784 0.8788 28.2013 128.0339 0.8552 27.1830 

Table 4 

 

b. 3D SRnet Model trained with 2D network pre-processed Images 

● Trained with pre-processed to PSNR = 42.08dB data set, patience for early stop = 5 

Totally 120 
images in data 
set 

Train Set (80% of all train pictures) Validation Set (20% of all train pictures) 

MSE SSIM PSNR MSE SSIM PSNR 

Epoch = 0 0.0984 0.6668 11.7868 0.0051 0.9022 22.9122 

Epoch = 67 
(Early Stop) 

8.4290e-4 0.9837 40.7561 1.0119e-4 0.9812 39.9499 

Table 5 

 

● Trained with pre-processed to PSNR = 42dB data set, patience for early stop = 5 

Totally 120 
images in 
data set 

Train Set (80% of all train pictures) Validation Set (20% of all train pictures) 

MSE SSIM PSNR MSE SSIM PSNR 

Epoch = 0 0.0750 0.7401 15.3667 0.0019 0.9306 27.2128 

Epoch = 80 4.5721e-05 0.9907 43.4010 4.9283e-05 0.9896 43.0746 

Table 6 

 

The more clear the interim-result (the data to be trained) is, the more useful it helps in 

improving the first few epochs’ performance.  The final improvement is not severe by 3D 

network processing. But since the training progress was not early-stopped, more epochs 

might help to even improve the performance. 

 

3. Combined 2D Network and 3D Network 

 

a. 2D Network and 3D Network (3D network trained with raw data) 
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Totally 120 images 
in data set 

MSE SSIM PSNR 

2D network (​Table 
2​) 

7.593760673e-05 
 

0.9847759507246662 
 

41.201901955249504 
 

After data 
re-packing* 

8.1247606238392
17e-05 

0.9846107211562674 
 

40.9071674094057 
 

3D SRnet network 0.0096011151711 0.803450561713647 20.17703292426752 

Table 7 

 

b. 2D Network and 3D Network (3D network trained with 2D network 

pre-processed result) 

Totally 120 
images in 
data set 

MSE SSIM PSNR 

2D network 
(​Table 2​) 

5.807663600363179e-05 
 

0.987824159428385 
 

42.36632787676039 
 

After data 
re-packing* 

6.178588381302932e-05 0.9877120117274287 
 

42.09522054489414 
 

3D SRnet 
network 

4.632699437652877e-05 0.9910728454576089 43.34586764073154 

Table 8 

* ​Data Repacking​: To process images using the 3D network, the size of final result images should smaller by 4 

in width and height respectively. This is caused by the downgrading process inside 3D network. When test the 

similarity of packed images and ground truth, we cut off the 4-pixel wide boundary of to-be-processed data. 

Thus the performance comparison will be more consistent with the final result. 

 

Analysis and Future Steps 

1. Dataset Selection 

There are two different choice when choosing train set and test set of neural network: 

One is to pick both the train set and the test set from climate data. Neural network 

training generally requires train set and test set has high level similarity. By applying this 

design, train set and test set will have many common scenes, better for the performance. 
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However, if train set and test set are too much similar, it may cause overfitting problem: what 

neural network has learned is specific for the data we provided, and not suitable for other 

computer-generated videos. 

Another is to regard climate data only as test set. As for train set, we need equations 

like shallow-water-equation to generate similar computer-generated videos. This method can 

help to avoid overfitting problem, but may compromise the performance of neural network on 

testset. 

Currently, we have tried to take both the train set and test set from climate data only. 

For future improvement, it’s a good idea to try the second method and use different data to 

generalize the trained neural network. 

 

2. Reconstruction Tools 

Besides neural network processing, there are many ways to reconstruct downscaled 

images with mathematical based methods. Using different python packages for resizing 

(enlarging) will show different results. For example, openCV, Pillow and scipy.misc have 

embedded functions for interpolation based resizing. User can choose tools as “bicubic”, 

“bilinear” or “nearest” by themselves. Neural network is not the simplest or the only way to 

do reconstruction. 

 

3. Compression and Contraction 

Information lost in images could be due to compression or contraction. Compression, 

including lossless compression and lossy compression, is to minimize the storage of 

redundant information inside images. Contraction, however, is using the natural of 

information lost in zoom-out process to throw out information.  

The basic models we referred to are doing super-resolution, which generally enhances 

resolution by enlarging the total amount of pixels. These method should be more suitable for 

cases that lost information because of contraction, but not for all cases of general 

compressions. 
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Besides super-resolution, there are some other methods to enhance image resolution. 

For example, compression artifacts removal can sense distorted parts and reconstruct based 

on these entries. 

 

4. Interim Result 

The maximum of PSNR is only 48dB, and it’s hard to achieve PSNR larger than 

40dB. When training on “combined 2D and 3D Network”, interim result is too good that the 

result of re-trained 3D network even makes a setback in performance. If we want to see if the 

combination network can help to even improve performance, interim results’ quality should 

not be too good, and leave some improving space for the 3D model to learn. 

During experiment we found that the quality of 2D network processed data would 

have impact on the quality of 3D network output (​Table 7 and Table 8​). The key point is to 

find a trade-off value between the “significant improvement” and “starting quality” for the 2d 

network pre-processed data. 

One possible method is to limit the epoch trained over the first network. Before the 

70th epoch, PSNR is lower than 36dB. To see if any improvements are made by the 3D 

network, the overall epoch numbers in 2D network training process could be set as 70. 

 

5. “3D + 2D” Network Combination 

To do both independent image reconstruction and sequential image reconstruction in 

one model, we hope we can use not only the information hidden inside the image itself but 

also information stored in consecutive frames. 

However, for each model and dataset, there should be a peak value that the result 

could be improved to by neural network processing. The inter-compensation idea of 

combination does not mean the peak values are also combined. Thus it’s reasonable that the 

combination network’s result is not better than processed only by one network. 

Based on the explanation above, there’s another idea other than our current “2D+3D” 

combined network: Process images with 3D network at first, and then the 2D network. The 

reason behind is that, since 3D network has more complicated layers and difficult to learn, 
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the peak value should be lower than 2D network. By appending 2D network after 3D 

network, we can at least avoid the “cask effect” caused by 3D network’s peak value. 

We haven’t tried the “3D+2D” combination yet. 3D network trained with images 

preprocessed by 2D model could learn, but the one trained with raw data made no 

improvement and was early-stopped at early stage. The problem could be caused by 

hyper-parameter set are not suitable for the dataset, but we didn’t have time to test and see 

whether the assumption is the correct reason. After fixing the problem of the 3D model, it 

will be a good trial to try the “3D+2D” combination: train 3D network first; input the 3D 

network pre-processed images into 2D network and get 2D network-trained final result. 

 

6. Two-in-one 2D Network and 3D Network 

To apply back-propagation in the combination network structure, we want to build a 

two-in-one network. The interim results are not output after processed by the 2D network, but 

directly feeded to the later 3D network. By doing this, we tried to self-define a lambda layer, 

packing 5 images together as a package, and then directly feed the output tensor of this layer 

into the 3D network.  

The challenge we are facing is that, we need to use iterations inside the lambda layer, 

and the index for iteration is the batch size of each input tensor. This means we need an exact 

integer to indicate how many iterations the loop needs to take. But we cannot get the exact 

number of batch size since the number is dynamically stored. And this makes a confliction. 

Currently we haven’t successfully implemented this model, but there are two 

suggested methods to solve the problem: 

The first is to do data pre-processing before the beginning of two-in-one network. 

Accordingly, 2D model’s input shape is changed. The structure of 2D network need to be 

modified respectively, but the concept of 2D network is still the same. This idea is more 

simple to implement. But 2D network needs to process a lot of duplicated frames and causes 

redundancy. If computing resource permits, this is a good way to try. 

Another way is to avoid the usage of iterations in the lambda layer. Using vectorise 

operations may be a good substitution of for-loop. Keras and tensorflow are matruelly 

developed, it’s good for efficiently build network model, but difficult to do self-modification. 
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Hopefully with the help of MagmaDNN, more function could be provided to implement the 

design. 

As mentioned before, it’s also a good idea to implement 3D network before the 2D 

network (“3D+2D” combined network). It will be easier to do implementation since no data 

repacking process is needed, and no lambda layer is required. 
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Appendix 

Data: 
Movies from real-life scene​: 

https://media.xiph.org/video/derf/ 
We only used sets called “akiyo” and “container” on the website to train our 3D models. 
 
Climate data​: 

Each entries are stored as float32, values between (-10, 10). Before feeding the data into neural network, need to 
renormalize to (0, 1). 
https://bitbucket.org/EDKLW/image-reconstruction-2019/src/master/Video_Stream/H_Field_Nl5.mat 
The processed data stored in an h5 file. 
https://www.dropbox.com/sh/8809q13y36nct2t/AADKbI4XtWDQGO-h_031RGkLa?dl=0 
 

Fine-tuned parameters for 2D model​: 

To implement the concept of transfer learning, we loaded some fine-tuned parameters provided to our network, 
whether as initializer or to be frozen inside our model. 
https://bitbucket.org/EDKLW/image-reconstruction-2019/src/master/papers%20and%20codes/Accelerating%20S
RCNN/ 
https://bitbucket.org/EDKLW/image-reconstruction-2019/src/master/papers%20and%20codes/SRCNN/SRCNN_t
est/model/ 
 
Code: 
main.py 

The basic idea of the code is to make a comparison over different models mentioned above. Train set and test 
set loaded for each model are the same, only the progress to build and train the models are different. 
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/main.py 
 
two_d.py 

The basic model that we referred to as a prototype. It was raised by existing paper. We repeated the structure of 
the model and applied transfer learning to it. 
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/two_d.py 
 
fsrcnn.py 
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https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/main.py
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/two_d.py


 

The model we used for 2D independent image reconstruction. The model used deconvolutional layer to zoom in 
compressed and shrinked images. The model also applied the concept of transfer learning. 
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/fsrcnn.py 
 
code_3d.py 

The model is based on the concept of 3D SRnet. Data processing is needed before input into the 3D 
convolutional layers to run the model. Detailed processing progress is in ​load_data.py​.  
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/code_3d.py 
 
code_3d_processed.py 

Same model used in ​code_3d.py​. The difference is on the dataset for training the network. To be specific on 
climate data, the model is trained on ​fsrcnn.py​ pre-processed images. 
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/code_3d_processed.py 
 
two_d_three_d.py 

No new networks are trained. The code loaded fsrcnn network and 3D SRnet trained before, and made 
concatenated reconstruction. 
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/two_d_three_d.py 
 
two_d_processed_three_d.py 

No new networks are trained. The code loaded fsrcnn network and 3D SRnet trained before. The difference from 
the last one is this 3D model are trained over fsrcnn-network pre-processed results. 
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/two_d_three_d.py 
 
Result: 
Table 5: ​2d_processed_3d_quality_matched.out 
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/results/2d_processed_3d_quality_matched.
out 
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https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/code_3d.py
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/code_3d_processed.py
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/two_d_three_d.py
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/final/two_d_three_d.py
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/results/2d_processed_3d_quality_matched.out
https://bitbucket.org/EDKLW/image-reconstruction-2019-a/src/master/results/2d_processed_3d_quality_matched.out

