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Motivation
u We consider the Maxwell’s equations, which is a set of high dimensional partial 

differential equations describing how electric and magnetic fields are generated 
by charges, currents, and charges of the fields. And one important consequence 
of the equations is that they demonstrate how fluctuating electric and magnetic 
fields propagate at the speed of light.

u We choose to use discontinuous Galerkin method (DG), whose advantages include 
high order approximation and adaption to parallel computing. But the shortage is 
that DG method will have large degree of freedom for high dimensional problem, 
which may have too much computational cost.

u So we use the sparse grid method which based on the tensor product of 
hierarchical basis functions, in order to reduce the computational cost, especially 
in high dimensions. 



u Discontinuous Galerkin Method

The DG method will use basis functions that are 
discontinuous in the boundary of each grid. And we 
use the set of basis functions to approximate the 
target function that we want. 



Here we use Hierarchical basis (bottom left) rather than nodal 
basis (bottom right)

u Discontinuous Galerkin Method



Here the choice of the value on the boundary will be 
important, which we call the numerical flux.

u Discontinuous Galerkin Method



u Discontinuous Galerkin Method

Maxwell Equation:

Numerical Flux:



u Sparse Grid Method

Briefly we can understand in 
this way, full grid method 
requires the level in each 
dimension should be less than 
or equal to N, while sparse 
grid method requires the sum 
of levels in each dimension 
should be less than or equal to 
N. Here we denote k as the 
degree, N as the maximum 
level and d as the dimension.

Able to reduce the degree of freedom 
from O(h-d) to O(h-1|log2h|d-1)

And receive the accuracy of 
O(hk|log2h|d-1)



u Sparse Grid Method

Full Grid Sparse Grid

DOF : 64 k
Memory : 1406 MB
FLOPS : 351 M

DOF : 4 k (16x)
Memory : 62 MB (22x)
FLOPS : 15 M (23x)



u Time Advanced Method

Explicit time advanced method:

3rd Order TVD Runge Kutta: dt=dx^(1/3)*CFL

Implicit time advanced method:

Backward Euler: dt=dx*CFL

Trapezoidal Rule: dt=dx^(1/2)*CFL

4th Order Gauss-Legendre: dt=dx^(1/4)*CFL



u 3rd Order TVD Runge Kutta



u 3rd Order TVD Runge Kutta



This method have bounded condition for the CFL number 
to avoid the blow up of the error.

dt=dx^(1/3)*CFL

u 3rd Order TVD Runge Kutta



If we use 3rd order Runge Kutta Method, there will be a maximum 
boundary condition of CFL number,  otherwise the error will blow 
up. And the following table will show the bounded condition of 
CFL number between sparse grid and full grid.

dt=dx^(1/3)*CFL

u 3rd Order TVD Runge Kutta



u 3rd Order TVD Runge Kutta

Then we are able to choose the proper CFL and dt that are small enough to 
make the solution converge.

First we fix dt=1/10000 and MaxT=100



u 3rd Order TVD Runge Kutta



u 3rd Order TVD Runge Kutta

Next we fix Time period and set different CFL number for 
different numerical flux



u 3rd Order TVD Runge Kutta



u 3rd Order TVD Runge Kutta

Then we can have some conclusion of the CFL bounded condition and  
convergence rate for dx for different numerical flux



u Backward Euler

For Backward Euler Method, the pink 
region in the complex plane is the 
stable region, and according to the 
eigenvalue with largest magnitude 
we have computed, we can see that 
it is always stable for us



u Trapezoidal Rule

Similar to the previous method, the 
pink region in the complex plane is 
the stable region for trapezoidal rule, 
and according to the eigenvalue with 
largest magnitude we have 
computed, we can see that it is 
always stable for us



u Trapezoidal Rule

Then we choose Trapezoidal rule and to see the L^2 
error with different time period



u Trapezoidal Rule



u 4th Order Gauss-Legendre Method

For Semi-Implicit Method, we use explicit time advanced method for B^n
to get B^(n+1), and use B^(n+1) to get E^(n+1). The limitation of this 
method is that it also has a bounded condition for CFL number, but its 
upper bound is larger than that of explicit method.

u Semi-Implicit Backward Euler Method



u Implicit Time Advanced Method

Backward Euler: dt=dx*CFL (First Order)
Trapezoidal Rule: dt=dx^(1/2)*CFL (Second Order)
Gauss-Legendre Rule: dt=dx^(1/4)*CFL(Fourth Order)



u Comparison and limitation

We can see that the implicit scheme can have rather larger dt
than explicit and semi-implicit scheme, but actually the CPU 
time is not so much less than that of explicit method. The 
calculation of inverse matrix is a big problem.



u Future work

But for the real case that we need epsilon=8.8542x10^(-12) and 
mu=1.2566x10^(-6), which means that the CFL number should be very 
large and we need many times of iterations. In this case, if we can 
have a more efficient way to compute the inverse matrix, maybe 
using the pre-conditoner method, than we are able to reduce the 
calculation significantly.



Thanks!


