
Discontinuous Galerkin Sparse Grid Method for

Maxwell’s Equations

Tianyang Wang∗

August 1, 2018

Abstract

In this paper, we will use discontinuous Galerkin method to solve the Maxwell’s equations, where we
will use sparse grid method to help us reduce the degrees of freedom from O(h−d) to O(h−1|log2h|d−1) for
d-dimensional problems without compromising much accuracy. Here h refers to the mesh size. And we will
test different numerical fluxes to see the order of accuracy, for example, central flux, alternating flux, and up-
winding flux. Moreover, we will test the order of ∆t for time advanced methods, including explicit 3rd order
TVD Runge Kutta method, implicit Backward Euler, implicit Trapezoidal Rule, implicit 4th order Gauss-
Legendre method and semi-implicit Bacward Euler. Then we can compare the results between different time
advanced methods to get our conlusion.

1 Introduction

1.1 Maxwell’s Equations

In this paper, we consider the Maxwell’s equations, which describe how electric and magnetic fields are gener-
ated by charges, currents, and charges of the fields. And one important consequence of the equations is that
they demonstrate how fluctuating electric and magnetic fields propagate at the speed of light.

Let the domain Ω× (0, T), the following problem will be considered in this paper,

∂B

∂t
+∇×E = 0

εµ
∂E

∂t
−∇×B = −µJ

∇ ·E =
ρc
εc

∇ ·B = 0

where E and B denote the electric and magnetic field densities, ε is the electric permittivity, and µ is the
magnetic permeability; we assume the material parameters as piecewise constant and independent of time. At
time t = 0, the problem are prescribed by initial conditions

E0 = E(x, 0), B0 = B(x, 0) on Ω

In addition, we consider the problem with periodic boundary condition on ∂Ω× (0, T).

1.2 Discontinuous Galerkin Method

Discontinuous Galerkin (DG) methods have been attracted progressively research interest for numerical simula-
tion of electromagnetic wave propagation problems in the time-domain. DG method is a finite element method
where the discontinuous basis functions are used in the approximation.

Reed and Hill first introduced the DG methods for linear neutron transport equations in 1973 [1]. As a class of
FE methods, DG methods adopt finite element type meshes for spatial discretization and inherit the high geo-
metrical adaptability of FE. Moreover, they allow the solutions to be discontinuous across the element interface

∗Department of Mathematics, The Chinese University of Hong Kong

1

by using discontinuous basis functions over the elements and defining numerical fluxes in the element interfaces,
which differs from traditional continuous nodal FE methods. The local basis functions over one element are
completely independent of those in neighboring elements, which offers inherent parallelism and allows the use
of non-conforming meshes. There has been increasing researches on EM simulations using DG methods.

The DG method have gained popularity in many applications over the past few decades due to their dis-
tinctive features. And the advantage of DG method include high order approximation of the unknown field,
their flexibility in choosing the discretization meshes and the approxiamation spaces, and the adaption to the
parallel computing. The compact nature of DG discretization scheme is in favour of a high computation to
communication ratio especially when the interpolation order is increased [2, 3]. However, the DG method will
have large computation cost owing to the large number of degrees of freedom of the approximation space, which
are the main bottleneck for simulations in high dimensions.

1.3 Sparse Grid Method

The main challenge of DG method for high dimensional problem is commonly known as the curse of dimen-
sionality, which refers to the fact that the computational cost and storage requirements scale as O(h−d) for
a d-dimensional problem, where h is the uniform mesh size in each dimension [4]. This challenge typically
can not be resolved through barely increasing computational resources, and it requires the the improvement of
numerical techniques as well as efficient computational implementations.

The sparse grid techniques have been developed as a major tool to break the curse if dimensionality of grid-based
approach [5]. The idea relies on a tensor product hierarchical basis representation, which is able to reduce the
degrees of freedom from O(h−d) to O(h−1|log2h|d−1) for d-dimensional problems without compromising much
accuracy. The sparse grid method can achieve the accuracy of O(hk|log2h|d−1) in the energy norm, where k is
the degree of polynomials used [4].

2 Numerical Methods

2.1 DG Notations

Throughout the paper, standard notations will be used for Soblev spaces. Given a bounded domain B ⊂ R, we
denote by Hm(B) the L2-Sobolev space of order m ≥ 0 and by || · ||m,B and | · |m,B the usual Sobolev norm and
seminorm, respectively. For m = 0, we write L2(B) instead of H0(B).

Let Th = {K} be partitions of Ωx, with K being Cartesian elements and h being the mesh size, then
Th = {K : ∀K ∈ Th} defines a partition of Ω. Let E be the set of the edges of Th. Next we define the
discontinuous finite element space [6]:

V kh = {v ∈ L2(Ω) : v|k ∈ P k(K), ∀K ∈ Th}

where P k(B) denotes the set of polynomials of total degree at most k on B, and k is a nonnegative integer.

And for piecewise functions respect to Th, we introduce the jumps and averages as follows. For any edge
e = {K+ ∩K−} ∈ E , with n± as the outward unit normal to ∂K± and U± = U |K± , the jumps across e are
defined as

[U]n = U+ · n+ +U− · n−

[U]τ = U+ × n+ +U− × n−

and the averages are

{U} =
1

2
(U+ +U−)

2.2 SG Notations

Without loss of generality, we consider the interval Ω = [0, 1], then the grids are defined as the nested grids,
where the n-th level grid Ωn consists of 2n uniform cells Inj = (2−nj, 2−n(j+1)), j = 0, . . . , 2n−1, we can define
[4]:

V nk := {v : v ∈ P k(Inj),∀j = 0, . . . , 2n − 1}

2

to be the usual piecewise polynomials of degree at most k on the n-th level grid Ωn. Then we have

V 0
k ⊂ V 1

k ⊂ V 2
k ⊂ · · ·

We can now define the multiwavelet subspace Wn
k , n = 1,2,. . . as the orthogonal complement of V n−1k in V nk

with respect to the L2 inner product on Ω,

V n−1k

⊕
Wn
k = V nk ,W

n
k ⊥ V n−1k

Here we let the base space W 0
k := V 0

k , which consists of all standard piecewise polynomials of up to degree
n. The dimension of Wn

k is 2n−1(k + 1) when n ≥ 1, and k + 1 when n = 0. In summary, we have found a

hierarchical representation of the standard piecewise polynomial space V nk on Ωn as V nk =
⊕

0≤j≤nW
j
k .

For implementation purpose, we need to introduce basis functions for space Wn
k . The multiwavelet bases

for different hierarchical levels are introduced as [7]:

vji,n(x) = 2(n−1)/2hi(2
n−1x− j), i = 1, . . . , k + 1, j = 0, . . . , 2n−1 − 1

where functions h1, . . . , hk are piecewise polynomial, vanish outside the interval [0, 1], and are orthogonal to
low-order polynomials.

Now, for a multi-index l = [l1, l2, . . . , ld] ∈ Nd0, where d is the dimension and Nd0 denotes the set of nonnegative
integers, the l1 and l∞norms are defined as

|α|1 :=

d∑
m=1

αm, |α|∞ := max
1≤m≤d

αm

We define the tensor-product mesh grid Ωl = Ωl1
⊗

Ωl2
⊗
...

⊗
Ωld and the crossing mesh size hl = (hl1 , hl2 , . . . , hld),

where hlm = 2−lm , then we define an elementary cell I lj = {x : xm ∈ (hmjm, hm(jm + 1)),m = 1, 2, . . . , d}, and
then

V l
k := {v : v(x) ∈ [P k(I lj)], 0 ≤ j ≤ 2l − 1}

where P k(I lj) contains all the polynomials of degree up to k in each dimension on cell I lj . And if we use equal

mesh refinement of size hN = 2−N in each direction, we denote the space grid and space to be ΩN and V N
k ,

respectively.

Based on the tensor product construction, we have

W l
k = W l1

k,x1
×W l2

k,x2
× · · · ×W ld

k,xd

Also based on the one-dimensional hierarchical decomposition, we have

V l
k = V l1k,x1

× V l2k,x2
× · · · × V ldk,xd

=
⊕

j1≤l1,...,jd≤ld

W j
k

V N
k = V Nk,x1

× V Nk,x2
× · · · × V Nk,xd

=
⊕
|l|∞≤N

W j
k

The basis functions for W l
k can be defined by a tensor product

vji,l :=

d∏
m=1

vjmim,lm(xm), jm = 1, . . . ,max(0, 2lm−1), im = 1, . . . , k + 1

And the sparse finite element approximation space V̂ N
k is defined on ΩN by

V̂ N
k =

⊕
|l|1≤N

W j
k

The sparse finite element space is a subset of traditional piecewise polynomial space, and its number of degrees
of freedom scales as O((k+1)d2NNd−1), which is significantly less than that of traditional space with O((2N (k+
1))d). This is the key for computational savings and reduction in high dimensions [4].

3

2.3 Numerical Scheme

The semi-discrete DG method for Maxwell system are defined by following: given k ≥ 0, look for Eh,Bh ∈ V kh ,
such that for any U ,V ∈ V kh∫

K

∂tBh · V dx = −
∫
K

Eh · ∇ × V dx−
∫
∂K

n̂×Eh · V ds∫
K

εµ∂tEh ·U dx =

∫
K

Bh · ∇ ×U dx+

∫
∂K

n̂×Bh ·U ds−
∫
K

µJ ·U dx

where n is the outward unit normal of ∂K, and all hat functions denote the numerical fluxes.

n̂×Eh := n× Êh, n̂×Bh := n× B̂h

Thus the numerical method becomes the following: look for Eh,Bh ∈ V kh , such that

bh(Eh,Bh;U ,V) = lh(J ;U)

where

bh(Eh,Bh;U ,V) =
∑
K∈Th

(

∫
K

εµ∂tEh ·Udx−
∫
K

Bh · ∇ ×U dx

+

∫
K

∂tBh · V dx+

∫
K

Eh · ∇ × V dx

−
∫
∂K

n̂×Bh ·U ds+

∫
∂K

n̂×Eh · V ds)

lh(J ,U) = −
∑
K∈Th

∫
K

µJ ·Udx

Here may use the central flux, alternating flux, and upwind flux.

central flux : Êh =
1

2
(Eh

+ +Eh
−), B̂h =

1

2
(Bh

+ +Bh
−)

alternating flux : Êh = Eh
+, B̂h = Bh

− or Êh = Eh
−, B̂h = Bh

+

up− winding flux : Êh = {Eh}+
1

2
[Bh]τ , B̂h = {Bh} −

1

2
[Eh]τ

The order of accuracy for central flux, alternating flux and up-winding flux are O(hk),O(hk+1/2),O(hk+1/2)
respectively. Here h is the mesh size and k is the degree.

2.4 Energy Conservation

We are able to prove that central flux and alternating flux guarantee the conservation of energy, and the energy
will decrease for up-winding flux.

Let U = Eh, V = Bh,

−
∑
K

∫
K

µJ ·Eh dx =
1

2

d

dt

∑
K

(

∫
K

(εµ|Eh|2 + |Bh|2) dx

−
∫
∂K

([Eh ×Bh] + B̂h × [Eh]τ − Êh × [Bh]τ) ds)

And since for central flux and alternating flux,

[Eh ×Bh]n + B̂h × [Eh]τ − Êh × [Bh]τ = 0

Then we have energy conservation

−
∑
K

∫
K

µJ ·Eh dx =
1

2

d

dt

∑
K

(

∫
K

(εµ|Eh|2 + |Bh|2) dx

And for upwind flux, the energy is decreasing,

−
∑
K

∫
K

µJ ·Eh dx =
1

2

d

dt

∑
K

(

∫
K

(εµ|Eh|2 + |Bh|2) dx

+
1

2

∫
∂K

|[Eh]τ |2 + |[Bh]τ |2 ds)

4

2.5 Time Advanced Method

We use explicit, implicit and semi-implicit time advanced method to solve the method of lines ODE resulting
from the semi-discrete DG scheme, d

dtGh = R(Gh). We use total variation diminishing (TVD) high-order
Runge-Kutta methods for explicit method [8], and for implicit method, we use Backward Euler, Trapezoidal
Rule, and Gauss-Legendre method [9]. For semi-implicit scheme, we use semi-implicit Backward Euler Method.
Here Gnh, B

n
h , E

n
h represent a numerical approximation of the solution at discrete time tn.

TVD Runge Kutta Method The commonly used third-order TVD Runge Kutta Method is given by

G
(1)
h = Gnh + ∆tR(Gnh)

G
(2)
h =

3

4
Gnh +

1

4
G

(1)
h +

1

4
∆tR(G

(1))
h

Gn+1
h =

1

3
Gnh +

2

3
G

(2)
h +

2

3
∆tR(G

(2)
h)

Backward Euler The Backward Euler is a first order A-stable implicit Runge-Kutta method given by

Gn+1
h = Gnh + ∆tR(Gn+1

h)

Trapezoidal Rule The Trapezoidal Rule is a second order A-stable implicit Runge-Kutta method given by

Gn+1
h = Gnh +

1

2
∆t(R(Gnh) +R(Gn+1

h))

Gauss-Legendre Method We use fourth-order Gauss-Legendre method which is also A-stable, given by

G
(1)
h = R(tn + (

1

2
− 1

6

√
3)∆t, Gnh +

1

4
∆tG

(1)
h + (

1

4
− 1

6

√
3)∆tG

(2)
h)

G
(2)
h = R(tn + (

1

2
+

1

6

√
3)∆t, Gnh + (

1

4
+

1

6

√
3)∆tG

(1)
h +

1

4
∆tG

(2)
h)

Gn+1
h = Gnh +

1

2
∆tG

(1)
h +

1

2
∆tG

(2)
h

Semi-Implicit Backward Euler Method We divide the ODE into two parts, and the first order method
is given by

Bn+1
h = Bnh + ∆tR1(Enh)

En+1
h = Enh + ∆tR2(Bn+1

h)

2.6 CFL condition

Then we can have the Courant-Friedrichs-Lewy condition for these time advanced method, which is a necessary
condition for convergence while solving certain partial differential equations numerically.

∆t = CFL ∗∆x−r

where r is the order of the different time advanced method we listed above and ∆x refers to the mesh size h.

And we can have some derivation of the spectral radius of different method, then we are able to have the
boundary condition for CFL number.

Suppose Gn+1
h = MGnh + c, and the target solution is G∗h

G∗h = MG∗h + c

Gn+1
h = MGnh + c

Then we can see the error
en+1 = Men

en+1 = Mn+1e0

We need the spectral radius of M less than 1, than the iteration scheme will converge. Hence we are able to
get the boundary condition for CFL number to get the small enough ∆t. And most important advantage of
implicit time advanced method is that it can have much larger CFL number than that of explicit method, which
means we are able to choose larger ∆t, leading to a reduction of computation cost especially in high order and
dimension cases.

5

3 Numerical Experiment

3.1 3D Case

In this subsection, we gather computational results for three-dimensional case.

Example 1 We solve the following three-dimensional problem using explicit time advanced method, we as-
sume ε, µ = 1, and the domain Ω = [0, 1]3. 

∂B

∂t
+∇×E = 0

∂E

∂t
−∇×B = f

where the source term f , exact solution B,E are given as

f =


−π2 cos(2πx) sin(2πy) sin(2πz) sin(π2 t) + 24π cos(2πx) sin(2πy) sin(2πz) sin(π2 t)

x− x

π
2 sin(2πx) sin(2πy) cos(2πz) sin(π2 t)− 24π sin(2πx) sin(2πy) cos(2πz) sin(π2 t)



B =


−4 sin(2πx) cos(2πy) cos(2πz) sin(π2 t)

8 cos(2πx) sin(2πy) cos(2πz) sin(π2 t)

−4 cos(2πx) cos(2πy) sin(2πz) sin(π2 t)



E =


− cos(2πx) sin(2πy) sin(2πz) cos(π2 t)

x− x

sin(2πx) sin(2πy) cos(2πz) cos(π2 t)



We first test the scheme with central flux, alternating flux and up-winding flux with k = 1, ∆t = 10−4,
MaxT=100, here MaxT means the number of iteration. Then we can have the time period equals to 10−2. And
then we change the mesh size h by changing the level l, where h = 2−l. From this test we can see that the or-
der of accuracy for central flux, alternating flux and up-winding flux match O(h),O(h1.5),O(h1.5) respectively.
Following is the accuracy table of this test (Table 1) and the figure of L2 error with respect to the Lev (Figure
1).

Table 1: The L2 error and order of accuracy for fixed ∆t and MaxT

k l central flux order alternating flux order up-winding flux order

1 3 9.847E−03 2.195E−02 1.896E−02
1 4 9.020E−03 0.127 1.529E−02 0.521 1.245E−02 0.607
1 5 7.767E−03 0.216 9.257E−03 0.724 8.392E−03 0.570
1 6 5.017E−03 0.631 5.265E−03 0.814 4.035E−03 1.056
1 7 2.781E−03 0.851 2.623E−03 1.006 1.793E−03 1.171
1 8 1.463E−03 0.927 1.182E−03 1.150 7.015E−04 1.354
1 9 7.478E−04 0.968 4.334E−04 1.448 2.526E−04 1.474

6

3 4 5 6 7 8 9

Lev

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

L
2
 E

rr
o

r

Central Flux

Alternating Flux

Up-winding Flux

Slope -1

Slope -1.5

Figure 1: L2 error for different numerical flux with fixed ∆t and MaxT

Next we are going to see when we fix the CFL number for each scheme of numerical flux, what the order of accu-
racy will be. Here we choose CFL=0.0068 for central flux, CFL=0.0045 for alternating flux, and CFL=0.00625
for up-winding flux, in order to make the iteration scheme converge. And this time we choose time period=1.
Here ∆t = CFL ∗ 2(−l/3), and l refers to the level. Following is the accuracy table of this test (Table 2) and
the figure of L2 error with respect to the level (Figure 2).

Table 2: The L2 error and order of accuracy for fixed CFL

k l central flux order alternating flux order up-winding flux order
CFL=0.0068 CFL=0.0045 CFL=0.00625

1 4 1.886E+00 1.277E+00 4.519E−01
1 5 1.501E+00 0.332 9.158E−01 0.480 2.224E−01 1.023
1 6 8.281E−01 0.857 4.058E−01 1.174 1.008E−01 1.141
1 7 4.749E−01 0.802 1.858E−01 1.127 3.425E−02 1.558
1 8 2.501E−01 0.925 7.502E−02 1.309 1.169E−02 1.551
1 9 1.255E−01 0.995 2.748E−02 1.450 4.294E−03 1.445

4 5 6 7 8 9
Lev

10
-3

10
-2

10
-1

10
0

10
1

L
2
 E

rr
o

r

Central Flux with CFL=0.0068

Alternating Flux with CFL=0.0045

Up-winding Flux with CFL=0.00625

Slope -1

Slope -1.5

Figure 2: L2 error for different numerical flux with fixed CFL number

7

Furthermore, through calculating the spectral radius we can see the boundary CFL condition for different
numerical flux. According to this result (Table 3), the CFL number of alternating flux should be smaller than
other two fluxes, which means ∆t should be smaller for alternating flux. Moreover, we also test the central flux
cases for sparse grid scheme and full grid scheme (Table 4), showing that the full grid cases should have smaller
CFL number and ∆t.

Table 3: The approximation of bounding CFL

k l central flux CFL alternating flux CFL up-winding flux CFL
spectral radius spectral radius spectral radius

1 3 3.271E+01 0.1059 5.156E+01 0.0672 6.162E+01 0.0811
1 4 6.428E+01 0.0679 9.815E+01 0.0445 1.089E+02 0.0578
1 5 1.282E+02 0.0429 1.931E+02 0.0285 2.045E+02 0.0388
1 6 2.561E+02 0.0271 3.846E+02 0.0180 3.962E+02 0.0252
1 7 5.121E+02 0.0170 7.683E+02 0.0114 7.800E+02 0.0161
1 8 1.024E+03 0.0107 1.536E+03 0.0072 1.465E+03 0.0108

Table 4: The spectral radius and CFL number for central flux

k l sparse grid sparse grid full grid full grid
spectral radius CFL spectral radius CFL

1 3 3.271E+01 0.1059 5.521E+01 0.0627
1 4 6.428E+01 0.0679 1.104E+02 0.0395
2 3 6.614E+01 0.0524 1.115E+02 0.0311
2 4 1.298E+02 0.0336 2.230E+02 0.0196

3.2 1D Case

In this subsection, we gather computational results for one-dimensional case.

Example 2 We solve the following one-dimensional problem using time advanced method listed above with
central flux, we assum the domain is Ω = [0, 1].

∂B3

∂t
=
∂E1

∂x2
∂E1

∂t
=
∂B3

∂x2
− j1

∂E2

∂t
= −j2

where the source term j1, j2, exact solution B3, E1, E2 are given as

j1 =
15

2
π cos(2πx) sin(

π

2
t), j2 =

π

2
sin(2πx) sin(

π

2
t)

B3 = 4 sin(2πx) sin(
π

2
t), E1 = − cos(2πx) cos(

π

2
t), E2 = sin(2πx) cos(

π

2
t)

For this case, we first test the order of ∆t for Backward Euler, Trapezoidal Rule and Gauss-Legendre method,
the following figure shows that the order of ∆t for these three method is O(∆t),O(∆t2), and O(∆t4) respectively
(Figure 3). Here the y-axis is the L2 error, and x-axis is 1/∆t.

8

10
0

10
1

10
2

10
3

1/∆ t

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

L
2
 E

rr
o
r

Backward Euler

Gauss-Legendre

Trapezoidal Rule

Slope -1

Slope -2

Slope -4

Figure 3: L2 error for different different implicit method

Example 3 We solve the following one-dimensional problem using time advanced method listed above with
central flux, we assum the domain is Ω = [0, 1].

∂B3

∂t
=
∂E1

∂x2
∂E1

∂t
=
∂B3

∂x2
− j1

∂E2

∂t
= −j2

where the source term j1, j2, exact solution B3, E1, E2 are given as

j1 = (2π +
1

2π
) cos(2πx)e−t, j2 = sin(2πx)e−t

B3 = sin(2πx)e−t, E1 =
1

2π
cos(2πx)e−t, E2 = sin(2πx)e−t

For this case we first use trapezoidal rule to test the L2 error in different time period with different fixed CFL
number, here ∆t = CFL ∗ 2−l/2, l refers to the level size. We are able to see that with CFL number going
larger, the L2 error will also be larger. Following is the accuracy table of this test (Table 5) and the figure of
L2 error with respect to the level (Figure 4).

Table 5: The L2 error for k = 1, h = 2−10, Trapezoidal Rule

Time Period CFL=1 CFL=5 CFL=10

0.01 2.352E−04 7.072E−04 2.025E−03
1.00 2.997E−04 1.039E−03 4.184E−03
2.00 3.993E−04 1.319E−03 5.201E−03
3.00 4.260E−04 1.454E−03 5.588E−03
4.00 4.298E−04 1.491E−03 5.733E−03

And we can also compare the explicit, implicit and semi-implicit time advanced method to see what the different
∆t they need to make the iteration scheme converge to the target solution that we want with the error in
acceptable level. In this test, we fix level l = 9, degree k = 1. The results are given in the following table (Table
6).

9

0 0.5 1 1.5 2 2.5 3 3.5 4

Time period

10
-4

10
-3

10
-2

L
2
 e

rr
o

r

CFL=1

CFL=5

CFL=10

Figure 4: L2 error for for different time period with fixed CFL number

Table 6: Time Advance Method for 1D Maxwell’s Equation of k = 1, h = 2−9, Central Flux.

Time Advance Method L2 error Time Step
Explicit 3rd TVD Runge-Kutta 2.432E−03 8.000E−04

Implicit Backward Euler 2.406E−03 1.000E−03
Implicit Trapezoidal Rule 2.381E−03 1.000E−02

Implicit 4th Order Gauss-Legendre 2.548E−03 1.000E−01
Semi-implicit Backward Euler 2.383E−03 9.000E−04

4 Conclusion and Future Work

In this paper, we test different numerical fluxes using explicit 3rd order TVD Runge Kutta method in 3D case.
The testing results show that the order of accuracy for alternating flux and up-winding flux are half an order
higher than that of central flux, and the CFL bounding condition for alternating flux is smaller than those of
central flux and up-winding flux. This leads us to the conclusion that up-winding flux can have higher order of
accuracy, and also have the fewest limitations of ∆t among these three numerical fluxes.

Moreover, for the time advanced method, we test explicit 3rd order TVD Runge Kutta method, implicit Back-
ward Euler, implicit Trapezoidal Rule, implicit 4th order Gauss-Legendre method and semi-implicit Bacward
Euler. From the results shown above, it is easy for us to see that explicit and semi implicit method will have
stricter limitations of ∆t, but another problem for implicit time advanced method is that it will take much
more time to compute the inverse of the matrix, which we need to make it more efficient in the future work.
Pre-conditioner method is suggested to improve the calculation of the inverse problem.

10

Acknowledgement

This project is sponsored by Oak Ridge National Laboratory, Joint Institute for Computational Sciences, Uni-
versity of Tennessee, Knoxville and The Chinese University of Hong Kong.

Most sincere gratitude to my mentors: Dr.Lin Mu, Dr.David L.Green, Dr.Ed D’Azevedo, Dr.Kwai Wong.

References

[1] William H Reed and TR Hill. Triangular mesh methods for the neutron transport equation. Technical
report, Los Alamos Scientific Lab., N. Mex.(USA), 1973.

[2] Bernardo Cockburn, George E Karniadakis, Chi-Wang Shu, and M Griebel. Discontinuous galerkin methods
theory, computation and applications, lectures notes in computational science and engineering. Inc. Marzo
del, 2000.

[3] Stephane Lanteri and Ronan Perrussel. An implicit hybridized discontinuous Galerkin method for time-
domain Maxwell’s equations. PhD thesis, INRIA, 2011.

[4] Zixuan Wang, Qi Tang, Wei Guo, and Yingda Cheng. Sparse grid discontinuous galerkin methods for
high-dimensional elliptic equations. Journal of Computational Physics, 314:244–263, 2016.

[5] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta numerica, 13:147–269, 2004.

[6] Yingda Cheng, Irene M Gamba, Fengyan Li, and Philip J Morrison. Discontinuous galerkin methods for the
vlasov–maxwell equations. SIAM Journal on Numerical Analysis, 52(2):1017–1049, 2014.

[7] Bradley K Alpert. A class of bases in lˆ2 for the sparse representation of integral operators. SIAM journal
on Mathematical Analysis, 24(1):246–262, 1993.

[8] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory shock-capturing
schemes, ii. In Upwind and High-Resolution Schemes, pages 328–374. Springer, 1989.

[9] Roger Alexander. Diagonally implicit runge–kutta methods for stiff ode’s. SIAM Journal on Numerical
Analysis, 14(6):1006–1021, 1977.

11

