
Autonomous Vehicle Research
Project

Members: Mentor:
Patrick Lau Dr. Alan Ayala
Julian Halloy Dr. Kwai Wong
Brendan Flood

Objectives

● Implementation of MagmaDNN for image recognition
● To use trained neural networks to control the motion of a self-driving car

consisting of:
○ A Jetson Nano computer with built in GPU

○ Elegoo Car kit with Arduino UNO board

○ A Raspberry Pi camera to collect image data input

Benchmarks met?

Benchmarks:
1. Basic self-driving capability - whether or not the car can navigate the hall by

avoiding hitting walls and turning down other hallways when told to

1. Sign recognition - whether or not the car can recognize signs in the hallway (e.g.
posters with numbers on them) and respond to them as commanded

1. Following - whether or not a car can recognize a second car driving in the hallway
and follow it

Neural Networks
ImageAI:

Downloadable library with pre-built networks
Several options, from which we used ResNet

MagmaDNN
Convolutional network of 17 hidden layers
Sets of 2 convolutions with activation, pooling, dropout

ImageAI

ImageAI Progress and Models

Wall avoidance

Wall avoidance and single turn

Wall avoidance and turn signs

Wall avoidance and colored turn signs

Following car, UT logo ImageAI

MagmaDNN

● Limited time to implement it
● Difficulty with compatibility on the nano (CPU version, CuDNN)
● Final Result: medium convolutional network trained on the nano with the

MNIST dataset
● Further work:

○ Developing model saving and loading abilities
○ Writing and testing code to take jpeg as input to create a dataset

MagmaDNN (cont.)

Working process

Construct the car
Jetson Nano Car

Install the Camera

Collect Data
Model TrainingSetup the Jetson Nano

Labeling

Power
● Jetson Nano Power Modes: 5W & 10W
● Li-ion Battery: 5V 2A
● Lipo Battery: 11.1V 55A

○ Battery Management System
● VRM: 5V 4A

3D printing

● Combine every
component together

● Protection

Nano & Uno
Communication
● .py & .io
● PySerial

○ Envelop the access
for the serial port

● Communication
between the Arduino
and JetsonNano

● read()
● write()

Data Collection

Model Training - Labeling

Train

W L
R

Test

W

L R

Dataset Folder

TL RE TR
TL RE

TR

Model Training

● Train folder
○ To be used to train the model
○ At least >500 images per object, >1000 is great

● Test folder
○ To be used to test the model as it trains
○ 100~200 images per object

● JSON file
○ Stores output classes

● .h5 file
○ Contains multidimensional arrays

Final Dataset Size

test
➢ W: 482
➢ L: 402
➢ R: 240
➢ RE: 578
➢ TL: 437
➢ TR: 602

train
➢ W: 1790
➢ L: 1917
➢ R: 1571
➢ RE: 1664
➢ TL: 1651
➢ TR: 1695

Code

● Initializes Camera
● Initializes GPU
● Writes image
● Reads Image
● Makes Prediction
● Sends Serial Command

Model Issues: Dataset

● Lack of sufficient image data
● Imbalance of output classes

○ The problem with continuous footage
○ Picking one guess output class

● Introduction of new output classes

test
➢ W: 482
➢ L: 402
➢ R: 240
➢ RE: 578
➢ TL: 437
➢ TR: 602

train
➢ W: 1790
➢ L: 1917
➢ R: 1571
➢ RE: 1664
➢ TL: 1651
➢ TR: 1695

Signs

Black and White Color

Results

● Successfully train the car to self drive: correcting direction down the hall
and reading signs for it to turn around, turn left, and turn right

Demo Video

Error Factor: Out Of Focus / Blur

● Camera
○ Moving too fast
○ Shaking

● No such examples in training
● Random prediction

Error Factor: Out Of Focus / Blur

Error Factor: Field of View

● Need a Close Distance
○ ~ 1 - 1.5 Floor Tile

● Field of View (Rpi Camera v2)
○ 62.2 x 48.8 Degrees

● Missing the signs

Error Factor: Field of View

Limitation: Memory Size

Total RAM: 4GB
Free RAM: ~2GB:
- Image Capturing - Overwrite the image file
- Put into the NN - Generate the

prediction outputs

Limitation: Environment

● Diverse lighting
○ Different with training data

✘ Iconic landmark
✘ Clear boundaries / lines

to guide the direction

Future Work
● Additional Sensors

○ Ultrasonic Distance Sensor

● Camera with Wide Angle Lens
○ ~110 degrees

● Positioning Device
○ Bluetooth device
○ Positional data

thanks!

Any questions?

Reference

Nvidia Jetson Nano - https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#write
MAGMA - https://icl.utk.edu/magma/software/index.html
MAGMADNN - https://magmadnn.bitbucket.io/docs/index.htmlhttps://magmadnn.bitbucket.io/docs/index.html
Arduino Connection - https://blog.rareschool.com/2019/05/five-steps-to-connect-jetson-nano-and.html
TinkerCAD - https://www.tinkercad.com
Pi Camera - https://github.com/JetsonHacksNano/CSI-Camera
Github, jkjung - https://github.com/jkjung-avt/jetson_nano
OpenCV - https://opencv.org/
TensorFlow - https://www.tensorflow.org/install/pip
Gstreamer - https://gstreamer.freedesktop.org/documentation/tools/gst-launch.html?gi-language=c
OpenBLAS - https://www.openblas.net/
ImageAI - https://github.com/OlafenwaMoses/ImageAI
Elegoo - https://www.elegoo.com/download/
Arduino - https://www.arduino.cc/en/Main/Software
Pyserial - https://pythonhosted.org/pyserial/
Numpy - https://www.numpy.org/
Thingiverse - https://www.thingiverse.com/
Keras - https://keras.io/

