
Creating a GUI to
define workflows
in openDIEL and
adding support for
GPU Deployment

By: Efosa Asemota,
Frank Betancourt,
Quindell Marshall
Mentor: Dr. Kwai

Wong

Introduction
- openDIEL (Open Distributive Interoperable Executive Library) is a lightweight

workflow engine designed for usage in HPC environments.
- Allows for the unification of many different modules into a single executable
- Written in C, and uses openMPI

2

Workflow files
- Workflow configuration files specify the workflow and what resources are to be used

by each module
- First section contains modules: This is where you define what resources are needed

by each module, such as the number of MPI processes, the number of GPUs, as well
as defining where input and output needs to come from if needed.

- Second section contains the workflow: This is where the order of the modules is
defined, and dependencies are specified, as well as the number of iterations that each
group of modules needs to run

3

Intermodular Communication
There are two forms of communication:

- Direct, synchronous module-to-module communication with IEL functions IEL_put()
and IEL_get()

- Indirect, asynchronous tuple space communication with IEL functions IEL_tput() and
IEL_tget.

- Also supports using multiple tuple servers with a variety of different API calls for
modules to communicate with tuple servers in different ways.

4

Driver
- As previously mentioned, all modules are unified under a single executable, referred

to as the driver.
- Driver makes calls to MPI_Init(), MPI_Finalize(), and makes relevant calls to IEL

member functions to read the configuration files, add modules, and start the entire
IEL system

5

6

Figure 1: Simplified overview of MPI process usage

Managed and Automatic modules
There are two basic types of modules:

-Automatic: These are serial modules, with no calls to MPI functions, and they can simply
be run in openDIEL with fork() and exec()

-Managed: These are parallel modules with calls to MPI functions. These require that any
MPI_Init() or MPI_Finalize() calls are removed, since the driver will make these calls.
Additionally, the MPI_COMM_WORLD created must be removed and replaced with the
proper subcommunicator of the MPI_COMM_WORLD created by the driver.

7

Interface
-As previously mentioned, the interface is basically just a configuration file specified by
the user

-Resources are specified on a per module basis through keywords, such as copies,
processes_per_copy, num_gpu, threads_per_process, size, stdin, and splitdir

-Workflows are broken into two divisions: sets and groups

8

Application: GREP in parallel
-An application of openDIEL is parallel data searching

-Existing serial code can easily be parallelized under openDIEL by the following
process:

1) Split data to be processed into smaller pieces
2) Run several unmodified copies of the script on different subsets of the data

and direct the results of the script to files
3) Collect the output from the files and combine into a single file

9

Transit UDID search
-The need for such an application arose when existing Python scripts for a data search
were not sufficiently fast for the data size.

-The goal was to be able to search through a dataset of 30 .csv files, totaling at about 180
million rows and 31 GB. Each row has 15 columns, and the goal is to search for and save
all of the rows whose “UDID” column value matches the UDID value being searched for.

10

11Figure 2: Graph of parallel search with openDIEL

Workflow in openDIEL

12
Figure 3: Parallel search workflow configuration file

Results

Further improvements could likely be made by directing search results to an openDIEL
tuple server, rather than conducting file I/O for saving and collecting search results.

13

Figure 4: Comparison of various methods to search for 1 UDID

Why do we need a GUI?
● The purpose of the GUI is to provide a much more user-friendly interface in order to

execute openDIEL.

● Currently, in order for a user to execute openDIEL, they would have to go through a
lot of tedious and time consuming tasks.

14

Why do we need a GUI? (contd.)
● One of the first steps that the user would have to do is to first convert their source

code into a module/function by using the Python program ModMaker.py.
● The reason for this step is because in order for openDIEL to be executed, the user

must convert their code(s) into a function.
● The user would need to repeat this step for as many modules that they would want to

create.

15

Original Code

16

Figure 5: This figure is a
simple example of a Hello
World program

Converted Code from ModMaker.py

17

Figure 6: This is the result of
the Hello World program after
it has been converted by
ModMaker.py

Why do we need a GUI? (contd.)
● The next step would be for the user to also compile each module as library.
● In order to do that, the user would need to enter the following commands as shown in

the following figure.
● Again, the user would need to repeat this step for as many modules that they would

want to create.

18

Figure 7: Commands for compiling a module as a library.

Why do we need a GUI? (contd.)
● The next step would be for the user to create a header file for each module that can be

included into the Driver.c code.
● This step is very simple as all the user would need to do is follow this layout as

shown in the following figure.
● The user again would repeat this step for as many modules that they would want to

create.

19

Header File Creation

20

Figure 8: Example of a
Header File for a module.

Why do we need a GUI? (contd.)
● The next step would be for the user to create a workflow configuration file.
● The workflow configuration file is divided into two sections: the module section and

the workflow section.
● The purpose of the module section of the configuration file is to define the existence

of each module.
● The purpose of the workflow section is to define how each module will run.
● The following figures illustrate the format of a typical configuration file.

21

22

Figure 9: Module Section of the
Configuration File.

23

Figure 10: The workflow section of the Configuration File

Why do we need a GUI? (contd.)
● The next step would be for the user to edit the Driver.c code by including each of the

header files that correspond to each module they created.
● They would also go down in the code to the IELAddModule function call and pass as

arguments a function pointer to the module and the name of the module as a string
argument.

● The following figures detail these steps.

24

25

Figure 11: Module Header
Files included in the
Driver.c code.

Figure 12: IELAddModule
function calls for each
module.

Why do we need a GUI? (contd.)
● Next, the user would need to link all of the compiled libraries to the Driver.c code

and compile the Driver.
● Lastly, the user would need to run the Driver executable with the configuration file.

● With the assistance of a Graphical User Interface, the trouble of trying to do each step
would be mitigated, as the GUI will seek to handle most of the responsibility for the
user and to also speed up the process of preparing and running modules through
openDIEL.

26

How the GUI Solves These Issues!
The openDIEL Graphical User
Interface, constructed in Python,
provides a much simpler, faster,
well-laid-out alternative to the
module construction process. Be it
inside the Introduction tab or
another section, there are short
instructions to guide the user on
what they need to do.

27
Figure 13: Introduction Tab

Keyword and Module Tabs

28

Figure 14: Module Keywords Tab

Figure 15: Module Attributes Tab

Workflow Tab

Figure 16: Create
Workflow Tab

29

Driver Tab

Figure 17: Modify Driver
Tab

30

Launch and
Output Tabs

Figures 18 and 19: Launch-DIEL and
DIEL-Result Tabs

31

Any
Questions?

32

