
Accelerating 3D FFT with Half-Precision 
Floating Point Hardware on GPU

Conclusion	and	Future	Work

Abstract Algorithm

Students: Yanming Kang (HKUST) and Tullia Glaeser (Tulane University)
Mentors: E. D'Azevedo (ORNL) and S. Tomov (UTK)

Acknowledgements

Results

This	project	was	sponsored	by	the	National	Science	Foundation	through	Research	Experience	for	
Undergraduates	(REU)	award,	with	additional	support	from	the	Joint	Institute	of	Computational	Sciences	
at	University	of	Tennessee	Knoxville.	This	project	used	allocations	from	the	Extreme	Science	and	
Engineering	Discovery	Environment	(XSEDE),	which	is	supported	by	the	National	Science	Foundation.	In	
addition,	the	computing	work	was	also	performed	on	technical	workstations	donated	by	the	BP	High	
Performance	Computing	Team.
This	material	is	based	upon	work	supported	by	the	U.S.	DOE,	Office	of	Science,	BES,	ASCR,	SciDAC
program.

N * batch size cuFFT 32 time 
(ms)

cuFFT 16 time cuFFT 16 error¹ accelerated 
FFT time

accelerated FFT 
error²

base code FFT 
time

1k 2.672344 3.329465 0.00191806897 2.275482 0.000000240801 4.343482

4k 2.618013 3.395736 0.0050298227 2.318682 0.000000687060322 3.688474

16k 2.721780 3.402526 0.012709721 2.414895 0.00000284706289 3.938617

64k 3.031922 3.757677 0.0295635611 3.46227 0.00000411905148 6.452106

256k 5.714272 4.05492 0.0875284001 7.000023 0.0000119805045 12.714869

1024k 9.584766 6.833481 0.192052826 13.442294 0.0000361031998 Not supported

4096k 19.234568 12.505309 0.417603344 29.521494 0.0000513304258 Not supported

16384k 65.876312 41.075443 0.588486552 98.621094 0.000133268419 Not supported

65536k 242.107086 151.377029 0.890920997 397.807739 0.000124264188 Not supported

1,2:	Errors	are	calculated	when	batch	size	=	64	and	inputs	are	random	complexes	in	[-1,1],	cuFFT 32	results	considered	exact.

Background
Discrete	Fourier	Transform	(DFT)
The	DFT	converts	time	domain	signals	to	frequency	domain	signals	according	to	
the	equation:

Applications	of	DFT:
● Image	analysis
● Speech	analysis
● Data	compression
● Solving	PDEs
● Polynomial	multiplications

Fast	Fourier	Transform	(FFT)
The	FFT	reduces	the	time	complexity	from	O(N²)	(DFT)	to	O(NlogN),	which	is	
feasible	for	large	data.

Cooley-Tukey	FFT	Algorithm
1. Perform	N1	DFTs	of	size	N2.
2. Multiply	by	complex	roots	of	unity	(often	called	the	twiddle	factors).
3. Perform	N2	DFTs	of	size	N1.

Tensor	Cores	on	Nvidia Volta	GPUs
Tensor	Cores	are	matrix-multiply-and-accumulate	units	that	can	provide	8	times	more	
throughput	doing	half	precision	(FP16)	operations	than	FP32	operations.
Tensor	Cores	are	programmable	using	the	cuBlas library	and	directly	using	CUDA	C++.

1D-FFT	Results

M*N*K*batch size cuFFT 32 time (ms) cuFFT 16 time cuFFT 16 error¹ accelerated FFT 
time

accelerated FFT 
error²

1k 2.809283 3.367596 0.3687504530 5.071026 0.0000681395

4k 2.718959 3.594859 0.8239015937 4.131129 0.0001604883

16k 2.884303 3.796732 7.4552483559 4.910933 0.0015084511

64k 2.906378 3.492988 16.5170917511 6.833582 0.0034472588

256k 5.220939 4.153818 35.7382469177 12.123748 0.0076717613

1024k 8.608585 6.271199 354.0160522461 25.708443 0.0714902207

4096k 20.165436 13.420002 828.1459960938 64.373634 0.1603385806

16384k 64.665436 40.914425 1595.7766113281 225.811356 0.3202181458

65536k 243.238541 157.071777 35710.8671875000 903.765625 0.4209230542

We	present	a	Fast	Fourier	Transform	implementation	utilizing	the	Tensor	Core	
structure	on	Nvidia Volta	GPUs.	We	base	our	work	on	an	existing	project,	
optimizing	it	to	support	inputs	of	larger	sizes	and	higher	dimensions.

The	previous	project	completed	the	1D	and	2D	FFT	using	radix-4	and	our	objective
is	to	accelerate	these	programs,	allow	for	larger	inputs,	implement	the	3D	
algorithm,	and	provide	a	radix-2	variation.
The	performance	of	our	final	implementation	is	similar	to	cuFFT,	the	FFT	library	
provided	by	Nvidia,	for	small	inputs.

We	utilize	the	Tensor	Cores	by	splitting	each	single	precision	matrix	into	two	half	
precision	matrices	before	matrix-matrix	multiplications,	and	combining	them	after	
the	multiplications.	We	use	the	parallel	computing	platform	CUDA	10.0	and	the	
CUTLASS	template	library	in	our	implementation.

We	successfully	completed	the	3D	Fourier	Transform	of	a	N-length	input	sequence	
using	radix-4.
We	are	also	working	on	completing	the	FFT	using	radix-2,	which	divides	the	
algorithm	into	2	even	and	odd	parts	instead	of	the	4	of	radix-4;	this	seems	to	be	a	
faster	algorithm	and	if	we	don’t	complete	it	on	time	it	will	be	good	future	work.
Future:
● Allow	for	larger	inputs	-- possibly	using	an	updated	version	of	CUDA
● Speed	up	our	FFT	algorithm	to	match	cuFFT
● Efficient	memory	allocation	to	minimize	data	transmission	between	host	(CPU)	

and	device	(GPU)

3D-FFT	Results	(inputs	are	M	by	N	by	K)

NVIDIA	Visual	Profiler	Analysis	(1D)


