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Abstract

Convolutional Neural Networks are extremely usetul in computer vision
and many other related fields, but the computation of them tends to be
extremely expensive in many cases. The aim of this research project 1s to
accelerate Convolutional Neural Networks, while i1t 1s divided into two
directions:

e To design a machine-learning back-end on GPU using the MAGMA
library to using etficient algorithms;

e To analyze the performance of various machine learning back-ends.
Utilizing magmaDNN which uses the magma back-end and Keras, a
high-level Python wrapper for which one of three machine learning
back-ends can be specified, TensorFlow, Theano, or CNTK. Using well
known CNN benchmarks such as MNIST, CIFAR-10, and ImageNet.

Goals

e To design an algorithm to efficiently compute the convolutional layers of
CNN. Try it on CPU first to compare the efficiency and verify the
accuracy of the algorithm, then implement it on GPU using C with
MAGMA library. Do experiments on benchmarks with classic CNN
architectures ((e.g., CIFAR-10 on LeNet-5), compare the results with
other implementations of CNN on GPU, such as cuDNN.

e Add a pruning step in the convolutional layer, compare the performance
(both accuracy and speed) between vanilla CNN (without pruning) and
with pruning in spatial domain and Winograd domain respectively.

e Analyze Convolutional Neural Network hyperparameters and their impact
on performance related to traning time and accuracy on various
architectures such as Lenet-5 and VGG-16.

e (Create various CNN architectures using magmaDNN and Keras catered
toward specific dataset benchmarks e.g., Images of cats and dogs, MNIST
dataset, ImageNet dataset.

Winograd Algorithm

The Winograd minimal filtering Algorithm transforms the element-wise matrix-
matirx multiplication into GEMM, which can have better efficiency on GPU
with MAGMA library. For any data d € M,,, «,, and filter ¢ € M,.,,. where
m,r € N, we can always find constant matrices A, G, B such that we can repre-
sent their convolution Y as

Y = AT[[GgG"]) ® [BTdB]|A

therefore we have reduced the time of element-wise multiplications from (m—r+
1)? % r? down to 1. Moreover, we can transform the remaining one into GEMM
by dividing the transformed images (B?dB) into small tiles, scattering it into
a sequence of matrices along the elements of each tile, and do similar things
to transformed filters. Let T' denote the number tiles. S being the number of
elements in each tile, C' being the number of channels, K denoting the number
of filters, then we can transform [G¢G?] ® [B?dB] into the summation of S
times of GEMM with matrices of size T' x ' and C x K.
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Experiment on CPU

We have tested the algorithm described above on CPU, while the GPU
work 1s still in process. In each layer we conduct the convolution twice, with
conventional computation and Winograd algorithm respectively, to verity
the accuracy of Winograd algorithm. As for performance, we use GFlops to
measure that. In the experiment, we calculate the actual GFlops (representing
the actual computations needed in Winograd algorithm) and the effective
GFlops (representing the computations need to complete the same work
using conventional method to calculate convolution). VGG-16 network with
input 1images of size 226%226*3 was used in this experiment.
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LeNet-5 Architecture

Input Layer Hyperparameters
Learning Rate 0.01
Activation Rectified Linear Unit(RelLU)
Convolutional Layer 1 Functions Sigmoid for output layer
Batch size 64
5 Epochs 15
Max Pooling Layer 1 Conv 1 6 55 Filters
Max Pooling 1 2x2, Stride of 2
. Conv 2 16 5x5 Filters
COﬂVOI Ut|ona| Layer 2 Max Pooling 2 2x2, Stride of 2
Fully Connected 1 | 120 Neurons
Max POO'ing Layer 2 Fully Connected 2 | 84 Neurons

The LeNet-5 architecture 1s the
most  simplistic  classic CNN
architecture.  We  1mplemented
Lenet-5 in magmaDNN and Keras
to quickly evaluate various CNN
hyperparameters and architectures.
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Example Tuning Filter Size

The graphs below show the result of modifying the LeNet-3
implemented 1n magmaDNN varying filter sizes. Viewing the accuracy
of the model as well as the total time to train the model. Batch size,
learning rate, number of epochs, number, type and order of layers
remained unchanged. The model was trained on the CIFAR-10 dataset
which consists of 60,000 images of 10 classes 6,000 Images per class
split 5:1 training: testing [1].
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of filters only 1ncreases
training time.

Future Work

Filter Sizes

Compare magmaDNN LeNet-5 with the Keras implementations
measuring training time.

Continue Modity CNN omdel and tune hyperparameters.

Create a Python wrapper for magmaDNN.

e Complete the GPU implementation of Winograd Algorithm for CNN
with MAGMA, compare with other implementations.
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