Neural Network
Hyperparameter Optimization

Chris Ouyang (CUHK Mathematics) Daniel McBride (UTK Mathematics)

2019 JICS RECSEM REU. In collaboration with Kwai Wong (JICS), Stan Tomov (ICL), and Junqi Yin (ORNL)



Presentation OQutline
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e Population Based Training with MagmaDNN



Introduction

e Whatis a hyperparameter?

They are neural network “presets” like
network architecture, learning rate, batch
size, and more.

e Why do we need to optimize the
hyperparameters?

A poor choice of hyperparameters can
cause a network’s accuracy to converge
slowly or not at all.

Hyperparameter
tuning

O

O Best hyperparameters

Model training

O Madel parameters



Introduction

e What are some obstacles to optimizing hyperparameters?
o The Curse of Dimensionality
o Highly irregular (nonconvex, nondifferentiable) search spaces

e What are some standard hyperparameter optimization techniques?
o Classic Approaches: Grid Search, Random Search
o Modern Approaches: Early Stopping, Evolutionary Algorithms



An Early Stopping Algorithm

Based on Learning Curve Matching



Hyperparameter Algorithms
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LCM Algorithm: Flow Chart and Terms
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LCM Algorithm: Accumulation Stage

Learning Curve with performance
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LCM Algorithm: Checking Stage
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LCM Algorithm: Pseudocode

Algorithm 1 Learning Curve Matching Algorithm
1: Input: number of configurations n, early-stopping rate s, split rate r, set of checkpoints C, set of accumulating

Key Steps:

points A and distance metric d

(3]

. Initialization: 7 = hyperparameter_configuration_generator(n), performance list Z =

Step 5: Check Trigger for

empty list [ ], learning curve list X = empty list [ ]

3: for configuration # € T" do

aCtiVating ChCCprints 4: learning curve v = empty list [ ]
5: check trigger = [length(Z) > n *r]
Step 6: Starting Training 6 while training do
7: training progress p = get_training progress(f)
. 8: if p € A then
Step 8-9: Accumulation o
9: append[y, get_training_performance(f)]
10: if p € C and check trigger then

Step 10-11: Checking

11: stop_training_trigger = check(Y,7,d, s)
12: append[X, 7]
13: append[Z, get_final performance(f)]

14: Output: the best performance max(Z)
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LCM Algorithm: Checking Stage

Distance Function F
(suchas L1, L2, L)

Learning Curve
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B |

Data Set:
[L11,L12,L13, .., L1k],
[L21, 122,123, ..., L2K],
[L31,L32, L33, ..., L3k],
[L41, L42, L43, ..., L4k],

[LmIl, Lm2, Lm3, ..., Lmk]

® Distance 3,
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v

Predicted Performance:
Performance j

The rank of it: rank j

The rank percentage:
Percentage j

4

The nearest neighbor j := argmin(Distance list)
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If Per_j > keep_rate:
Stop training;
Otherwise, continue
training.




LCM Algorithm: Pseudocode

Y: Dataset; gamma: Learning Curve; d: Distance Metric; s: Early-stopping Rate

Algorithm 2 The Function: check
I: function caecx(Y, v, d, s)

2: Y = fit(X,length(v)) > keep the first length(+y) elements of every previous learning curve for
comparison
3: D = get_distances (Y,7,d) ©compute the distances between v and every fitted learning curve in

Y based on the metric d

4: the most similar trial © = argmax(D) > find the most similar trial 7

L

predicted performance g = Z|i]
6: rank percentage ¢ = get_rank_percentage(Z,g)

7 Return: (g > s)
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LCM Algorithm: MNIST Group

Network: Only one dense layer

Dataset: MNIST

Optimizer: Stochastic gradient descent

Benchmark: Random search

Hyperparameter List

Hyperparameter Name

Data Type

Range

Learning Rate
Momentum
Decay

Batch Size

Epochs

Float Number
Float Number
Float Number

Integer

Integer

[0, 1]

[0, 1]

[0, 0.5]

{32, 64,96, 144, 192, 288, 376, 512}
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LCM Algorithm: MNIST Group

e (iven a fixed number of trials, we compared two algorithms’ computing time
and best performances. The same experiments are repeated 9 times.

Name Trials Computing Time (S) | Best Performance (%)
LCM 100 778.50 97.10
Random 100 3657.75 97.41

Remark: In 5 of 9 experiments, these two algorithms got the same optimal
hyperparameters.
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LCM Algorithm: MNIST Group

e (iven fixed computing time, we compared two algorithms’ best performances.
The same experiments are repeated 5 times.

Computing time (s) 100 200 400 800 1600
LCM 96.274 96.996 97.01 97.082 97.22
Random 95.562 96.24 96.346 96.294 95.44
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LCM Algorithm: MNIST Group

—— Averages

Accuracy Results
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LCM Algorithm: CIFAR10 Group

Hyperparameter List

Hyperparameter Name Data Type Range

Learning Rate Float Number [0.001, 0.01]

Beta_l Float Number [0.85, 0.95]

Beta 2 Float Number [0.985, 0.995]

epsilon Float Number {1e-07, 1e-06, 1e-08, 5e-07, 5e-06}
Batch Size Integer {32, 64, 96, 144, 192, 288, 376, 512}
Epochs Integer {10, 15, 20, 25, 30, 35, 40}

Kernel Size of 1st CNN Integer {2,3,4,5}

Strides of 1st CNN Integer {1.2}

Dropout After 1st CNN Float Number {0.1,0.2,0.3, 0.4, 0.5}

Kernel Size of 2nd CNN Integer {2.3.4,5}

Strides of 2nd CNN Integer {1.2}

Dropout After 2nd CNN Float Number {0.1,0.2,0.3, 0.4, 0.5}

Kernel Size of 3rd CNN Integer {2.3.4}

Strides of 3rd CNN Integer {12}

Kernel Size of 4th CNN Integer {2.3., 4}

Strides of 4th CNN Integer {1.2}

Number of Dense Layers | Integer {1,2.3}

After CNN

Dropout After Dense Float Number {0.1,0.2,0.3,0.4, 0.5}

e Network: Four CNN layers and
several dense layers

e Dataset: CIFARIO

e Optimizer: Adam

e Benchmark: Random search
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LCM Algorithm: CIFAR10 Group

e (iven a fixed number of trials, we compared two algorithms’ computing time
and best performances. The same experiments are repeated 12 times.

Name Trials Computer Time (S) Best Performance (%)
LCM 100 8069.08 67.05
Random 100 26498.00 67.26

Remark: in 7 of 12 experiments, two algorithms got the same optimal
hyperparameters.
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LCM Algorithm: CIFAR10 Group

e (iven fixed computing time, we compared two algorithms’ best performances.

The same experiments are repeated 5 times.

Computing time (s) 1000 2000 4000 8000
LCM pp-23 65.06 65.07 67.74
Random 57.96 61.86 62.72 66.88
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LCM Algorithm: CIFAR10 Group

Accuracy (%)
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LCM Algorithm: Further Discussion

Algorithm 3 Asynchronous Learning Curve Matching

1: Input: number of configurations n. early-stopping rate s. split rate r, set of checkpoints C, set of accumulating
points A and distance metric d

o Neutral Network DeSign 2: Initialization: 7 = hyperparameter_configuration._generator(n), performancelist Z =
empty list [ ], learning curve list X = empty list [ |

3: while free worker do

] Parallel Programming 4: 0 = get_new_one(T) > Return a new configuration for training.

5: check trigger = get _check_trigger()

6: for every check point p € C' do

[ ) New Comblnatlons 7: learning curve v = update_1c(f,p)  © Update the learning curve until meeting the checkpoint p.

8: send_to_supervisor(y)
9: stop_training_trigger = receive_from_supervisor()
‘Ul :
® traparameters 10: z = get_final_performance(f)
11: send_to_supervisor(y, z)

12: for supervisor worker do

13: for v = receive_from worker() do

14: trigger = = check(Y,v,d, s) > This function refers to Algorithm 2.
15: send_to_worker(trigger)

16: for 7,z = receive_fromworker() do

17: X,Z = update(X, Z,7, z)

18: check trigger = [length(Z) > n x|
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LCM Algorithm: Other Work
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Population Based Training

with MagmaDNN



PB T : B aCkground Particle Swarm Optimization
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e Whatis Population Based Training
(PBT)?

115

PBT is an evolutionary hyperparameter {10

optimization algorithm.

e Evolutionary optimization algorithm:
use natural models to inspire a particular approach

to traversing a search space to find the minimum o

an objective function. One classic case is the

Particle Swarm Optimization algorithm, inspired br
the swarming behavior of bees. wikimedia
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PBT: Background

e What are the benefits of PBT?

PBT outperforms the standard hyperparameter tuning benchmarks. These benchmark
algorithms, Grid Search and Random Search, each have their own limitations,
which PBT overcomes.

e Why should we implement it on MagmaDNN?
o MagmaDNN is engineered for high performance computing on large distributed
systems.
o The current standard implementation (Ray-Tune: shared memory model) has a
scalability bottleneck.

Population Based Training with MagmaDNN



PBT: Algorithm

How does the PBT Algorithm work?

Population Model
Stochasticity
Exploit / Explore
Early Stopping
Evolution

Adaptive Hyperparameter
Scheduling

Population Based Training with MagmaDNN



PBT: Algorithm

How does the PBT Algorithm work?

Population Model
Stochasticity
Exploit / Explore
Early Stopping
Evolution

Adaptive Hyperparameter
Scheduling

Step 1

Initialize Networks
Random Weights
Random Hyperparameters

Population Based Training with MagmaDNN



PBT: Algorithm

How does the PBT Algorithm work?

Population Model
Stochasticity
Exploit / Explore
Early Stopping
Evolution

Adaptive Hyperparameter
Scheduling

Step 2

Training Period
Networks optimize weights

in the usual way
(SGD, ADAM, etc.)

Population Based Training with MagmaDNN



PBT: Algorithm

How does the PBT Algorithm work?

Population Model
Stochasticity
Exploit / Explore
Early Stopping
Evolution

Adaptive Hyperparameter
Scheduling

Step 3

Rank Fitness

accuracy, loss or other measure
determines most and least fit

Population Based Training with MagmaDNN



PBT: Algorithm

How does the PBT Algorithm work?

Population Model
Stochasticity
Exploit / Explore
Early Stopping
Evolution

Adaptive Hyperparameter
Scheduling

Step 4

Exploit
Copy the weights and
hyperparameters from the
most fit to the least

Population Based Training with MagmaDNN



PBT: Algorithm

How does the PBT Algorithm work?

Population Model
Stochasticity
Exploit / Explore
Early Stopping
Evolution

Adaptive Hyperparameter
Scheduling

Step 5

Explore
Perturb the updated
hyperparameters

Population Based Training with MagmaDNN



PBT: Algorithm

How does the PBT Algorithm work?

Population Model
Stochasticity
Exploit / Explore
Early Stopping
Evolution

Adaptive Hyperparameter
Scheduling

Repeat

Train -> Exploit -> Explore
process until desired convergence

Population Based Training with MagmaDNN



PBT: Algorithm

How does the PBT Algorithm work?

Population Model
Stochasticity
Exploit / Explore
Early Stopping
Evolution

Adaptive Hyperparameter
Scheduling

End Result: Optimized networks with optimized hyperparameter schedules

Population Based Training with MagmaDNN



PBT: Algorithm

How does the PBT Algorithm work?

GAN population development FuN population development

[& 30 S10qoper

N I
42 45 48 51 54 57 60 63 66 1000 2000 3000 4000 5000 6000 7000 8000 9000
Inception Score Cumulative Expected Reward
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PBT: Algorithm

Does PBT’s functionality improve on the benchmark algorithms?

Grid Search Random Search PBT

Parallelizability V V V

Stochasticity X V V

Early Stopping X X V
Adaptive

Hyperparameters X X V

Population Based Training with MagmaDNN



PBT: Analysis - Learning Rate Optimization

e Data: MNIST

o 60k images of handwritten digits 0-9
o 256 greyscale pixels per image
o 10 categories (0-9)

e Network Backend: MagmaDNN
o Network Structure: In -> FCB -> Sig -> FCB -> Sig -> FCB -> Qut
©  Weight Optimizer: Stochastic Gradient Descent
©  Number of Epochs =5
o Batch Size = 32

e Communication Backend: MPI

*FCB := Fully
Connected

Layer with Bias
*Sig = Sigmoid Population Based Training with MagmaDNN



Learning Rate

Accuracy

PBT: Analysis - Learning Rate Optimization
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PBT: Analysis - Learning Rate Optimization
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PBT: Analysis - Learning Rate Optimization

-2

-4

Leamning Rate

10%y

110

Learning Rate Decay Ratio

y=

Trial 2 Specifications

MNIST 60k MagmaDNN: Population Based Training - HYPERPARAMETER OPTIMIZATION

Trial 2 Trial 2
Worker Final

. \ VA, ccurac
Trrbeey “‘""""‘"ﬂ b L XXX KO PO YY) "l l ) S
..’ '"“.'. -!-!.‘l.' A A ‘ 1 0.957

i — ~
i "M"‘ ------- . B
Ul

3 0.9419

10 Workers 4 0.9155

Thick Lines: Upper Quartile

Bold Line: Fittest Worker 5 0.9151
() 09112

— ' 09161

¢ N\ ANV \ ) |
VAV l'= /AL r!r"“"\';» n.r-??:"'“‘rm’“iﬂin\v E’\Wﬂfiﬁ -
AP MYARV A - S| 09146
00| 09114
o 2000 4000 6000 8000
LR Sampling Distribution Uniform Random between .0001 and .2

LR Decay Ratio Sampling Distribution

Uniform Random between .98 and 1.01

LR Decay Pace

Every 20 iterations

Evolution Pace

Every 120 iterations

LR Perturbation Distribution

No perturbation

LR Decay Ratio Perturbation Distribution

Uniform Random between 90% and 110%

Population Based Training with MagmaDNN




Conclusions Future Work

e Dynamic and adaptive learning rate e Program more custom MagmaDNN
optimization, such as that deployed in classes to explore the tuning of
our MagmaDNN PBT implementation, Convolutional Neural Network
improves the convergence of neural hyperparameters.
networks. e Implement LCM using the

e Early stopping hyperparameter tuning MagmaDNN framework.

algorithms, such as LCM, can compete e Complete an implementation of
with standard benchmarks like Random MagmaDNN PBT utilizing

Search. OpenDIEL’s distributed workflow
system.



Thanks for listening!
-The Hyperparameter Team
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