
Accelerating 3D FFT
with Half-Precision
Floating Point Hardware
on GPU

Students: Yanming Kang (HKUST) and Tullia Glaeser (Tulane)
Mentors: Ed D’Azevedo (ORNL) and Stan Tomov (ICL, UTK)

Discrete Fourier Transform (DFT)
& Fast Fourier Transform (FFT)

● DFT [O(N2)]: for num. computations in digital signal processing (incl fast convolution,
spectrum analysis)
○ N discrete time series signals →(into) N discrete frequency components (amplitude +

phase)
● FFT [O(NlogN)]: Fast algorithms for DFT -- widely used num. Algorithm -- plays vital

role in many scientific and engineering applications (image processing, speech recog., data
analysis, large scale simulations
○ Maj. time in large comp. apps
○ Cooley + Tukey Algorithm:

i. Symmetry of DFT: XN+k = Xk =
ii. Divide DFT alg. into odd + even parts :

● → halved the computations to
be O(2M) where M is half of N → O(N)

i. Keep doing this recursively → halves computation cost every time → O(NlogN)
○ To keep improving performance/time -- implement it on GPU

Implementing 1D, 2D, & 3D FFT

● 1D FFT of x:
a. x = 1D array, B (4 x N/4) matrices or 1 (4 x N/4 x B) tensor (B = # of batches)
b. Find DFT of each of those matrices
c. Multiply by twiddle factor (W = e-i2�kn/N)

● 2D FFT:
a. x = (m x n x batch)
b. Reshape x to be 1D array [m*n*batch, 1, 1]
c. Call 1D FFT on it
d. Transpose & do 1D FFT in other direction

● 3D (breakdown shown in pic):
a. Take 1D FFT in each direction OR
b. Take 2D FFT in 2 directions & 1D in last dir.

● MATLAB + CUDA
a. Currently use CUBLAS/CUTLASS and Radix-4

● Tensor: “a mathematical object analogous to but more general than a vector, represented by an
array of components that are functions of the coordinates of a space” -- large dense matrix

● NVIDIA Volta microarchitecture ft. specialized computing units, Tensor Cores
● tensore core support→ mixed precision -- matrix multiplication operations done w/ half-

precision input data (FP16)-- the rest FFT done on single precision data (FP32)
● FP16 arithmetic enables Volta Tensor Cores which offer 125 TFlops of computational

throughput on generalized matrix-matrix multiplications (GEMMs) and convolutions, an
8X increase over FP32

● Matrix entries multiplied in neural networks are small w/ respect to value of prev. Iter. → can
use half precision, result is still small in val. → result accumulated to other much larger val., in
single precision to avoid precision loss

● Deep neural network training = tolerant to precision loss up to certain degree

Mixed Precision & Tensor Cores

This image cannot currently be displayed.

1D, n=256, batch=1, iter=1
69.6% 2D, m=256, n=256, batch=1,

iter=1
75.1%

3D, m=256, n=256, k=256,
batch=1, iter=1
86.5%

Inefficiency with Transform -- volta_sgemm_fp16_128x64_nn

The FFT (radix-n1) in matrix form

We use n1 = 4 since F4 =[1 1 1 1 can be stored in fp16 with no
error.

1 i -1 -i

1 -1 1 -1
1 -i -1 i]

The algorithm
//Batched 1d FFT of length N
Radix_4_FFT_recursion(X, N, Batch):

If N=4 then
Return F4 * X

(batched gemm)
//See X as a (4 by N/4 by Batch) array
permute(X, [2,1,3])
//X as a (N/4 by 4 by Batch) array
Y <- Radix_4_FFT_recursion(X, N/4, Batch*4)
Multiply elementwise Y with W_N
Return Y * F4

(batched gemm)
End

Splitting is done before gemm
Combining is done after gemm
x(32) = s1(32) * x_hi(16) + s2(32) * x_lo(16),
Gemm is done to x_hi, x_lo

CUTLASS (CUDA Templates for Linear Algebra
Subroutines)

The most expensive step in the recursion: the second batched gemm

Result1 = X * F4_re; Result2 = X * F4_im
where

F4_re, F4_im: 4 by 4, fp16
X=[X_re_hi, X_re_lo, X_im_hi, X_im_lo]: m by 4 by Batch*4, fp16
Result1, Result2: m by 4 by Batch*4, fp32

For batch size = B, length = N input, will do gemms for:
m = N, Batch = B
m = N/4, Batch = 4B
…
m = 4, Batch = NB/4

cuBlas is not optimized for slender matrix multiplication (volta_sgemm_fp16_128x64_nn)

CUTLASS vs cuBlas
m by 4 * 4 by 4 matrix multiplication

m Batch size cuBlas(ms) cutlass(ms) Mean error

64 1048576 40.7779 13.4457 1.23754e-12

256 65536 5.10469 3.07621 1.27887e-12

256 262144 20.4031 12.2688 1.24481e-12

1024 16384 5.07802 3.00108 1.23879e-12

1024 65536 20.2993 11.9628 1.24625e-12

4096 4096 5.08486 3.00046 1.26754e-12

4096 16384 20.2965 11.882 1.22616e-12

16384 4096 44.524 11.8838 1.23812e-12

In the Near Future: Radix-2 vs. Radix-4

● Radix-2 algorithms: 2v data points
a. decimation-in-time (DIT): Simplest + most common form of Cooley-Tukey alg

i. DFTs of even- & odd-indexed inputs, repeat recursively (O(NlogN))
b. Decimation-in-frequency (DIF): (O(NlogN)) -- divide + conquer

i. split DFT into 2 summations [(0 → N/2) +(N/2 → N)]
ii. Split those split summations into even & odd
iii. Repeat recursively

● Currently using radix-4 (4v data pts)
● Why radix-2?

a. DFT of identity [2,2] matrix = real matrix (not complex) & exactly representable in FP16
b. Use tensor cores to implement it
c. ALTHOUGH radix-4 = more efficient when N = 2v

Citations

● https://www.jics.utk.edu/files/images/recsem-reu/2018/fft/Report.pdf
● https://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/
● https://arxiv.org/pdf/1803.04014.pdf
● http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html

