

GUI Development in openDIEL

Omar Tafiti(Morehouse College), Yan Lam, Neptune Wong(City
University of Hong Kong), Rocco Febbo(UTK)

Mentor: Dr. Kwai Wong

Table of Contents

1

1) Introduction
 1.1 Research Goal 2

1.2 OpenDIEL
1.2.1 What is openDIEL? 2
1.2.2 How to use openDIEL? 2
1.2.3 Problem with openDIEL 2

2) Method

2.1 GUI
 2.1.1 Use of the GUI 3
 2.1.2 What is a GUI? 3
 2.1.3 How to create GUI? 3
 2.1.4 Functionality of GUI 4
 2.1.5 Problems with current GUI (Tkinter) 6

 2.2 Kivy
 2.2.1 What is Kivy? 6
 2.2.2 Why Kivy? 6
 2.2.3 How to install Kivy? 6
 2.2.4 How does Kivy works? 7
3) Result
 3.1 How we use Kivy? 10

4) Conclusion 15

1) Introduction

1.1) Research Goal

2

The goal of the GUI development in openDIEL research project is to develop a fully
functional GUI to help create openDIEL modules and run projects using openDIEL.

1.2) openDIEL

1.2.1) What is openDIEL?
The open Distributive Interoperable Executive Library (openDIEL) is a parallel
workflow framework. The openDIEL's general purpose at the moment is to run
multiple loosely-coupled software together in parallel while providing a useful
library of communications functions for data transfer between software. By
providing a workflow engine with multiple options which are covered in detail
by the examples in the APPLICATIONS directory, the openDIEL allows the
user to control the way in which software is run. To run in the openDIEL, the
software must be converted to openDIEL "modules," which entails some slight
changes to source code (done by the included modMaker script), compiling as
a library, and linking at runtime.

1.2.2) How to use openDIEL?

There are a number of steps that the user needs to take to use openDIEL.
1. Create a driver program in C
2. Create a makefile
3. Create modules to be ran
4. Create workflow.cfg file
5. Execute mpirun (calculate number of processes)

OpenDIEL’s main component in this entire process is the configuration file.
The configuration file has two main sections; The module section and workflow
section. The user defines the function modules and schedules its workflow in an
input file. The user would then need to determine the number of processes to
run the modules. The number of processes can be determined by examining the
size of each module and the workflow section. For each workflow group it is
the number of processes plus the size of the largest module in each order. Once
the number of processes have been determined, the modules are now ready to
be ran. These are the steps it takes to run modules using openDIEL. This process
can also vary depending on the type of modules the user would like to run. There
are some different steps to take for automatic vs managed modules.

1.2.3) Problem with openDIEL

These steps can be extremely tedious. Running modules using openDIEL is not
user friendly.

2) Method

2.1) GUI

2.1.1) What is a GUI

3

A GUI is a Graphical User Interface. A graphical user interface is primarily used to
help with computer operations by providing visual indicators. Buttons and drop down
menus are much easier to navigate through compared to the terminal. Even the file
manager system on all operating systems is an example of a GUI.

2.1.2) Use of the GUI
The GUI will be used in place of running commands inside the terminal. The
GUI will help the user create modules and workflow as well as calculate the
number of mpi processes.

2.1.3) How to create GUI

To create the GUI, a python GUI programming toolkit called Tkinter was used.
Tkinter is included with python and the most commonly used python GUI
programming toolkit. Tkinter is easy to learn and extremely accessible. Tkinter
is also cross platform and very stable. However, the user must be familiar with
python to utilize Tkinter. Tkinter is based around widgets and object oriented
programming. Each widget is inherited from the widget class. Here is an
example of widgets in Tkinter.

4

The user could use the entry box widgets to enter information and then proceed
to save the information. In similar fashion, different widgets were used to help
create module, workflow, and configuration files for the openDIEL GUI.

2.1.4) Functionality of GUI
Step one in using the GUI is to create modules or load existing modules to be
ran. Within the modules there a number of different attributes that the user
must enter.

5

They will then proceed to the workflow section and add their created modules
to groups. Once the user is done creating their groups they can add different
dependencies as well as number of iterations.

Once the modules and workflow section has been created the user can save their
work and use the button widget to create the configuration file.

6

After all these steps their modules are ready to be run. The user can launch their
job and that is the end to the process. The mpirun command will be called and
the number of mpi processes will be determined behind the scenes. This process
using buttons and entry widgets makes creating jobs for openDIEL extremely
simple.

2.1.5) Problems with current GUI (Tkinter)
However, Tkinter is not the perfect solution. Stylistically, Tkinter is not the most
visually appealing and laying out widgets in an attractive manner can prove to
be difficult. However, there was a solution to that problem.

2.2) Kivy

2.2.1) What is Kivy?
Kivy is an open source Python framework for rapid development of applications
that make use of innovative user interface. Kivy can work across different kinds
of platform such as Android, IOS, IpadOS, Windows, Linux, MacOS. Since its
graphics engine is built over OpenGL ES 2, which uses a modern and fast
graphics pipeline, it is GPU accelerated.

2.2.2) Why Kivy?

Kivy makes laying out widgets simple because it has its own design language.
It also fits with mobile app development without needing to modify code.
Moreover, kivy’s toolkit comes with more than 20 widgets. All of them are
highly extensible. Most of them are written in C using Cython and tested with
a regression test.

2.2.3) How to install Kivy?

There are many ways to install Kivy. However, anaconda 3 is the recommended
way. To begin with, install anaconda 3 from their website.
https://www.anaconda.com/distribution/. There are two ways to install
anaconda 3, one of them is through the command line and the other way is
through the application. Both of them work fine, but installing through the
command line is recommended.

After installing anaconda 3, there is a certain version of python that must be
installed on the computer. Open the terminal and type “python —version”. If
the python version is 3.7 it means anaconda 3 was installed successfully.

Furthermore, in the command line type “conda install -c conda-forge kivy”. It
takes some time to fully install it. Then, enjoy your time with kivy.

2.2.4) How KIVY works?

In order to use Kivy, users need to become familiar with python. Then the user
must learn how to use the kivy language. Kivy can also automatically format

7

widgets that are suitable for all platforms. However, Kivy needs a special
language to define the layout which allows logic to be kept separate from the
presentation. It is called the kv language. Kv language allows users to create
widget trees in a declarative way. It binds widget properties to each other or to
call back in a natural manner. Kv language is a language used to give the syntax
of the kivy program a better view by representing all the elements in the
program like classes, the other classes it is inheriting, widgets, and their
properties and configurations. It is much more clear and understandable which
means using the kv language makes your code much more clear and organized.
However, it is not always used (if the program is of very few lines) but it is a
good approach to understand how things work in kivy.

TabbedPanelItem:
 text: 'Module Specification'
 BoxLayout:
 orientation: 'horizontal'
 BoxLayout:
 orientation: 'vertical'
 Label:
 text: 'New Module'
 BoxLayout:
 orientation: 'horizontal'
 Label:
 text: 'Module Type'
 canvas.before:
 Color:
 rgba: 43/255, 101/255, 236/255, .5
 Rectangle:
 pos: self.pos
 size: self.size
 ToggleButton:
 id: manage
 text: 'Managed'
 group: 'Module_Type'
 background_normal: ''
 background_color: 43/255,101/255 , 236/255, .5
 ToggleButton:
 id: autom
 text: 'Automatic'
 group: 'Module_Type'
 background_normal: ''
 background_color: 43/255,101/255 , 236/255, .5
 BoxLayout:
 orientation: 'horizontal'
 Label:
 id: 'libtype'
 text: 'Library Type'
 canvas.before:
 Color:
 rgba: 43/255, 101/255, 236/255, 1
 Rectangle:
 pos: self.pos
 size: self.size
 ToggleButton:
 id: stat
 text: 'Static'
 group: 'Library_Type'
 background_normal: ''
 background_color: 43/255,101/255 , 236/255, 1
 ToggleButton:
 id: dyn
 text: 'Dynamic'

8

 group: 'Library_Type'
 background_normal: ''
 background_color: 43/255,101/255 , 236/255, 1
 BoxLayout:
 orientation: 'horizontal'
 Label:
 text: 'Module Name'
 canvas.before:
 Color:
 rgba: 43/255, 101/255, 236/255, .5
 Rectangle:
 pos: self.pos
 size: self.size
 TextInput:
 id: func
 #text: ('<None>' if (not app.fc_filename or not root.show_details) else str(pathlib.Path(app.fc_filename).parent)) #path of doc
 BoxLayout:
 orientation: 'horizontal'
 Label:
 text: 'Path to Library'
 canvas.before:
 Color:
 rgba: 43/255, 101/255, 236/255, 1
 Rectangle:
 pos: self.pos
 size: self.size
 TextInput:
 id : library
 #text: ('<None>' if (not app.fc_filename or not root.show_details) else str(pathlib.Path(app.fc_filename).parent)) #path of doc
 Button:
 text: 'Browse...'
 on_release: app.BrowsePath(check=0)
 background_normal: ''
 background_color: 43/255,101/255 , 236/255, .5

 .
 .
 .
 .
 Button:
 text: 'Save Module'
 on_release: app.moudletab.save_module()
 background_normal: ''
 background_color: 43/255,101/255 , 236/255, 1
 Button:
 text: 'Save as Module File'
 on_release: app.moudletab.save_module()
 on_release: app.saveMF()
 background_normal: ''
 background_color: 43/255,101/255 , 236/255, .5
 BoxLayout:
 orientation: 'vertical'
 Label:
 text: 'Saved Modules'
 canvas.before:
 Color:
 rgba: 43/255, 101/255, 236/255, .5
 Rectangle:
 pos: self.pos
 size: self.size
 size_hint_y: .067
 ScrollView:
 size_hint_x: 1
 size_hint_y: 1
 canvas.before:

9

 Color:
 rgba: 43/255, 101/255, 236/255, 1
 Rectangle:
 pos: self.pos
 size: self.size

 GridLayout:
 do_scroll_x: False
 do_scroll_y: True
 id:container
 spacing:1.5
 cols: 1
 height: 3000
 size_hint_y:None
 Button:
 text: 'Load Existing Modules'
 size_hint_y: .0625
 background_normal: ''
 background_color: 43/255,101/255 , 236/255, .5
 on_release:
 root.show_details = False
 #hide1.visible = True
 app.BrowsePath(check=2)

The above figures show the kivy code of the “module tab”. From the figure, it is shown
that the page is divided into two parts. The left consists of several columns that show
different kinds of details and data of the module. There are text input boxes, labels for
the heading, buttons for browse and saving the changes of the module. On the right
side, it will list all the modules of the configuration file after clicking the “ Load
Existing Module” button
.

3) Result

3.1) How we use Kivy?

The application has seven tabs which consist of many different applications. First, the
“Welcome” tab, which is also the first tab the user sees once they run the application.
In this tab, it will briefly described how the application works and how to use it.

10

The second tab is the “Module” tab. In the module tab, new modules are created or old
modules can be loaded. Before creating the module, users need to choose the library
and module type. After, the user must enter the input arguments, size and split directory
and of course the module name. After inserting the above data, save the module using
the save module button. The saved modules will appear on the right side of the
application which is under the “saved modules” section. If you choose “Automatic”
mode, you can not define the name of the module that you created. In the “Managed”
mode, users can define module name and library type, also you can decide the path.
After loading the modules, users can make changes on it as well.

11

The third tab is the “Workflow” tab and defines the order that the groups run in. The
number of iterations must be at least 1 and the user can set dependencies for groups.
Save the groups and the configuration file can now be created. You can also load
workflow from your own configuration file by clicking the “Load Workflow from File”
button.

12

In the sixth tab, properly named the “Save” tab, the configuration file is created using
the data in the previous tab and saved in the current directory.

13

Finally, users can go to the “Launch” tab and launch their openDIEL job. First, a driver
needs to be chosen by clicking the “Change Driver Path”. Users can also use the
dynamic one. The users need to choose the output directory location; the default
directory will be the current directory. The user can now launch their job by clicking

14

the “Launch” job button and the result will be displayed in the text box.

4) Conclusion
Although many functionalities of the GUI work properly there are a few details that can be
updated. For example, it would prove useful to allow users to access the openDIEL source
code so that they could run the different examples. A new interface to the grid engine,

15

running liggghts on kivy, and adding more search methods to the grid engine such as
Population Based Training with configuration file interface are just some things that can be
improved in the GUI. There were some troubles in formatting the configuration files during
the beginning of the project. The function for writing to the .cfg file needed some
modification. In addition, more functionality was added to the GUI increase the ease of use.
Minor details that made a big difference in usability. Creating a GUI to run modules on
openDIEL was successful.

