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e In the field of digital image processing, High-resolution images or
videos are commonly needed; but in many cases, people could only
obtain low-resolution images.

e Image Super Resolution is a class of techniques that turn a low-
resolution image into a high-resolution one for further analysis and
processing.

e High-resolution images can provide more information for human
interpretation, and improve the quality of automatic machine
processing.



Applications
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Objective and Steps

e Test and compare current deep-learning based super-
resolution (SR) models, including single-image SR models
and video SR models.

e Improve current SR models using the method of transfer
learning.

e Implement our model on Magma DNN



Key Point -- Convolutional Neural Network
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Key Point -- Transfer Learning
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Models

SRCNN model -- for single-image Super-Resolution
Transfer Learning --fine-tuned parameter + self-trained layers
3D SRnet model -- for video Super-Resolution

Transfer Learning --fine-tuned parameter + 3D SRnet



SRCNN model -- for single-image SR
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SRCNN model -- with fine-tuned parameters
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Transfer Learning --fine-tuned parameter + self-trained layers
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SRCNN -- add non-linearity
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Transfer Learning --fine-tuned parameter + non-linearity
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Performance

Raw Data | Self-Trained | SRCNN SRCNN with Self-trained SRCNN with
SRCNN model with transfer- SRCNN with | transfer-
model fine-tuned learning (1+2) | added non- learning (1+3)
parameters model linearity model
PSNR 33.24609 | 33.9774122 | 34.39533863 | 34.568111435 | 31.75340039 | 34.420866851
ﬁzss)k signal-to-noise 81322429 | 589296 298893 612344 322545 485926
9
SSIM 0.912191 | 0.92989156 | 0.931424704 | 0.9339550069 | 0.927639833 | 0.9340359732
i(rfg:;)t“ra' similarity 61971856 | 33331887 3105195 793681 6420119 007651
61
MAE 0.016739 | 0.01597587 | 0.015128582 | 0.0148824250 | 0.021569695 | 0.0152505775
(Mean Absolute Error) 55861304 | 670676589 | 491306834 23144312 539644516 26577434
3767
MSE 0.000931 | 0.00076756 | 0.000720391 | 0.0006896958 | 0.000979942 | 0.0007280809
(Mean Squared Error) 39330134 | 489539201 | 6113815921 805634528 1850334928 | 308989662
29778 49




3D SRnet model -- for video SR
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3D SRnet --for sequential images

Layer (type) Output Shape Param #

conv3d_1 (Conv3D) (None, 5, 64, 64,32) 896 With Padding
conv3d_2 (Conv3D) (None, 5, 64, 64,32) 27680 With Padding
conv3d_3 (Conv3D) (None, 5, 64, 64,32) 27680 With Padding
conv3d_4 (Conv3D) (None, 3, 62, 62,32) 27680 Without Padding
conv3d 5 (Conv3D) (None, 1, 60, 60,32) 27680 Without Padding

reshape 1 (Reshape) (None, 60, 60, 32) 0 Reshape for 2d model

conv2d_1 (Conv2D) (None, 60, 60, 1) 1156 With Padding

Total params: 112,772



Pass the Second Convolutional Layer

Transfer Learning --fine-tuned parameter + 3D SRnet
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Conclusion

Pre-process dataset;

Build and test typical models;

Combine typical models by using transfer
learning.

Implement transfer learning with 3D Model;
Use different dataset;

Fine tune hyper-parameters.

Try MagmaDNN for implementation.
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