
Discontinuous Galerkin
Sparse Grid method for

Maxwell’s equations
Student: Tianyang Wang

Mentor: Dr. Lin Mu, Dr. David L.Green, Dr. Ed D’Azevedo, Dr. Kwai Wong

Motivation
u We consider the Maxwell’s equations, which is a set of high dimensional partial

differential equations describing how electric and magnetic fields are generated
by charges, currents, and charges of the fields. And one important consequence
of the equations is that they demonstrate how fluctuating electric and magnetic
fields propagate at the speed of light.

u We choose to use discontinuous Galerkin method (DG), whose advantages include
high order approximation and adaption to parallel computing. But the shortage is
that DG method will have large degree of freedom for high dimensional problem,
which may have too much computational cost.

u So we use the sparse grid method which based on the tensor product of
hierarchical basis functions, in order to reduce the computational cost, especially
in high dimensions.

u Discontinuous Galerkin Method

The DG method will use basis functions that are
discontinuous in the boundary of each grid. And we
use the set of basis functions to approximate the
target function that we want.

Here we use Hierarchical basis (bottom left) rather than nodal
basis (bottom right)

u Discontinuous Galerkin Method

Here the choice of the value on the boundary will be
important, which we call the numerical flux.

u Discontinuous Galerkin Method

u Discontinuous Galerkin Method

Maxwell Equation:

Numerical Flux:

u Sparse Grid Method

Briefly we can understand in
this way, full grid method
requires the level in each
dimension should be less than
or equal to N, while sparse
grid method requires the sum
of levels in each dimension
should be less than or equal to
N. Here we denote k as the
degree, N as the maximum
level and d as the dimension.

Able to reduce the degree of freedom
from O(h-d) to O(h-1|log2h|d-1)

And receive the accuracy of
O(hk|log2h|d-1)

u Sparse Grid Method

Full Grid Sparse Grid

DOF : 64 k
Memory : 1406 MB
FLOPS : 351 M

DOF : 4 k (16x)
Memory : 62 MB (22x)
FLOPS : 15 M (23x)

u Time Advanced Method

Explicit time advanced method:

3rd Order TVD Runge Kutta: dt=dx^(1/3)*CFL

Implicit time advanced method:

Backward Euler: dt=dx*CFL

Trapezoidal Rule: dt=dx^(1/2)*CFL

4th Order Gauss-Legendre: dt=dx^(1/4)*CFL

u 3rd Order TVD Runge Kutta

u 3rd Order TVD Runge Kutta

This method have bounded condition for the CFL number
to avoid the blow up of the error.

dt=dx^(1/3)*CFL

u 3rd Order TVD Runge Kutta

If we use 3rd order Runge Kutta Method, there will be a maximum
boundary condition of CFL number, otherwise the error will blow
up. And the following table will show the bounded condition of
CFL number between sparse grid and full grid.

dt=dx^(1/3)*CFL

u 3rd Order TVD Runge Kutta

u 3rd Order TVD Runge Kutta

Then we are able to choose the proper CFL and dt that are small enough to
make the solution converge.

First we fix dt=1/10000 and MaxT=100

u 3rd Order TVD Runge Kutta

u 3rd Order TVD Runge Kutta

Next we fix Time period and set different CFL number for
different numerical flux

u 3rd Order TVD Runge Kutta

u 3rd Order TVD Runge Kutta

Then we can have some conclusion of the CFL bounded condition and
convergence rate for dx for different numerical flux

u Backward Euler

For Backward Euler Method, the pink
region in the complex plane is the
stable region, and according to the
eigenvalue with largest magnitude
we have computed, we can see that
it is always stable for us

u Trapezoidal Rule

Similar to the previous method, the
pink region in the complex plane is
the stable region for trapezoidal rule,
and according to the eigenvalue with
largest magnitude we have
computed, we can see that it is
always stable for us

u Trapezoidal Rule

Then we choose Trapezoidal rule and to see the L^2
error with different time period

u Trapezoidal Rule

u 4th Order Gauss-Legendre Method

For Semi-Implicit Method, we use explicit time advanced method for B^n
to get B^(n+1), and use B^(n+1) to get E^(n+1). The limitation of this
method is that it also has a bounded condition for CFL number, but its
upper bound is larger than that of explicit method.

u Semi-Implicit Backward Euler Method

u Implicit Time Advanced Method

Backward Euler: dt=dx*CFL (First Order)
Trapezoidal Rule: dt=dx^(1/2)*CFL (Second Order)
Gauss-Legendre Rule: dt=dx^(1/4)*CFL(Fourth Order)

u Comparison and limitation

We can see that the implicit scheme can have rather larger dt
than explicit and semi-implicit scheme, but actually the CPU
time is not so much less than that of explicit method. The
calculation of inverse matrix is a big problem.

u Future work

But for the real case that we need epsilon=8.8542x10^(-12) and
mu=1.2566x10^(-6), which means that the CFL number should be very
large and we need many times of iterations. In this case, if we can
have a more efficient way to compute the inverse matrix, maybe
using the pre-conditoner method, than we are able to reduce the
calculation significantly.

Thanks!

