Functional EEG Network Analysis for Cognitive Diagnosis of Alzheimer's Disease

EEG DATA ANALYSIS WITH MACHINE LEARNING PROJECT

Project Mentor

EEG DATA ANALYSIS PROJECT

THE UNIVERSITY OF TENNESSEE KNOXVILLE

Xiaopeng ZHAO Associate Professor University of Tennessee, Knoxville Mechanical, Aerospace and Biomedical Engineering

Program Supervisor

Kwai L. WONG Research Assistant Professor University of Tennessee, Knoxville Mechanical, Aerospace and Biomedical Engineering

Group Members EEG DATA ANALYSIS PROJECT

Arden GUO City University of Hong Kong College of Science

Department of Mathematics

Jeremy LIU City University of Hong Kong College of Engineering

Department of Electronic and Communication Engineering

Department of Electrical Engineering and Computer Science

THE UNIVERSITY OF TENNESSEE KNOXVILLE

Joshua Dunkley

University of Tennessee, Knoxville

College of Engineering

Background:

Harms:

- Irreversible
- Mentation
- Memory
- The ability to conduct the simplest tasks

The World Alzheimer Report of 2018 shows that the number of people living with dementia is estimated to be 50 million today.

World Alzheimer Report 2018 The state of the art of dementia research: New frontiers

Background:

Electroencephalography(EEG)

- EEG has been introduced as a tool of documenting human brain activity
- Efficient and considerably low cost
- A common problem with this is that numerous factors lead to the loss of data, which yields inaccurate detection for AD.

Causality MATRIX:

	1	2	3	i	29	30	Image	•
1	*	*	*		*	*		
2	*	*					5	
3	*		*				10	
•	•			•			15 -	
j	•			•			20 -	
•	•			•				
29	*				*		25 -	
30	*					*	0 5 10 15 20 25	

Threshold -0.3

Threshold – 0.4

Threshold – 0.5

Threshold – 0.6

Threshold -0.7

Causality MATRIX:

	1	2	3	i	29	30	
							٦
1	*	*	*	• • •	*	*	
2	*	*					
3	*		*				
•				·			
j	•			•			
•	•			•			
29	*				*		
30	*					*	

Feature Reduction:

- Data was obtained from the University of Kentucky's College of Medicine
- Data was preprocessed before the initial start of the research for noise and artifacts
- Patients were already diagnosed prior to the research

• Steps

- 1. Separate the subjects into training sets based on the cognitive state
 - Keep a record of the subject ID, subject data, and subject cognitive state in a class object
- 2. Build Reconstruction models for all 3 training sets to save time with building models during actual training
- Loop through the NC-training set and build reconstruction models for Nc_i using the data from the other n subjects in the NC-training set
- 4. Make predictions for each subjects along the way and calculate the correlation coefficient between the original data and the predicted data.
- 5. Repeat Steps 3-4 for the MCI- and AD-training sets.
- 6. Reorganize the correlation coefficients for all the subjects into a matrix, and perform feature reduction and PCA on the newly restructured data.
- 7. Create an SVM Model for principle components

• Steps

1) Build a 30x30 matrix where each element in the causality matrix contains a reconstruction model for reconstruction of channel j

using channel i.

2) Use reconstructed EEG data to make a 30x30 correlation matrix of the causal relationships between EEG channels i and j.
3) Create a color map using the values of the correlation matrix and perform image classification

4) Reduce the number of features and classify using an SVM model

• Steps

1) Build a 30x30 matrix where each element in the causality matrix contains a reconstruction

model for reconstruction of channel j using channel i.

2) Use reconstructed EEG data to make a 30x30 correlation matrix of the causal relationships between EEG channels i and j.

3) Create a color map using the values of the correlation matrix and perform image classification

4) Reduce the number of features and classify using an SVM model

• Steps

1) Build a 30x30 matrix where each element in the causality matrix contains a reconstruction

model for reconstruction of channel j using channel i.

2) Use reconstructed EEG data to make a 30x30 correlation matrix of the causal relationships between EEG channels i and j.
3) Create a color map using the values of the correlation matrix and perform image classification

4) Reduce the number of features and classify using an SVM model

Threshold – 0.3

Threshold – 0.7

• Steps

1) Build a 30x30 matrix where each element in the causality matrix contains a reconstruction

model for reconstruction of channel j using channel i.

2) Use reconstructed EEG data to make a 30x30 correlation matrix of the causal relationships between EEG channels i and j.
3) Create a color map using the values of the correlation matrix and perform image classification

4) Reduce the number of features and classify using an SVM model

- Algorithms/Math
 - Leave-one-out principle
 - Correlation Coefficient
 - Eigen Values
 - Principle Component Analysis (PCA)
 - SVM Model

- Algorithms/Math
 - Leave-one-out principle
 - Correlation Coefficient
 - Eigen Values
 - Principle Component Analysis (PCA)
 - SVM Model

- Algorithms/Math
 - Leave-one-out principle
 - Correlation Coefficient
 - Eigen Values
 - Principle Component Analysis (PCA)
 - SVM Model

$AX = \lambda X$

- Algorithms/Math
 - Leave-one-out principle
 - Correlation Coefficient
 - Eigen Values
 - Principle Component Analysis (PCA)
 - SVM Model

- Algorithms/Math
 - Leave-one-out principle
 - Correlation Coefficient
 - Eigen Values
 - Principle Component Analysis (PCA)
 - SVM Model

- Implementation
 - Currently working with Python script and IPython Notebooks in Google Collaboratory
 - Built Reconstruction Models using Keras with a Tensorflow backend and using Tensorflow itself
 - Made graphs and figures using Matplotlib
 - Used sklearn and numpy to normalize the data, and perform feature reduction and Principle Component Analysis on reconstructed data
 - Used the Deep Neural Network Toolbox in MATLAB to perform image classification

• Future works

- Correlate EEG Causality Network to fMRI
- Collect EEG data from more subjects
- Real-time diagnosis of cognitive deficit

Data Preprocessing:

Standardization

Standardize features by removing the mean and scaling to unit variance

- Faster learning speed
- a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function, causing the estimator unable to learn from other features correctly as expected.

Reconstruction Results

PCA Results:

Correlation Matrix

- Row = 48 subjects
- Column = 3 states
 - 30 values for AD
 - 30 values for MCI
 - 30 values for NC

PCA result

- 2 principal components
- Plot 2D diagram
- Most of subjects clustered together

SVM Model:

Support Vector Machine:

- Based on PCA results
- Linear SVM

SVM Model:

		Predicted	Predicted classes		
		NC	MCI	AD	_
True	NC	14	1	0	93.3%
classes	MCI	0	15	0	100%
	AD	0	1	15	93.8%
		100%	88.2%	100%	Overall Acc: 95.8%

Accuracy assessment:

		Predicted	classes		
		NC	MCI	AD	
True	NC	14	1	0	93.3%
classes	MCI	0	15	0	100%
	AD	0	1	15	93.8%
		100%	88.2%	100%	Overall Acc: 95.8%

Causality matrix:

Heat map:

- Visualization of correlation matrices
- Brighter color suggests higher correlation coefficients

-0.25

-0.50

-0.75

-1.0

- 0.8

- 0.6

- 0.4

0.2

- 0.0

-0.2

- -0.4

-0.6

MCI

NC

Image classification results:

Predicted classes					
		NC	MCI	AD	
True classes	NC	5	4	6	33.3%
	MCI	3	10	3	62.5%
	AD	2	8	7	41.2%
		50%	45.5%	43.8%	Overall
					Acc:
					45.8%

PCA results:

PCA results (Column means):

Column-means								
		Predicted classes						
		NC	MCI	AD	70			
True	NC	2	1	12	13.33%			
classes	MCI	0	5	11	31.25%			
	AD	1	2	14	82.3%			
		66.67%	62.5%	37.84%	Overall Acc: 43.75%			

SVM models:

SVM models:

	Predicted cla			
_	NC	MCI	AD	
١C	14	0	1	93.33%
VCI	0	15	1	93.75%
AD	1	0	16	94.12%
	93.33%	100%	88.89%	Overall Acc: 93.75%
- J	– 1CI D	NC 14 1CI 0 D 1 93.33%	NC MCI C 14 0 1CI 0 15 D 1 0 93.33% 100%	NC MCI AD C 14 0 1 1CI 0 15 1 D 1 0 16 93.33% 100% 88.89%

Thanks for listening Q&A