MagmaDNN and Ising Physics Simulations with Graph

Convolutional Network

Chan, Kam Fai Nichols, Daniel
kfchan19980gmail.com dnicho22@vols.utk.edu

Keh, Sedrick
sedrickkeh@gmail.com

July 2019

Abstract

Ising model is a model in materials science which simulates the properties of ferro-
magnetic materials by approximating the materials as groups of electric dipoles that
are stacked in certain lattice structures. In our research we investigate the possibility
of using techniques in machine learning, in particular the concept of a Graph Con-
volutional Network (GCN), a concept developed in 2013 that generalizes the concept
of convolutions in general graph structures. Our result shows that despite GCN not
performing as well as usual methods such as CNN with a slower convergence speed, it
has shown its potential for processing problems in materials science with an intrinsic
graph structure.

Contents

1__Introduction|
(1.1 Ising Model|
(1.2 Machine Learning|
(.3 Prior Workl

2 Methodl
[2.1 Graph Convolutional Network{
[2.1.1 Graph Fourier Transforms and Convolutions|
[2.1.2 Graph Convolutional Layers|
2.2 MagmaDNN|.
[2.2.1 Computation and Sparse Linear Algebral
[2.3 Data augmentation|

B_Resultsl

W W NN

U UL OU i i W W

[4 Analysis and Conclusion 6

B Future Workl 7
6 Acknowledgments| 8
[Acknowledgement| 8

1 Introduction

In problems related to materials science, non-Euclidean graph structures are often encoun-
tered. These structures may come from the geometry of how the particles are stacked
together, or the intrinsic difference in particles of various types that creates the irregular-
ity in structure. It is hard to handle such graphs for the generality and the complexity of
the graphs may vary greatly from sample to sample and a universal method would then be
needed.

The Ising model, as a fundamental model in materials science, is closely related to these
structures, for the geometry of the particles in an Ising model is not limited to regular
Fuclidean graphs such as square nets and cubic grids. Hence, it is crucial to start investi-
gating how the information encoded in the structure can be extracted from investigating the
problems related to Ising models.

1.1 Ising Model

Ising model [1] is one of the most fundamental models in materials science. As a model
to simulate ferromagnetism of materials rich in magnetic dipoles, Ising model abstracts the
properties of particles that contribute to the physical properties as discrete variables to
simplify the computation with the definition as follows:

Let V be the set of dipoles in the material and o, € {41, —1} be the spin of the dipole
veV. Let £ CV xV be the set of (undirected) edges in the model that denotes the
neighbourship of the particles that determines the interactions and J. = J;; is the interaction
strength for the edge e = (i,j) € E between particles i,7 € V. Then G = (V, E) forms the
graph that represents the structure of the Ising model where E;; is the (symmetric) weight
matrix of the graph and o is an Ising configuration for the Ising model defined by (G, J). In
usual case where the numbers of neighbours the particles have are all small, G would be a
sparse graph and F would be a sparse matrix.

In materials science, there is a quantity called Hamiltonian that has significant impor-
tance in mechanics. In the above Ising model and without the presence of an external
magnetic field, the Hamiltonian is computed as

H=— Z JijO'Z'O'j
(i,))eE

where E, J, o are defined as above. According to a theory in materials science [I], a specific
Ising configuration occurs in nature with probability related to its Hamiltonian. Several

physical properties of the material, including its heat capacity and magnetic susceptibil-
ity, are related to the expected value of the Hamiltonian with respect to all possible Ising
configurations.

Despite the fact that Ising model originates from materials science, generalizations of
such model are also used in different fields including neuroscience. [2]

1.2 Machine Learning

In our project, we focus on predicting the Hamiltonian with techniques from machine learn-
ing. As the computation of the Hamiltonian depends on the background graph structure, we
consider this to be the perfect example and starting point for solving problems with intrinsic
irregular structure in materials science with machine learning techniques: as far as we are
aware of, there is no efficient algorithm to compute the Hamiltonian for a large number of
configurations despite the importance of computing the Hamiltonian for a large number of
configurations to do simulations. However, with machine learning, it is possible to do batch
prediction and compute the Hamiltonian of thousands of configurations with the trade-off
of losing some accuracy.

To simplify the situation we restrict ourselves to the settings of 8x8 2D planar grids
with a periodic boundary condition and uniform interaction strength. In other words, V =
{0,1,...,7}% and ((i1, j1), (ia, jo)) € Eiff |iy — ia| + |71 — jo| = L or iy = iy € {0, 7}, {j1, 42} =
{0,7} or j; = jo € {0,7}, {i1,i2} = {0,7}. Also, J. = 1 for all e € E. We choose such
setting for the reasons that (1) the sample space is large enough for a neural network to
do prediction, (2) extremal Hamiltonian configurations can be constructed and (3) it allows
using regular CNN for benchmarking.

1.3 Prior Work

There are some previous results on developing algorithms on investigating Ising models on
graphs, including using L1-regularization [3] and the graph convolution method proposed by
Henaff et al.[4]. There are also results on investigating data with intrinsic graph structures,
including documentation classification [5] and predicting graph-value outcome in biology [6].

At the best of our effort, we have yet to find research focusing on estimating Hamiltonian
on graph Ising model, especially with machine learning. We believe the reason behind this is
that in most cases where the number of configurations in interest is not large enough that the
straightforward method is already sufficient to give a satisfying performance. However, as
the size of data needed to be investigated increases along with the development of materials
science, we believe further research in our topic is necessary.

2 Method

2.1 Graph Convolutional Network

One of the most significant developments made in the field of machine learning is the de-
velopment of convolutional layers which are able to extract features from small local regions

and enable the advanced development of different branches such as computer vision. As the
computation of Hamiltonian also requires extracting features of local regions, it is natural to
do convolutions on general graphs. However, as the number of neighbours and their locations
of a particle may vary greatly across the model, the filter used in convolutional layers can no
longer be defined in the same way. It is then natural to use the Graph Convolution Network
(GCN), a concept developed to capture the local properties of a graph.

2.1.1 Graph Fourier Transforms and Convolutions

The mathematical definition of convolution on graphs is developed by Shuman et al. [7].
The idea of this is to use a Fourier transformation to convert the signal on the graph to the
spectral domain and do the convolution there. After transforming the signal back to the
spatial domain, a convoluted signal would be obtained.

Signal Convoluted signal
Intensity ¢[’ransform Intensity Inverse
- Transform
C nnwalutmn ‘
| ‘ | | I | 10
Frequency Frequency

Figure 1: Schematic illustration of how graph convolution is computed

In their paper, Shuman et al. generalized the concept of convolution using the graph
Laplacian, a matrix that represents the intrinsic relations between vertices [7]. For a simple
undirected graph with negative edge weights G = (V, E) with adjacency matrix A, the
graph Laplacian is defined as L = A — D where D;; = . A;; is the (diagonal) degree
matrix. A signal on the graph f € R can be transformed as f = UT f and f = Uf where
L=UAU" is a eigendecomposition of the graph Laplacian with U being orthogonal. Using
the normalized graph Laplacian L = D 2LD~Y/2 rather than the original graph Laplacian
is also suggested.

2.1.2 Graph Convolutional Layers

In the original idea that Shuman et al. developed [7], in order to do graph convolution it
is required to first do eigendecomposition on the graph Laplacian, which could potentially
be a massive matrix and be time-consuming. Hence we adopted the graph convolution layer
developed by Kipf and Welling[8] for its simplicity and efficiency.

The layer developed by Kipf and Welling is formulated as following [8]: with the input
sample being X, the output of the layer is

Y =LXW

where

Lij = (1+) Aw) P(14+ > Ap) " P(A+ 1)y
k k

is the normalized graph Laplacian for the augmented graph where a self-loop of unit weight
is added to each vertex and W is weight matrix representing the filter spectrum used for
different channels.

One advantage of using this layer is that only 2 matrix multiplications, one of which
is sparse-dense matrix multiplication, are needed for forward-propagation rather than doing
eigendecomposition. Moreover, the new graph Laplacian can be precomputed efficiently with
techniques such as parallelism. In later parts of this article, we would refer to this layer as
the KW layer.

2.2 MagmaDNN

MagmaDNN [9] is an open source neural network framework in C++ which has excellent per-
formance when compared to other mainstream frameworks including Tensorflow and Theano
[10]. For its flexibility and extensibility, it is easy to have an efficient implementation of the
graph convolution layer required. For these reasons, we choose to use MagmaDNN for im-
plementing the models.

2.2.1 Computation and Sparse Linear Algebra

In most cases, the graph would be a sparse graph with high sparsity as particles usually only
interact with particles within a short Euclidean distance. In this case the workload in the
aforementioned layer can be reduced using routines about sparse-dense matrices multipli-
cation especially when the order of the graph is too large for machine memory to hold the
uncompressed graph Laplacian or when the sparsity is near 1. However when the library
used lacks batch sparse-dense multiplication routine, using sparse matrix multiplication may
damage the performance as multiplication may then be evaluated sample-by-sample. In our
implementation, the graph Laplacian used in the layer is passed as a dense matrix rather than
as a sparse matrix despite the sparsity is 1 — 4'(?2‘;54 = 92.19% to utilize the gemmStrided-
Batched routine in cuBLAS due to the lack of appropriate strided and batched sparse-dense
multiplication routine in cuBLAS[II] and Magmal[l2].

2.3 Data augmentation

To train a model, it is necessary to first obtain a sufficient amount of training data. As
configurations with Hamiltonian around 0 are the most common ones in number, special
methods are required to generate the data for otherwise the model would naturally bias
towards predicting near-zero values. Hence we used the Wang-Landau algorithm[13] to gen-
erate the data. However, despite the algorithm can generate configurations with less common

Hamiltonian values, it is still unable to generate configurations with extremal Hamiltonian
as there are fewer than 100 configurations for each of such values out of around 25 ~ 2 x 10%?
possible configurations.

To ensure there are enough samples for each possible Hamiltonian value, techniques in
data augmentation are applied. Due to the intrinsic symmetry in our setting, configurations
can be flipped, rotated and negated (i.e. swapping +1 and -1) while having the Hamiltonian
unchanged. Moreover, it is easy to compute the new Hamiltonian from the original one if
the configuration is slightly perturbed. With these techniques, we have generated 2079000
samples with similar proportion for each of the possible Hamiltonian value among which
176400 samples are used as the training dataset.

3 Results

We have trained a GCN model along with a CNN model for benchmarking on XSEDE
Bridges on an NVIDIA Tesla P100 GPU. The structures of the models are shown in the
graph.

l

Convolution, B channels

CNN: 4x4, periodic paddings Flatten Dense, 32 Dense,32 Dense,1 Output
GCN: Kipf & Welling

Input

Figure 2: Structures of the models

To help the CNN capture the periodic boundary condition, periodic boundary padding
is added to the data before feeding into the CNN model.

We have trained the models with 30 epochs, batch size 6300 and learning rate 0.2 and
obtained the result as shown in the table:

Train Test
MAE | RMSE | MAE | RMSE

CNN || 2.50 3.37 2.51 3.38
GCN || 5.17 7.08 5.18 7.09

Table 1: Outcomes of the models. MAE stands for mean absolute error, RMSE stands for
Root-mean-squared error

4 Analysis and Conclusion

One can notice that the loss for the GCN model drops rapidly only at the beginning but
for the CNN model the initial rapid drop continues until the fourth epoch. We believe this

6

loss vs time

—— CNN
70 GCN
60
50 A
m
< 40
&
o
~ 304
20 4
0 - T T T T T T T
0 5 10 15 20 25 30

epoch

Figure 3: Evolution of the models

difference comes from the structural difference between the usual convolution layer and the
KW layer. Our choice of learning rate (0.2) may also affect the situation.

It is also worth noticing that the GCN model converges slower than the CNN in later
epochs. We believe that this is due to the fact that in usual convolutional layers a large
part of the information of the filter, including the effective size of the filter, is defined as
hyperparameters and only the weight is learned, while in graph convolution the whole filter
is learned as a signal spectrum, hence increasing the amount of information that must to be
learned by the model and slowing down the convergence speed.

However, with the ability to process general graphs with only some loss in convergence
speed, we are convinced that GCN is a good substitute for CNN in problems related to
materials science with non-Euclidean structure.

5 Future Work

As a starting point of using graph convolution techniques on materials science related prob-
lems, we have only used the KW layer [8] despite the existence of other schemes of GCN
layer [14]. It would be interesting to compare the KW layer with different GCN layers.

It is also worth noticing that in usual convolutional layers samples are naturally down-
graded while in graph convolution layers only the signal strength is modified. It is then
necessary to apply pooling on the graph signal which requires graph clustering. Several
methods exist [I4] and may help in boosting the performance of the GCN layers.

At the moment there is no native routine in MagmaDNN that can satisfy our need in
implementing the layer with batched sparse-dense matrix multiplication with strides. We
expect to see a performance boost with such routine.

6 Acknowledgments

Research was done with support from the National Science Foundation, Oak Ridge National
Laboratory, Joint Institute of Computational Sciences, University of Tennessee, Knoxville,
the Chinese University of Hong Kong, and Hong Kong University of Science and Technology.
This work would not be possible without assistance and mentorship provided by supervisors
Dr. Kwai Wong, Dr. Stanimire Tomov, Dr. Ying Wai Li, Dr. Markus Eisenbach, Dr.
Massimiliano Lupo Pasini, and Dr. Junqgi Yin.

References

[1] M. Loebl. Some discrete tools in statistical physics. Physics and Theoretical Computer
Science, pages 317-332, 2006.

[2] R. Segev W. Bialek E. Schneidman, M. J. Berry II. Weak pairwise correlations im-
ply strongly correlated network states in a neural population. arXiv:q-bio/0512013
[q-bio.NC], 2005. arXiv:q-bio/0512013.

[3] G. Bresler. Efficiently learning ising models on arbitrary graphs. In STOC ’15 Pro-
ceedings of the forty-seventh annual ACM symposium on Theory of Computing, pages
771-782, Portland, Oregon, USA, June 14-17 2015. ACM New York, NY, USA.

[4] Y. LeCun M. Henaff, J. Bruna. Deep convolutional networks on graph-structured data.
arXiv:1506.05163 [cs. LG, 2015. arXiv:1506.05163.

[5] K. Cho M. Chen, Z. Lin. Graph convolutional networks for classification with a struc-
tured label space. arXiv:1710.04908 [cs., 2017. arXiv:1710.04908.

[6] Vladimir Golkov, Marcin J Skwark, Antonij Golkov, Alexey Dosovitskiy, Thomas
Brox, Jens Meiler, and Daniel Cremers. Protein contact prediction from amino acid
co-evolution using convolutional networks for graph-valued images. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 29, pages 4222-4230. Curran Associates, Inc., 2016.

[7] P. Frossard A. Ortega P. Vandergheynst D. I Shuman, S. K. Narang. The emerging field
of signal processing on graphs: Extending high-dimensional data analysis to networks
and other irregular domains. arXiw:1211.0053 [cs.DM], 2012. arXiv:1211.0053.

[8] M. Welling Th. N. Kipf. Semi-supervised classification with graph convolutional net-
works. arXiv:1609.02907 [cs.LGJ, 2016. arXiv:1609.02907.

[9] Magmadnn site, 2019. https://bitbucket.org/icl/magmadnn.

[10] N-S. Tomov F. Betancourt S. Tomov K. Wong Nichols, D. and J. Dongarra. Magmadnn:
Towards high-performance data analytics and machine learning for data-driven scientific
computing. Frankfurt, Germany, June 2019. Springer International Publishing.

https://bitbucket.org/icl/magmadnn

[11] Api reference guide for cublas, 2019. https://docs.nvidia.com/cuda/cublas/index.
html.

[12] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear algebra for
hybrid GPU accelerated manycore systems. Parallel Computing, 36(5-6):232-240, June
2010.

[13] D. P. Landau Fugao Wang. An efficient, multiple range random walk algorithm to
calculate the density of states. arXiv:cond-mat/001117 [cond-mat.stat-mech], 2000.
arXiv:cond-mat,/0011174.

[14] Pytorch geometric documentation, 2019. https://pytorch-geometric.readthedocs.
10.

https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://pytorch-geometric.readthedocs.io
https://pytorch-geometric.readthedocs.io

	Introduction
	Ising Model
	Machine Learning
	Prior Work

	Method
	Graph Convolutional Network
	Graph Fourier Transforms and Convolutions
	Graph Convolutional Layers

	MagmaDNN
	Computation and Sparse Linear Algebra

	Data augmentation

	Results
	Analysis and Conclusion
	Future Work
	Acknowledgments
	Acknowledgement

