LS A

Joint Institute for
Computational Sciences

Creating a GUI to
define workflows
in openDIEL and
adding support for
GPU Deployment
By: Efosa Asemota,
Frank Betancourt, /6(3‘5'5'6’52?‘
T Quindell Marshall TN
. S ==\
THE UNIVERSITY OF Mentor: Dr. Kwai ‘* L) *‘0"
TENNESSEE Wong NS

Introduction

- openDIEL (Open Distributive Interoperable Executive Library) 1s a lightweight
workflow engine designed for usage in HPC environments.

- Allows for the unification of many different modules into a single executable

- Written in C, and uses openMPI

Workflow files

Workflow configuration files specify the workflow and what resources are to be used
by each module

First section contains modules: This 1s where you define what resources are needed
by each module, such as the number of MPI processes, the number of GPUs, as well
as defining where input and output needs to come from if needed.

Second section contains the workflow: This i1s where the order of the modules is
defined, and dependencies are specified, as well as the number of iterations that each
group of modules needs to run

Intermodular Communication

There are two forms of communication:

- Direct, synchronous module-to-module communication with IEL functions IEL put()
and IEL get()

- Indirect, asynchronous tuple space communication with IEL functions IEL tput() and
IEL tget.

- Also supports using multiple tuple servers with a variety of different API calls for
modules to communicate with tuple servers in different ways.

Driver

- As previously mentioned, all modules are unified under a single executable, referred
to as the driver.

- Driver makes calls to MPI Init(), MPI Finalize(), and makes relevant calls to IEL
member functions to read the configuration files, add modules, and start the entire
IEL system

Process 0 reads

i configuration
PROC 0 , informationand «C++{ | Configuration File | |
i broadcasts to other

processes

Processes split into subcommunicators that are
used by specified modules

A4

ielTuple:@«m-:-:{i

Y

The tuple server then checks
dependencies, starts groups, and waits for
groups to signal that they have finished

ielExecFinalize() Clean up after all groups finish, and return MPI_Finalize()

Figure 1: Simplified overview of MPI process usage

Managed and Automatic modules

There are two basic types of modules:

-Automatic: These are serial modules, with no calls to MPI functions, and they can simply
be run in openDIEL with fork() and exec()

-Managed: These are parallel modules with calls to MPI functions. These require that any
MPI _Init() or MPI_Finalize() calls are removed, since the driver will make these calls.
Additionally, the MPI COMM_WORLD created must be removed and replaced with the
proper subcommunicator of the MPI. COMM_WORLD created by the driver.

Interface

-As previously mentioned, the interface is basically just a configuration file specified by

the user

-Resources are specified on a per module basis through keywords, such as copies,
processes_per copy, num_gpu, threads per process, size, stdin, and splitdir

-Workflows are broken into two divisions: sets and groups

Application: GREP 1n parallel

-An application of openDIEL is parallel data searching

-Existing serial code can easily be parallelized under openDIEL by the following
process:

1) Split data to be processed into smaller pieces

2) Run several unmodified copies of the script on different subsets of the data
and direct the results of the script to files

3) Collect the output from the files and combine into a single file

Transit UDID search

-The need for such an application arose when existing Python scripts for a data search
were not sufficiently fast for the data size.

-The goal was to be able to search through a dataset of 30 .csv files, totaling at about 180
million rows and 31 GB. Each row has 15 columns, and the goal is to search for and save
all of the rows whose “UDID” column value matches the UDID value being searched for.

10

Source Files @

MODULE-1 copies the source files into their own directories

—_/ N

GREPCONVERSION-0| |GREPCONVEFISION 1 .. |GREPCONVEFISION 28| | GREPCONVERSION-29

MODULE-2 outputs search results to ﬂles in directories

v

30 copies of MODULE-2 then search through all of the files in parallel

A 4

|crREPCONVERSION-O| |GFIEPCONVERSION 1| .. |GREPCONVERSION 28| | GREPCONVERSION-29

MODULE-3 appends search results from all 30 directories into one file

[udid_search_resuhs.m}

Figure 2: Graph of parallel search with openDIEL

Worktlow 1n openDIEL

workflow:
function="MODULE-1"

args=("sh", "prepare_directories.sh", "data/April2016") {
libtype="static" groups:
size=1 {

iz tuple_group:

t {
functi<:n= ::M?DULE—2" .) order= ("ielTupleSerVer ")
args=("sh","../search_udids.sh") iterations=1
libtype="static"

7 }
size=30 oupd :
splitdir="GREPCONVERSION" %r pl:

¥,

{ order=("MODULE1", "MODULE-2", "MODULE-3")
function="MODULE-3" iterations=1
args=("sh","location_concatenate.sh") }
libtype="static" }
size=1 }

}
Figure 3: Parallel search workflow configuration file

12

Results

Search Method | Time (minutes:seconds) |
' Python Script ‘ 40:00 |

SQLite Query 01:26

GREP 04:13

GREP with openDIEL 00:02

Figure 4: Comparison of various methods to search for 1 UDID

Further improvements could likely be made by directing search results to an openDIEL
tuple server, rather than conducting file I/O for saving and collecting search results.

13

Why do we need a GUI?

e The purpose of the GUI is to provide a much more user-friendly interface in order to
execute openDIEL.

e Currently, in order for a user to execute openDIEL, they would have to go through a
lot of tedious and time consuming tasks.

14

Why do we need a GUI? (contd.)

e One of the first steps that the user would have to do is to first convert their source
code into a module/function by using the Python program ModMaker.py.

e The reason for this step is because in order for openDIEL to be executed, the user
must convert their code(s) into a function.

e The user would need to repeat this step for as many modules that they would want to
create.

15

*
*
*
*
*
*
*
*
*
*
*

Original Code

Copyright (c) 2015 University of Tennessee

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

FILE * Fp;

fp = fopen ("file.txt

printf("i\n");
1t);

fprintf(fp, "%s %s %s

fclose(fp);

Figure 5: This figure is a
simple example of a Hello
World program

16

Converted Code from ModMaker.py

Copyright (c) 2015 University of Tennessee

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

int helloi(IEL_exec_info_t *exec_info) {

FILE * fp;

fp = fopen ("file.txt
printf("i\n");
fflush(stdout
fprintf(fp, "%s %s %s
fclose(fp);

return IEL_SUCCESS;

Figure 6: This is the result of
the Hello World program after
it has been converted by
ModMaker.py

17

Why do we need a GUI? (contd.)

The next step would be for the user to also compile each module as library.
In order to do that, the user would need to enter the following commands as shown in

the following figure.
e Again, the user would need to repeat this step for as many modules that they would

want to create.

mpicc -c -I/home/reuub@6userl/opendiel/INC/REUUB-06 hellol.c

ar -rcs libmodhelloi.a helloi.o

Figure 7: Commands for compiling a module as a library.

18

Why do we need a GUI? (contd.)

e The next step would be for the user to create a header file for each module that can be
included into the Driver.c code.

e This step 1s very simple as all the user would need to do 1s follow this layout as
shown in the following figure.

e The user again would repeat this step for as many modules that they would want to
create.

19

Header File Creation

Copyright (c) 2015 University of Tennessee .

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, Figure 8: Example of a
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES Header File for a module.
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS

IN THE SOFTWARE.

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ *

~

info.h

#ifndef MAINMOD helloi H
#define MAINMOD helloi H

int helloi(IEL_exec_info_t *exec_info);

#endif

Why do we need a GUI? (contd.)

The next step would be for the user to create a workflow configuration file.
The workflow configuration file is divided into two sections: the module section and
the workflow section.

e The purpose of the module section of the configuration file is to define the existence
of each module.

e The purpose of the workflow section is to define how each module will run.

e The following figures illustrate the format of a typical configuration file.

21

NNNNNNNNSNNSN

HERARHARARIEHR SNSSSNSSNSNND

Copyright (c) 2015 University of Tennessee

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Simple driver's configuration file. Presents the most

Sample managed driver's configuration file. Presents basic 1ideas
of using the openDIEL to integrate both serial and parallel code
in the same simulation.

For a more comprehensive, non-annotated automatic driver example,
please see the USECASE directory. For explanations of settings not
detailed here, including details on using an automatic module to run
serial code, please see the annotated workflow.cfg and workflowMM.cfg
flles.

tuple_space_size=0
modules=

{
function="MOC
args= - ofica/iile
1libtype="static
splitdir="HELLC
size=5

function="hellol"”;
args= =
libtype=
1library= >mod
splitdir= ELLOI
size=5

function="hellome
args= ;
1libtype="static
splitdir="HELLC
library="1ibmodh
size=5

function="hellc
args=
1libtype="static
library="1ibmodhell
splitdir="HELLOM
size=1

Figure 9: Module Section of the
Configuration File.

workflow:

{
setl:

{

groupl:

{
Note that both serial and parallel code can be run in the
same group
order=("MODULE-0","hellome", "hellotl
iterations=2

}

group2:

{ -
order=("hellomy
iterations=2

Figure 10: The workflow section of the Configuration File

Why do we need a GUI? (contd.)

e The next step would be for the user to edit the Driver.c code by including each of the
header files that correspond to each module they created.

e They would also go down in the code to the IELAddModule function call and pass as
arguments a function pointer to the module and the name of the module as a string
argument.

e The following figures detail these steps.

24

#include <stdlib.h>]

#include <stdio.h> Figure 11: Module Header
#include "IEL.h" Files included in the
ztgé{ﬂgg ocontig. Driver.c code.

#include

#include

#include

#include >211lomy.

//#include "modrscript.h"

#include "tuple server.h

// Add all non-serial modules manually via IELAddModule Figure 12: IELAddModule
IELAddModule(&helloi, "helloi"); .
IELAddModule(&hellome, "hellome"); function calls for each
IELAddModule(&hellomyself,"hellomy"); module.

// IELAddModule(&modrscript,"modrscript");

IELAddModule(ielTupleServer, "ielTupleServer");

25

Why do we need a GUI? (contd.)

e Next, the user would need to link all of the compiled libraries to the Driver.c code
and compile the Driver.
e Lastly, the user would need to run the Driver executable with the configuration file.

e With the assistance of a Graphical User Interface, the trouble of trying to do each step
would be mitigated, as the GUI will seek to handle most of the responsibility for the
user and to also speed up the process of preparing and running modules through
openDIEL.

26

How the GUI Solves These Issues!

O openDIEL Configuration File Wizard

x

N\

Welcome!

openDIEL Configuration Wizard

open Distributive Interoperable Executive Library

MOREHOUSE @ A

Figure 13: Introduction Tab

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

The openDIEL Graphical User

Interface, constructed in Python,
provides a much simpler, faster,
well-laid-out alternative to the
module construction process. Be it
inside the Introduction tab or

another section, there are short

instructions to guide the user on
what they need to do.

27

Keyword and Module Tabs

% - O openDIEL Configuration File Wizard

| Module-Keywords | |

In the "Module-Keywords' tab, you may store any input arguments to be placed in modules later, such as the path to a file, or a system command. To start, hit the ‘Create Keyword' button. You can enter
your command give it a name to remember it by, then hit 'Save Keyword' to save it. To edit, click a keyword button, and when you finish, hit 'Edit Keyword' to save your changes.

Available Keywords ~ Keyword: [hellomy |

o T e Figure 14: Module Keywords Tab

hellothere
first
second
third

x O openDIEL Configuration File Wizard

| [Modue-Atrbutes | | |

Module-Attributes Instructions
Available Keywords .
(Double Click) | ‘ | ‘ Select Module Type:

hellomy Available Modules
retome [vanagea T [oy
hellothere Initial Search Path: -Jopendiel Tuple Server Size: hellome

. . first Module Name: 1 first
Figure 15: Module Attributes Tab T e - S secon
third Input Arguments:

Boundary Points: Execution Mode:
Size: [of Serial
Copies: 0 Parallel
Processes/Copy: 0

Threads/Process: 0

GPU: 0

Source Code:

Split Directory:

Workﬂow Tab

- O openDIEL Configuration File Wizard

Module-Keywords Module-Attributes _ Modify-Driver Launch-DIEL DIEL-Result

Reminders: Add all created groups to a set before clicking on a group to update it. If a group's order is set to empty, it will be removed on update. If the only group in a set is removed, the set
will be removed also. Right Click a group to add it to the current dependency entry box. If they exist, dependencies can only apply within the same set, or an error will occur inside the driver code!

[T U e

number_of_gpu =0;

{ Click,

{

- B e ™
Figure 16: Create e e

o e |
4 T args: -(:Ihelomeexe')

Workflow Tab & .

{

are-C ey | swo |
args=("./hellomyexe”);

Current Workflow of Sets and Groups

29

Driver Tab

- O openDIEL Configuration File Wizard

Module-Keywords Module-Attributes _ Launch-DIEL DIEL-Result

Driver Finished!!

Modify-Driver Instructions

Skipped Modules (executable, nonexistant, or non-C):

hellome
hellomy
'second-----

./GUI_MODS/hellome.h created.

Created New Libraries:
JGUI_MODS/ibmodfirst.a

DRIVER CODE:

”
* Copyright (c) 2015 University of Tennessee

*THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

*WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
*OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS

*IN THE SOFTWARE.
*

#include “tuple_server.h™

#define MOD_STRING_LENGTH 20

void ConfigFile(void);

ik minfind mrma At ;T

Figure 17: Modify Driver

Tab

30

-0 openDIEL Configuration File Wizard

Introduction Module-Keywords | Module-Attributes Create-Workflow Modify-Driver Launch-DIEL _

DIEL-Result Instructions

[Launch and

IEL-Module-Start :
|IEL-Module-Start :

Output Tabs

IEL-Module-Start :
IEL-Module-Start :
IEL-Module-Start :
IEL-Module-Start :
IEL-Module-Start :
IEL-Module-Start :

- 0 openDIEL Configuration File Wizard

Rank[0] Name[ielTupleServer]
Rank[2] Name[MODULE-1]
Rank([3] Name[MODULE-1]
Rank[4] Name[MODULE-1]
Rank(5] Name[MODULE-1]
Rank[6] Name[MODULE-1]
Rank{7] Name[MODULE-1]
Rank{8] Name[MODULE-1]
Rank[9] Name[MODULE-1]
Rank[10] Name[MODULE-1]
Rank[111 Name[MODULE-11

Module-Keywords Module-Attributes Modify-Driver _ DIEL-Result

mpirun -np 12 /driverAM /home/reuubO1userl/opendiel-gui-2018/hello_world.cfg

Figures 18 and 19: Launch-DIEL and

w OUTPUT 1w

DIEL-Result Tabs

31

Any

Questions?

