
Accelerating 3D FFT with Half-Precision Floating Point

Hardware on GPU

Kang, Yanming
Hong Kong University of Science and Technology

ykangaf@connect.ust.hk

Glaeser, Tullia
Tulane University

tglaeser@tulane.edu

Mentor: D’Azevedo, Eduardo
Oak Ridge National Laboratory

dazevedoef@ornl.gov

Mentor: Wong, Kwai
University of Tennessee, Knoxville

kwong@utk.edu

Mentor: Tomov, Stanimire
University of Tennessee, Knoxville

tomov@icl.utk.edu

July 2019

1 Abstract

We present a Fast Fourier Transform implementation utilizing the Tensor Core structure on Nvidia Volta
GPUs. We base our work on an existing project[5], optimizing it to support inputs of larger sizes and
higher dimensions. We extend the algorithm to radix 2 and radix 8.

We utilize the Tensor Cores by splitting each single precision matrix into two half precision matrices
before matrix-matrix multiplications, and combining them after the multiplications. We use the parallel
computing platform CUDA 10.0 and the CUTLASS[3] template library in our implementation.

The performance of our final implementation is similar to cuFFT, the FFT library provided by Nvidia,
for small inputs. Our implementation also maintains high accuracy as the input grows in size.

2 Research Goal

The previous project completed the 1D and 2D FFT using radix 4 and our objective is to accelerate
these programs, allow for larger inputs, implement the 3D algorithm, and provide radix 2 and radix 8
variations.

3 Introduction

The Discrete Fourier Transform (DFT) defined by X(k) =
∑N−1
n=0 x(n)e−2πink/N transforms a sequence

of N complex numbers x[0 : N − 1] (in time domain) to another sequence of N complex numbers
X[0 : N − 1] (in frequency domain). The DFT is a linear operation and can be represented in matrix
form X = FNx, where FN is the DFT matrix defined by FN (k, l) = e−2πikl/N . The time complexity of
DFT is O(N2).

The Cooley-Tukey Fast Fourier Transform[2] computes the DFT with only O(N logN) operations.
Cooley–Tukey algorithms recursively re-express a DFT of a composite size N = N1N2 by doing the
following:

1. Perform N1 DFTs of size N2.

2. Multiply by complex roots of unity (often called the twiddle factors).

1



3. Perform N2 DFTs of size N1.

Typically, either N1 or N2 is a small factor (not necessarily prime), called the radix (which can differ
between stages of the recursion). If N1 is the radix, it is called a decimation in time (DIT) algorithm,
whereas if N2 is the radix, it is decimation in frequency (DIF, also called the Sande–Tukey algorithm).

The basic step of the Cooley–Tukey FFT for general factorizations is shown in Figure 1.

Figure 1: Cooley-Tukey FFT

As previously stated, we are also using NVIDIA’s Tensor Core structure. The Tensor Cores on
Nvidia Tesla architecture GPUs are matrix-multiply-and-accumulate units that can provide 8 times
more throughput doing half precision (FP16) operations than FP32 operations. Tensor Cores are pro-
grammable using the cuBlas library and directly using CUDA C++.

The Tesla V100 GPU contains 640 Tensor Cores: 8 per SM. Tensor Cores and their associated data
paths are custom-crafted to dramatically increase floating-point compute throughput at only modest
area and power costs. Each Tensor Core provides a 4 by 4 by 4 matrix processing array which performs
the operation D = A ∗B +C, where A, B, C and D are 4 by 4 matrices as Figure 2 shows. The matrix
multiply inputs A and B as FP16 matrices, while the accumulation matrices C and D may be either
FP16 or FP32.

Figure 2: Tensor Core

CUTLASS (CUDA Templates for Linear Algebra Subroutines) is a collection of CUDA C++ tem-
plate abstractions for implementing high-performance matrix-multiplication (GEMM) at all levels and
scales within CUDA. CUTLASS provides support for mixed-precision computations, providing spe-
cialized data-movement and multiply-accumulate abstractions for 8-bit integer, half-precision floating
point, single-precision floating point, and double-precision floating point types. Furthermore, CUTLASS
demonstrates CUDA’s WMMA API for targeting the programmable, high-throughput Tensor Cores
provided by NVIDIA’s Volta architecture and beyond.

2



4 Algorithm

4.1 FFT Algorithm

We first adopt the radix-4 Cooley-Tukey algorithm because the DFT matrix F4 can be exactly represented
in FP16 (half-precision) without loss of precision; it simply has a real and imaginary part, both composed
of 1s, 0s, and -1s. The real and imaginary Fourier matrices are defined as:

FNreal[l, k] = cos (2πkl/N) (1)

FNimag[l, k] = − sin (2πkl/N) (2)

By using the radix-4 decimation-in-time (DIT) algorithm, only allowing N = 4, we see the following
are the real and imaginary Fourier matrices:

F4real =


1 1 1 1
1 0 −1 0
1 −1 1 −1
1 0 −1 0

 (3)

F4imag =


0 0 0 0
0 1 0 −1
0 0 0 0
0 1 0 −1

 (4)

When using the radix-4, the number of data points, N , must be a power of 4 (N = 4V ) and the
input sequence must be split into four subsequences, x(4n), x(4n + 1), x(4n + 2), x(4n + 3), where
n = 0, 1, . . . , N/4− 1. The radix-4 matrix is also ideal since we are using tensor cores which are built to
perform 4x4 matrix-matrix multiply; this ends up fitting perfectly for radix-4. The radix-4 algorithm is
shown in Figure 3.

The radix-8 algorithm is another great option; it is similar to the radix-4 algorithm except the base is
changed from 4 to 8 where N = 8M . Using the same Fourier matrix equations from above with N = 8,
we can derive the real and imaginary radix-8 Fourier matrices.

Finally, the radix-2 algorithm is also an option that could be further explored. Its DFT matrix F2

can be exactly represented in FP16 as a real matrix (no complex part).

For all of these algorithms our code mainly changes by changing the division factor of N and multi-
plication factor of the batch size to the radix number everytime we call the function recursively; we also
modify the base case to be called when N = the radix number.

4.2 Splitting Algorithm

Each gemm operation is done in fp16. To maintain high precision, a splitting is done before each gemm
and a combining after. Before recursion step of radix-4 1-d FFT, where a multiplication of X with F4,
where X is single precision and has shape (M, 4, batch), is needed, we split X into two (M, 4, batch)
input arrays and two (M, batch) scale factor arrays in half precision, as shown in equation (5) and (6).
The two scales are determined by the magnitudes of the vector. The splitting algorithm of each 1 × 4
vector is shown as algorithm 1.

X32 = scale1 ∗X16hi + scale2 ∗X16lo (5)

X32 · F4 = (scale1 ∗X16hi) · F4 + (scale2 ∗X16lo) · F4 (6)

5 Implementation

5.1 Kernels

The CUDA kernels in last year’s base programs (which we based our current code off of) are not efficient
in terms of the ratio of computation to memory access. We reduced the number of global memory
read/write from 46 to 14 in the splitting kernel, and from 26 to 14 in the accumulating kernel.

3



Figure 3: Radix-4 FFT Flow Chart

Algorithm 1 Split(X,n)

scale1← 0.0f
scale2← 0.0f
for i = 0 : n− 1 do
scale1← (float) max (scale1, abs(X[i]))

end for
for i = 0 : n− 1 do
Xhi[i]← (half)X[i]/scale1

end for
for i = 0 : n− 1 do
tmp[i]← X[i]− scale1 ∗ (float)Xhi[i]

end for
for i = 0 : n− 1 do
scale2← (float) max (scale2, abs(tmp[i]))

end for
for i = 0 : n− 1 do
Xlo[i]← (half)tmp[i]/scale2

end for
return Xhi, Xlo, scale1, scale2

4



5.2 GEMM

In our recursive algorithm for each invocation of the recursion body we need to compute a batched gemm
of dimension M by 4 by 4 (radix-4), and batch size B. If the input has size N, M changes from N/4 to 4
and B changes from 4 to N/4 as the recursion goes deeper.

In the previous implementation the gemms are computed using the cublasGemmStridedBatchedEx
API call in the cuBlas library. We found in our profilings that the cuBlas kernel volta sgemm fp16 128x64 nn
accounts for 50% to 80% of the GPU computation time as the input size changes. The theoretical usage
of computation power of the GPU, in terms of FLOPs is lower than 5%. The kernel name suggests it
does a large matrix multiplication, which could waste many FLOPs and cause inefficiency.

In our experiments, we also found that the cuBlas API cublasGemmStridedBatchedEx incurs large
errors when batch size exceeds 65534. Therefore, a splitting in batches and serial executions of multiple
gemms of smaller batch sizes are needed when the input grows in size. However, this type of serial
behaviour is extremely slow.

The CUTLASS library provides C++ class templates for using the namespace nvcuda::wmma (warp
matrix multiply-accumulate), which is an abstraction of computation on Tensor Cores. Briefly the
following steps are performed on each warp.

1. Fill fragments a and b using data in matrices A and B, each 4 by 4, in half precision

2. Fill fragment c using data in matrix C, 4 by 4, in single precision

3. Perform multiply-add and accumulate on c

4. Synchronize and write back to C

A batched strided gemm subroutine then can be built using these templates. However, the batch size
limit of 64k also exists here. After examining the CUTLASS source code, we found that the limit is
because the maximum grid size in z-axis on V100 is 64k. The size limit in x-axis is 2048M, which is
sufficient for inputs that fit in 16GB memory. The batch size limit is eliminated after swapping the x
and z dimension.

5.3 2-D and 3-D FFT

The 2-D and 3-D FFT are based on 1-D FFT. The 2-D version does the following, on input of shape
(m,n, batch)

1. Perform n ∗ batch point-m 1-D FFTs.

2. Permute the first two dimensions, result in shape (n,m, batch).

3. Perform m ∗ batch point-n 1-D FFTs.

4. Permute the first two dimensions, result in shape (m,n, batch).

The 3-D version does the following, on input of shape (m,n, k, batch)

1. Perform n ∗ k ∗ batch point-m 1-D FFTs.

2. Permute the first two dimensions, result in shape (n,m, k, batch).

3. Perform m ∗ k ∗ batch point-n 1-D FFTs.

4. Permute the first three dimensions, result in shape (k, n,m, batch).

5. Perform n ∗m ∗ batch point-k 1-D FFTs.

6. Permute, result in shape (m,n, k, batch).

The permutation operation is modified from a magma[7] batched transpose kernel. The 3-D algorithm
is shown in Figure 4.

5



Figure 4: 3-D FFT Flow Chart

5.4 Radix-2

F2 =

[
1 1
1 −1

]
(7)

has no imaginary part and can be represented in half precision without error. However, multiplication of
matrices of X (size M-by-2) and F2 cannot be done directly with nvcuda::wmma. Instead, we construct
a 4-by-4 real matrix by putting together two F2 matrices on the diagonal and combine every two M-2-2
multiplications in one M-4-4 multiplication, as shown below.

F2diag =


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 (8)

X1


M×2

[F2];

X2


M×2

[F2] ≡

X1|X2


M×4

[F2diag] (9)

6



6 Results

N* cuFFT32 cuFF16 cuFFT16 accelerated accelerated
batchSize time time error FFT time FFT error

1k 2.46 3.23 5.09 ∗ 10−3 2.43 7.75 ∗ 10−7

4k 2.47 3.25 5.04 ∗ 10−3 2.45 7.84 ∗ 10−7

16k 2.52 3.27 5.03 ∗ 10−3 2.56 7.83 ∗ 10−7

32k 2.53 2.43 5.04 ∗ 10−3 3.22 7.81 ∗ 10−7

64k 2.73 3.40 5.03 ∗ 10−3 3.68 7.80 ∗ 10−7

256k 4.94 3.71 5.04 ∗ 10−3 8.09 7.82 ∗ 10−7

1024k 7.71 5.93 5.04 ∗ 10−3 14.42 7.82 ∗ 10−7

2048k 11.95 7.93 5.05 ∗ 10−3 24.90 7.82 ∗ 10−7

4096k 19.24 12.47 5.01 ∗ 10−3 33.93 7.81 ∗ 10−7

16384k 63.93 39.98 4.55 ∗ 10−3 111.81 7.06 ∗ 10−7

65536k 242.50 151.00 2.28 ∗ 10−3 425.91 3.6 ∗ 10−7

Table 1: 1-D radix-2 FFT results

N* cuFFT32 cuFF16 cuFFT16 accelerated accelerated
batchSize time time error FFT time FFT error

1k 3.13 4.27 5.10 ∗ 10−3 2.30 1.04 ∗ 10−6

4k 3.00 3.40 5.06 ∗ 10−3 2.32 1.05 ∗ 10−6

16k 3.76 4.60 1.26 ∗ 10−2 2.42 3.36 ∗ 10−6

64k 2.77 3.43 1.27 ∗ 10−2 3.58 3.36 ∗ 10−6

256k 5.35 3.96 2.94 ∗ 10−2 7.58 5.99 ∗ 10−6

1024k 8.98 6.68 2.95 ∗ 10−2 14.03 6.00 ∗ 10−6

4096k 19.80 12.52 8.70 ∗ 10−2 30.81 1.55 ∗ 10−5

16384k 63.46 39.83 9.03 ∗ 10−2 99.20 1.85 ∗ 10−5

65536k 251.84 155.92 9.03 ∗ 10−2 381.51 1.85 ∗ 10−5

Table 2: 1-D radix-4 FFT results

N* cuFFT32 cuFF16 cuFFT16 accelerated accelerated
batchSize time time error FFT time FFT error

4k 2.43 3.18 5.02 ∗ 10−3 2.28 5.34 ∗ 10−4

32k 2.53 2.44 1.93 ∗ 10−2 3.23 2.10 ∗ 10−3

256k 4.90 3.65 1.94 ∗ 10−2 6.59 2.10 ∗ 10−3

2048k 11.69 7.88 8.73 ∗ 10−2 16.72 7.60 ∗ 10−3

16384k 62.92 39.54 7.89 ∗ 10−2 79.13 7.06 ∗ 10−3

Table 3: 1-D radix-8 FFT results

M*N* cuFFT32 cuFF16 cuFFT16 accelerated accelerated
batchSize time time error FFT time FFT error

4k 2.44 3.22 5.71 ∗ 10−2 2.57 1.20 ∗ 10−5

16k 2.94 3.48 2.79 ∗ 10−2 3.41 6.21 ∗ 10−6

64k 3.12 3.68 3.75 ∗ 10−2 4.81 8.49 ∗ 10−6

256k 6.02 4.35 5.70 ∗ 10−2 10.45 1.20 ∗ 10−5

1024k 8.46 6.18 1.45 ∗ 10−1 18.70 3.05 ∗ 10−5

4096k 19.79 12.63 2.25 ∗ 10−1 49.22 4.52 ∗ 10−5

16384k 65.39 41.73 2.97 ∗ 10−1 177.84 6.38 ∗ 10−5

65536k 240.89 156.23 2.97 ∗ 10−1 924.24 6.38 ∗ 10−5

Table 4: 2-D radix-2 FFT results

7



M*N* cuFFT32 cuFF16 cuFFT16 accelerated accelerated
batchSize time time error FFT time FFT error

4k 2.45 3.23 5.59 ∗ 10−2 2.74 1.43 ∗ 10−5

16k 2.59 2.58 5.72 ∗ 10−2 2.98 1.45 ∗ 10−5

64k 2.88 3.50 5.68 ∗ 10−2 4.24 1.45 ∗ 10−5

256k 5.36 3.98 5.70 ∗ 10−2 8.13 1.44 ∗ 10−5

1024k 8.28 6.28 1.53 ∗ 10−1 16.72 3.53 ∗ 10−5

4096k 19.85 12.62 3.27 ∗ 10−1 42.16 8.15 ∗ 10−5

16384k 64.04 40.37 2.97 ∗ 10−1 142.80 7.38 ∗ 10−5

65536k 257.85 160.44 3.34 ∗ 10−1 597.95 9.90 ∗ 10−5

Table 5: 2-D radix-4 FFT results

M*N* cuFFT32 cuFF16 cuFFT16 accelerated accelerated
batchSize time time error FFT time FFT error

4k 2.45 3.29 5.68 ∗ 10−2 2.70 7.57 ∗ 10−3

32k 2.57 2.48 5.69 ∗ 10−2 3.09 7.62 ∗ 10−3

256k 5.12 3.77 5.70 ∗ 10−2 7.20 7.60 ∗ 10−3

2048k 11.67 7.82 1.92 ∗ 10−1 18.90 2.62 ∗ 10−2

16384k 63.79 39.98 1.74 ∗ 10−1 95.17 2.38 ∗ 10−2

Table 6: 2-D radix-8 FFT results

K*M*N* cuFFT32 cuFF16 cuFFT16 accelerated accelerated
batchSize time time error FFT time FFT error

16k 2.79 3.48 2.07 ∗ 10−5 6.30 3.56 ∗ 10−9

64k 3.00 3.74 4.04 ∗ 10−5 8.15 7.29 ∗ 10−9

256k 5.40 3.83 3.87 ∗ 10−5 10.02 9.02 ∗ 10−9

1024k 8.07 6.02 2.79 ∗ 10−5 21.08 6.05 ∗ 10−9

4096k 19.47 12.63 1.87 ∗ 10−5 60.98 3.92 ∗ 10−9

16384k 68.51 40.11 1.41 ∗ 10−5 230.54 2.92 ∗ 10−9

65536k 259.13 148.14 1.23 ∗ 10−5 956.44 2.62 ∗ 10−9

Table 7: 3-D radix-2 FFT results

K*M*N* cuFFT32 cuFF16 cuFFT16 accelerated accelerated
batchSize time time error FFT time FFT error

16k 2.82 3.51 2.25 ∗ 10−5 5.96 4.08 ∗ 10−9

64k 2.97 3.57 4.14 ∗ 10−5 7.13 9.65 ∗ 10−9

256k 5.51 4.02 9.76 ∗ 10−5 8.57 2.47 ∗ 10−8

1024k 8.46 6.31 2.62 ∗ 10−5 18.37 6.05 ∗ 10−9

4096k 19.99 12.83 6.56 ∗ 10−6 49.12 1.61 ∗ 10−9

16384k 69.67 40.56 1.39 ∗ 10−5 177.62 3.56 ∗ 10−9

65536k 269.77 153.99 3.69 ∗ 10−5 727.22 8.58 ∗ 10−9

Table 8: 3-D radix-4 FFT results

K*M*N* cuFFT32 cuFF16 cuFFT16 accelerated accelerated
batchSize time time error FFT time FFT error

32k 2.77 2.66 2.60 ∗ 10−4 4.10 3.41 ∗ 10−5

256k 5.34 3.88 3.23 ∗ 10−5 7.48 2.82 ∗ 10−6

2048k 11.95 8.11 4.62 ∗ 10−6 20.43 3.38 ∗ 10−7

16384k 67.82 39.75 1.39 ∗ 10−5 113.30 1.85 ∗ 10−6

Table 9: 3-D radix-8 FFT results

8



4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

input length * batchsize, log4

ti
m

e
lo

g1
0

(m
s)

cuFFT32
cuFFT16
fft radix2
fft radix-4
fft radix-8

(a) Computation Time Comparison
(b) 1-D FFT Time Radix Comparison

2 4 6 8 10
-8

-6

-4

-2

0

2

input length, log4

er
ro

r
,l

og
10

cuFFT16
fft radix-2
fft radix-4
fft radix-8

(c) Computation Error Comparison, cuFFT32 is consid-
ered accurate

(d) 1-D FFT Error Radix Comparison

As shown in the 1D line graphs above, the radix 8 algorithm is the fastest but also has the largest
error; even so, the error up to input size 65536K does not surpass 0.0262. This is also reflected in the
2D and 3D implementations of radix 8.

9



(a) 1-D Radix-4 FFT Profiling Result

(b) 2-D Radix-4 FFT Profiling Result

(c) 3-D Radix-4 FFT Profiling Result

Errors are calculated using

Error =

N∗B∑
k=0

abs(XF32(k)−XF (k))/norm (10)

where norm is the bound of random generated X.

−norm ≤ X(k) ≤ norm,∀k < N ∗B (11)

7 Conclusion

We have programmed and implemented a FP32-FP16 mixed precision FFT algorithm, taking advantage
of the recent tensor core hardware. Our program effectively emulates the built-in single-precision cuFFT
calculation, producing highly accurate results from various inputs. In our code, we provide the radix 2,
radix 4, and radix 8 methods, as well as the algorithms for 1D, 2D, and 3D inputs. By replacing last
year’s cuBLAS library with CUDA’s CUTLASS template library, we were able to speed up the program
further.

While the speed of our implementation is still inferior to CUDA’s built-in cuFFT library, we are
quickly approaching its efficiency through the radix-8 algorithm and with the help of CUTLASS. As our
input size grows, our program also gains an advantage since the tensor cores can be fully utilized and
the setup cost compensated for. Our algorithm can be further optimized by implementing customized
kernels.

8 Future Work

There are still several interesting directions for further optimizations:

1. Try a split-radix algorithm, combining two or more different radices. For example, one idea is to
combine the radix-4 and radix-8 algorithms.

2. Manipulate the code or use different memory allocation tricks to be able to take larger input sizes.

10



3. Hide memory latency by overlapping FFT and memcpy (H2D, D2H), by splitting batch size and
using multiple streams.

4. Provide support to inputs of composite sizes (currently only supporting powers of 2, 4,and 8)

9 Acknowledgement

This research project was sponsored by the National Science Foundation through the Research Experience
for Undergraduates (REU) award, with additional support from the Joint Institute of Computational
Sciences at the University of Tennessee, Knoxville. This project used allocations from the Extreme
Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science
Foundation. In addition, the computing work was also performed on technical workstations donated by
the BP High Performance Computing Team.

This material is based upon work supported by the U.S. DOE, Office of Science, BES, ASCR, SciDAC
program. This research is sponsored by the Office of Advanced Scientific Computing Research; U.S.
Department of Energy. The work was performed at the Oak Ridge National Laboratory, which is
managed by UT-Battelle, LLC under Contract No. De-AC05- 00OR22725.

11



References

[1] CMLaboratory CMLAB. “Fast Fourier Transform (FFT).”. www.cmlab.csie.ntu.edu.tw/cml/

dsp/training/coding/transform/fft.html/. [Online; accessed July-2019].

[2] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Mathematics of Computation, 1965.

[3] NVIDIA Corporation. CUDA TEMPLATE LIBRARY FOR DENSE LINEAR ALGEBRA AT ALL
LEVELS AND SCALES. https://github.com/NVIDIA/cutlass, 2019. [Online; accessed July-
2019].

[4] NVIDIA Corporation. CUFFT Library Programming Guide. https://docs.nvidia.com/cuda/

cufft/index.html, 2019. [Online; accessed July-2019].

[5] Sorna Anumeena et al. Accelerating the fast fourier transform usingmixed precision on tensor core
hardware. www.jics.utk.edu/files/images/recsem-reu/2018/fft/Report.pdf, 2018. [accessed
July-2019].

[6] Stefano Markidis et al. NVIDIA Tensor Core Programmability, Performance and Precision. NVIDIA
Tensor Core Programmability, Performance & Precision, pages 1–12.

[7] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear algebra for hybrid GPU
accelerated manycore systems. Parallel Computing, 36(5-6):232–240, June 2010.

[8] Jake VanderPlas. “Understanding the FFT Algorithm.”. jakevdp.github.io/blog/2013/08/28/

understanding-the-fft/, 2013.

12


