A Machine Learning Method For Unmixing 4-D
Ptychographic Images
And Its Implementation on GPU

Zhen ZHANG
The Chinese University of Hong Kong,
zzhang39130@gmail.com

August 3, 2017

Abstract

This study focuses on unmixing 4-D ptychographic images which incorporate different
linear combinations of basic modes. Least square method for this problem gives poor results.
In this study, a machine learning method is proposed to achieve better accuracy. The training
data, instead of being collected from experiments, are generated synthetically. Performances
of different data generation methods are compared and the decreases of the cost function are
shown. The neural network is tested with all data we have and the result is satisfactory.
The algorithm is implemented on C, with LAPACK for CPU code as well as MAGMA for
GPU code. Generally the CPU code works well with smaller number of training examples,
while GPU code is faster when the matrices are larger. The nature of this algorithm inspires
me to work out an algorithm to compute the matrix inverse based on neural network. The
convergence of the mentioned algorithm is well studied in this paper.

1 Introduction

Fast electron detectors are gaining ground in traditional high-resolution mi-
croscopy studies. In particular, 4D ptychographic datasets collected over a range of
real and reciprocal space coordinates are believed to contain a wealth of information
about structure and properties of materials. Currently, There are three basic modes
known, My, My, My, each of which is a 2688 by 2688 image. The M, is the mode
with high symmetry and M, My are two distortion modes. My, M, M, are shown
in Figure 1. In future computations, let My = M; — My, My = My — M.

Test structure incorporates different linear combinations of the two distortion
modes. The aim is, for each input image I of the same size as the three basic
modes, to find a representation of I with the three basic modes. The input image
can be mostly represented as a linear combination of the three basic modes, namely,

10

25
500 5
1000 s
1500

|
2000

05
2500

500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500

500 500

1000 1000
1500 1500

2000 2000

2500 2500

Figure 1: My, My, Mo

MO M1 M2

Figure 2: Transformed My, My, Ms

I ~ OzMO —f- ,BMl + ’YMQ

Currently, 16 input images are provided. Every four of the images share the same
set of coeffcients (a, 8,7). a =1 for all images. 3, take value of either —1 or 1.

The result of least square is quite far away from what we desire. Instead of
trying to solve this problem by completely analysing the structures and features of
the images, we use a machine learning method. Since the experimental data size is
merely 16, a larger number of synthetic data are generated by interpolating the bias
of the linear approximation.

The output is satisfactory when the input is one of the 16 images. To test the
algorithm more rigorously, My, M;, M, are input and the outputs are still good.

This algorithm is also implemented with C language, both on CPU and GPU.
Some details of implementation will be mentioned and some acceleration techniques
will be discussed.

The nature of the algorithm is to find a linear approximation of the input image
with a nonlinear bias. In other words, it is solving a large overdetermined nonlin-
ear system. Therefore this idea can possibly be used to solve other linear algebra
problems based on the NN formulation, such as to compute the matrix inverse. An
argument will be given to prove the spectral radius of the mentioned algorithm.

2 Description of the Algorithm

2.1 Image Simplification

In practice, it is known that we can add up all pixel values of every 192 by 192
block and transform the image into 14 by 14, while preserving the features of the
image. The transformed three basic modes are shown in Figure 2. This simplification
puts a 2688 x 2688 large image into a 14 x 14 transformed image. This will greatly
reduce the amount of memory needed and improve computation efficiency.

2.2 Bias Interpolation

For each of the input images, I, the bias of the linear approximation can be
written as:

B=1- (OzM() + 5M1 —F’)/MQ)
Recall that («, 8,7) is known for each of the 16 input images.

Input Layer Hidden Layer OQutput Layer

Figure 3: A fully connected neural network

It is assumed that the bias is the result of the interactions between the basic
modes. Therefore, for each pixel (z,y) in B, we have

B(z,y) = Buy(B,7)- (1-1)

Since for all input images at hand we have o = 1, we temporarily omit « in (1). Then
B, 4(B,7) is a function whose value at (1,1),(1,—1),(—1,1),(—1,—1) are known
(though for each set of coefficients there are four bias values, these values are actu-
ally very close). Therefore, we can use interpolation to find B, ,(3,v). Multiple
interpolation methods are used. If we take the M; and M, (original mode image
without subtracting M) also as input images, we will have two more points, (1,0)
and (0, 1), for interpolation. This paper will mainly focus on 4-point interpolation.
Different interpolation methods will be compared in section 3.

Fix a = 1. Pick § and 7 randomly from the interval [—1,1]. Compute the bias
B, ,(B,7) for each pixel (x,y). Then a synthetic input image is given by:

[synthetic = OZM() + 6M1 + 7M2 + B(ﬁv '7) (1_2)

2.3 Neural Network

Supervised learning is used. Figure 3 shows an example of neural network, from
[1]. The network is comprised of layers. The first is the input layer, the last is
the output layer and in between are the hidden layers. Size and number of the
hidden layers are manually chosen. Between layers are weights, which indicate the
strength of connection between the nodes belonging to adjacent layers. An input is
given to the neural network and propagated forward. For each hidden layer there is
an activation function, which can be sigmoid(), tanh() or ReLu(). After forward
propagations, we define a cost function which measures the difference between the
network’s outputs and the desired outputs. Then the machine modifies its inter-
nal adjustable parameters (weights) to reduce this error, using backpropagation.|2]
Backpropagation is an efficient way to compute the gradient of the cost function
and is therefore crucial for machine learning.

The inputs to the network are the synthetic input images I. The activation
functions are tanh () except for the output layer, which is linear. The cost function
is the sum of the square of the 2-norm of the difference between the output vectors
and the training examples, plus a regularisation term. Namely, the cost function is:

J(©) = T [loi — will3 + M|O]3, (1-3)

where © is the weights. m is the number of training examples. When the input is
the 1th example, o; is the output of the neural network and y; is the desired output.
A is the regularisation parameter, a hand-chosen constant. The regularisation term
prevents overfitting.

2.4 Training

"Training’, or ’learning’, means to minimise the cost function (1-3). A trained
neural network is supposed to output correct results for data other than the training
examples. A popular training method is the stochastic gradient descent method
(SGD). Some other useful training methods will be mentioned in section 5.

In this project, to minimise the cost function, the Polack-Ribiere flavour of conju-
gate gradients is used to compute search directions, and a line search using quadratic
and cubic polynomial approximations and the Wolfe-Powell stopping criteria is used
together with the slope ratio method for guessing initial step sizes. Additionally a
bunch of checks are made to make sure that exploration is taking place and that
extrapolation will not be unboundedly large.|3]

3 Computations and Results

The 16 input images are arranged as a 4 X 4 block matrix. The true coefficients
corresponding to My (namely, «) are shown as follows:

1 111
o 1 111
1 111
1 111

Each entry in the matrix is the « corresponding to an input image. Note that for
all input images, a = 1. Similarly all 5 and 7 are as follows:

1 1 1 1
1 1 1 1
Bolly 21 21 1)
1 -1 -1 -1
11 -1 —1
11 -1 41
Tl 1 -1 -1
11 -1 —1

3.1 Least Square Results

Recall: for linear system Ax = b, A an m X n real matrix, when m > n, a good
approximate solution is given by z = (AT A)"'ATb. This is least square method. Its
result for this problem is as follows:

0.9950 0.9924 0.9700 0.9712
2109927 0.9982 0.9652 0.9645
ALSQ* 10.9678 0.9631 0.9320 0.9467|°

0.9716 0.9660 0.9409 0.9426

Method Cost
linear | 0.0712
v4d 0.4695
cubic 0.0620
natural | 0.0590

Table 1: Cost of different interpolation methods in 4-point interpolation

——Linear
—V4

Cubic 7
—Natural

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

Figure 4: Learning in different interpolation methods. Omit the first 5 iterations for clearance

0.8284 0.8349 0.9280 0.9544

| 08117 08117 09676 0.9881
Brse | 04186 —0.4692 —0.3302 —0.2090]

—0.4570 —0.5001 —0.3538 —0.3590

0.7945 0.8472 —0.4802 —0.4999
10.8798 0.8754 —0.4627 —0.4921
TLSQ 10,9440 0.9474 —0.3569 —0.4003
0.9379 0.9591 —0.3422 —0.3582

The least square method does not output accurate results. The total error (cost)
is 5.8837.

3.2 Choice of Interpolation Method

Experiments are carried out to find a good interpolation method, with 2 hidden
layers, 15 nodes in a hidden layer, 200 synthetic training examples (as are gener-
ated by (1-2)), regularization parameter=0.05 and 4-point interpolation. Table 1
shows for each interpolation method the total cost for all 16 input images after
2000 iterations. Note that all interpolations give better result than the least square
method.

Figure 4 is the graph for the learning process of the four interpolation methods.

According to the graph and the error table, all methods performs well, except
the v4 (biharmonic spline) interpolation.

3.3 Predictions in 4-point Case

With the parameters same as in section 3.2, the prediction results of 4-point in-
terpolation are as follows:

With linear interpolation:

0.9974 0.9969 1.0013 1.0017
o 2 10.9966 0.9987 1.0009 0.9983
Q—point—lincar * | () 9975 (0.9984 1.0001 1.0021 |’
0.9978 0.9975 0.9994 1.0005
0.9371 1.0653 0.9578 1.0160
Bei | 1.0354 09152 0.9609 1.0103
A=poini=lincar = | _(9511 —0.9957 —0.9371 —1.0068]
—0.9632 —1.0313 —0.9725 —1.0379
0.9420 1.0472 —1.0165 —1.0059
o - 11.0105 0.9775 —0.9926 —0.9606
Va—point—lincar * 10 9569 (0.9146 —1.0376 —0.9786
1.0284 1.0436 —0.9849 —0.9727
With cubic interpolation:
0.9863 0.9880 0.9872 0.9877
' . 10.9864 0.9867 0.9872 0.9887
Q-point—cubic * 1) 9886 (0.9892 0.9826 0.9866 | ’
0.9900 0.9901 0.9842 0.9851
0.9228 1.0626 0.9539 1.0231
oo | 1.0188 0.8923 0.9583 0.9958
A=point—cubic - | _(9593 —1.0013 —0.9705 —0.9772|"’
—0.9475 —1.0325 —0.9663 —1.0108
0.9163 1.0083 —1.0100 —1.0174
A | 1.0067 0.9658 —0.9789 —0.9377
Vd—point—cubic * 10 9545 0.9097 —1.0054 —0.9915
1.0069 1.0326 —0.9709 —0.9524
With natural neighbour interpolation:
1.0007 0.9995 0.9980 0.9973
' - [1.0009 1.0016 1.0000 0.9987
Q-point—natural = 10 9999 1.0012 1.0026 0.9996 | ’
1.0002 0.9989 1.0007 0.9997

0.9235 1.0840

| 1.0215 0.8881
64—point—natural 1 20.9542 —1.0203
—0.9681 —1.0178

0.9266 1.0565

10019 0.9853
izpoint=natural = 10 9775 0.9345
1.0283 1.0734

0.9809
0.9576

1.0461
1.0013

—0.9665 —1.0122] "
—0.9774 —1.0330

—0.9880
—0.9769
—0.9928
—0.9756

—0.9788
—0.9969
—0.9836
—0.9830

The errors of these predictions are already shown in Table 1.

A more rigorous test is to input to the neural network My, M; and Ms(with no
subtraction), whose coefficients were not taken into account during 4-point inter-
polation. Note that the coefficients for My, M; and M, are (1,0,0),(1,1,0) and
(1,0,1). Following is the prediction for these three basic modes by different inter-

polation methods.

With linear interpolation:

0.9995 1.0021
My: | 0.0424 | M, | 1.1248

—0.0590 —0.0478

With cubic interpolation:

0.9987 0.9985
My : | 0.0365 | , M, : | 1.1300

—0.0759 —0.0463

With natural interpolation:

1.0095 1.0067
My : [0.0561| , M, : | 1.1245
0.0055 —0.0216

The prediction is accurate, up to tolerable error.

3.4 Predictions in 6-point case

,MQI

,MQI

7M2:

1.0007
0.0359
1.0546

0.9992
0.0134
1.0478

0.9996
0.0441
1.0848

As mentioned in section 2.2, the interpolation can also be done with 6 points.
With all parameters the same as before, the predictions in 6-point interpolation are

as follows:

With linear interpolation:

0.9946 0.9935

o - 10.9931 0.9957

A6 —point—linear 1.0002 0.9971
0.9980 0.9980

1.0026
1.0009
0.9972
0.9972

1.0022
1.0007
0.9973 |’
0.9982

0.8075 0.9706 0.9275 0.9862
oo 1 09102 0.8161 0.8821 0.9099
G=point=linear * | _() 8930) —0.9665 —0.9575 —0.9912]"°
—0.9347 —0.9748 —1.0008 —1.0374
0.8503 0.9651 —0.9411 —0.9491
- 2 10.9281 0.8809 —0.9320 —0.8894
V6—poini—lincar * | 8858 () 8440 —1.0163 —0.9977
0.9431 0.9792 —0.9656 —0.9733
With cubic interpolation:
1.0050 1.0059 1.0012 1.0016
' . 11.0047 1.0055 1.0001 1.0007
Q6—point—cubic = | () 9964 (.9964 0.9841 0.9864 |
0.9952 0.9965 0.9846 0.9852
0.8202 0.9913 0.9054 0.9709
B .1 09383 0.8269 0.8814 0.9541
G=point—cubic = | _() 9104 —0.9759 —0.9896 —0.9997|
—0.9449 —0.9895 —0.9959 —1.0120
0.8217 0.9477 —0.9498 —0.9429
' . 10.9027 0.8829 —0.9440 —0.9305
V6—point—cubic * 1) 8897 (.8466 —1.0121 —0.9681
0.9330 0.9783 —0.9813 —0.9693
With natural neighbour interpolation:
1.0023 0.9941 0.9917 0.9900
- - 11.0010 0.9985 0.9954 1.0000
6=point=natural = 1) 9985 0.9969 0.9968 0.9924 | ’
0.9995 0.9969 0.9954 0.9953
0.7670 0.9237 0.8879 0.9701
B | 0.8511 0.7487 0.8611 0.9047
G=point=natural - | _() 9608 —1.0219 —0.9916 —0.9466
—0.9533 —1.0203 —0.9864 —0.9997
0.8195 0.9419 —0.9591 —0.9587
' - 10.8916 0.8750 —0.9569 —0.9521
V6—point—natural - |) 8831 (.8396 —1.0153 —0.9705
0.9464 0.9839 —0.9741 —0.9661
The error of these predictions shown in Table 2.
Predictions for My, M, M, are as follows:
With linear interpolation:
1.0035 0.9997 0.9997
My : | 0.0021 | , My : | 1.0625 |, M5 : |—0.0134
—0.0188 —0.0258 1.0527

Y

Method Cost
linear | 0.2373
cubic 0.2198

natural | 0.3116

Table 2: Cost of different interpolation methods in 6-point interpolation

With cubic interpolation:

1.0023 1.0067 1.0004
My : | —=0.0097| , My : | 1.0433 | , My : [—0.0183
—0.0367 —0.0386 1.0376

With natural interpolation:

1.0019 0.9980 0.9983
My : 10.0896| , My : | 1.0754 | , M5 : [—0.0092
0.0028 —0.0516 1.0749

The prediction is still accurate.

4 Acceleration

The algorithm is also implemented with C language, with both CPU code with
LAPACK, and GPU code with MAGMA. Generally for small number of training
examples the CPU code is faster while the GPU version works better for larger
datasets. Large matrices fully utilize the parallel-oriented design of GPU and thereby
the performance is much better than on CPU.

4.1 Communication Control

It is noted that communication between CPU and GPU is extremely time-consuming.
In the implementation this communication should be reduced. To do this, all large
data structures, including the training examples, outputs of layers, weights and the
gradient should be initialized on CPU and be communicated to GPU before learning.
This communication control greatly improves the efficiency of the code.

4.2 New CUDA Routines

New CUDA files are written to implement the Hadamard product and element-
wise functions. These new routines apply the corresponding operations directly on
GPU data and therefore helps to reduce CPU-GPU communication.

Following are prototypes of the routines:

void magmablas_dlatanh (int m, int n, doublex dA, int ldda, doublex
dB, int 1ddb);

void magmablas_dla_pmult_dtanh(int m, int n, double* dA, int ldda,
double* dB, int 1ddb);

magmablas_dlatanh() applies tanh() to a device matrix dA and the output
matrix is stored in another device matrix dB.

Time/sec
T

1 1 1 1
0
0 500 1000 1500 2000 2500

Training Size
Figure 5: Learning time cost of CPU and GPU code

magmablas_dla_pmult_dtanh() applies the derivative of tanh() to a device ma-
trix dA and multiply the result elementwisely with another device matrix dB and the
output is stored in dB.

4.3 Performances

The experiment is carried out with neural network the same as in section 3.2.
The interpolation is 4-point linear and the learning is iterated 2500 times. Training
examples are generated by MATLAB.

Computation is carried out on Bridges with interact -gpu command, which
starts an interactive job on a P100 node in the GPU-shared partition with 1 GPU
and for 60 minutes. By the user guide of Bridges, each P100 node contains:

e 2 NVIDIA P100 GPUs

e 2 Intel Xeon E5-2683 v4 CPUs, each with
o 16 cores, 2.1 GHz base frequency and 3.0 GHz max turbo frequency
o 40MB cache

e 128GB RAM, DDR4 2400.

Table Figure 5 and 3 show the performances of the GPU and the CPU code at
different training data sizes.

5 Future Work

5.1 Neural Network

Note that in section 3.4, in the 6-point case the predictions on the 16 input
images are not as good compared to the 4-point case. Therefore more work can
still be done for the details of the neural network, such as optimal regularisation

10

Training Size | CPU learning time(sec) | GPU learning time(sec)
100 0.768925 1.639293
200 1.175271 1.108230
500 2.122196 1.778217
750 3.315735 2.289727
1000 5.186406 2.470949
1250 4.816086 3.402146
1500 6.102730 3.634838
2000 7.864992 4.144583
2500 11.571694 4.308255

Table 3: Performances of CPU and GPU implementation under different training sizes. Note that
the GPU learning time at the training size of 200 is shorter than at 100, and similarly for CPU at
1250 and 1000.

parameter, hidden layer size, deeper network, etc. Other interpolation methods can
also be tested and compared.

5.2 Learning Method

Current CG method does not give fast convergence. Other learning methods may
also be used. Following are some methods from [4] :

5.2.1 Momentum

Momentum is an improved version of stochastic gradient descent (SGD). The
idea behind is, for each iteration, a part of the step change in the last iteration is
inherited. The update rule is:

Azy = pAxi_1 — gy,

where 7 is the learning rate, p is the inertia rate, g; is the batched gradient.

5.2.2 ADAGRAD
For ADAGRAD, the update rule is as follows:

Ul
Ary = —————a1,
V2192
where the denominator computes the [2 norm of all previous gradients on a per-

dimension basis and 7 is a global learning rate. Note that the sum in the denominator
may diverge to infinity and slow down the learning.

5.2.3 ADADELTA
ADADELTA resolves the learning rate shrinking problem of ADAGRAD. Define

iterative relation:

Elg*)e = pElg*)e-1 + (1 — p)gi,
where p is a hand-chosen decay rate. This definition is similar to the exponential
moving average (EMA) in technical analysis.

Define RM S
RMS[g]t = E[gqt + €,

11

where € is a small number preventing RM S from vanishing. Then the update rule
is:

_RMS [Ax];_q
RMS[gl: -
Note that in ADADELTA there is not a hand-chosen learning rate.

A.’Ift =

5.2.4 Second Order Methods

Second order information is also useful.
The following method uses the diagonal part of the Hessian matrix:

1
diag(H)| + 17"

Axt =

where H,; is the Hessian of the cost function, p is a small constant.
A method combining Hessian with ADAGRAD is the following:

1 E[gt—w:t]Z

Ary = ——
' \diag(Hy)| Elg7]

ty
where E|[y;_,.] denotes the mean of previous w vectors in a vector sequence {y;}.

5.3 Linear Algebra with Neural Network

In this model, with interpolation, essentially the neural network is solving a highly
overdetermined non-linear system. Therefore this idea can possibly be used to solve
linear algebra problems based on the neural network formulation. The following is
an algorithm to compute the matrix inverse with neural network.

Let A be an n x n invertible real matrix. Let A~! be its inverse. The way to
compute A~ with neural network is as follows:

In the neural network there is no hidden layer. The only set of weights connects
the input layer and the output layer. The size of both layers is n, where n is the
dimension of A. The activation function is linear. Let © be the weight matrix
of the neural network. At is the timestep of gradient descent. {b;}_; is a set of
randomly-chosen vectors. The cost function of the neural network is :

J(0) = B[] A8b; — bil[5. (2)
It can be shown by direct differentiation that the gradient of J is the following:

aJ

—— =% AT(A® — I)b;b; . 3

a@ =1 () 7 ()

Let B = X1 b;b!. Provided that we pick n b; randomly, B is a symmetric positive
definite (SPD) matrix with the probability of 1. Then

oJ
Ops1 = O — At%(@k) (4)
= Opy1 = O — At AT(AO, — Dbb] (5)
Let D, = ©, — A_l, then
Diy1 = Dy, — AtATAD.B. (6)

12

Let A =UXVT be the SVD of A, where U,V are orthogonal. Then

ATA=Vvy?rvT, (7)
Because B is SPD, we have
B =QSQ", (8)
where () is orthogonal and S is diagonal.
Then by (6),
Dii1 = D, — AtVZ2VTDQSQT. (9)
Then
Di1Q = DQ — AtVX2VT D,QS. (10)

Let E, = DyQ, e be the jth column of Ej, AU be the eigenvalue of B in the jth
column of S. Then
el = (I — ANV S2yTel. (11)

Let K; = (I — AAADVY2VT), then the spectral radius of K; is
max,|1 — AtAD a2 |, (12)

where o, are singular values of A.

My mentor, Dr. S. Tomov, suggests the following simplification:

Choose b; = e;, At = 2/(Amin + Amaz), where {e;}I, is the standard basis
and Apnin, Amaz are the minimal and maximal elgenvalues of ATA. Then the best
convergence rate is
ALt

S (13)

max,|1l — Ato

where x is the condition number of A.

The rate of convergence depends on the square of the condition number of A.
However, in some cases the convergence rate can be better. Following are some
examples.

By [5] , let A be an n x n real symmetric diagonal dominant matrix with positive
diagonal part D, and let S? = D! and H = S} AS;. Then the spectral radius r of
the Jacobi matrix associated to A is proved:

(k(H) =1)/(k(H) +1) <7 < (k(H) = 1)/(1 + #(H)/(n = 1)). (14)
And the relation between x(H) and x(A) is given by:
k(H)/k(D) < k(A) < k(H)k(D). (15)

The convergence rate depends largely on the condition number itself.
By [6], for a Hermitian positive definite matrix, the OR Krylov subspace iterates
xp are uniquely defined for each k£ and can be computed using CG method. Then

we have .
[l — k[l < 2(\/%_) (16)
|2 — wol|a VE+1

where ||u||4 = (u Au)2, & is the condition number of A, and z is the solution to
the linear system. In other words, the convergence depends on the square root of
the condition number.

Therefore, there is still a lot to do before the neural network linear system solver
becomes outstanding. Future work may focus on investigating other structures of
neural network and consolidating the theoretical ground for this method.

13

5.4 Image Preprocessing

It can be noted that the input images and three basics modes look very similar
and the image data have high redundancy. Some filters or principal component
analysis (PCA), linear or non-linear, may help.

6 Summary

At the beginning, machine learning for solving this problem seems to be prohib-
ited by the shortage of data. However by interpolations, synthetic data are generated
for training. After learning, not only are the outputs for the 16 known input images
accurate, which is more or less expected, but also in the 4-point case the predic-
tions for the three basic modes, and in the 6-point case the prediction for M, are
satisfactory as well. This gives us confidence that in the future if more data can be
acquired, this model will still perform well in predicting coefficients for new data.

In the C implementation, GPU once again shows its outstanding capability of
processing big data.

Machine learning has seen its success in facial recognition, classification, speech
recognition and many other modern technologies. But what we have explored of
machine learning might only be the tip of the iceberg - many other applications are
bourgeoning with hope and energy. This paper sheds some light on linear algebra
with neural network and I believe in the future there will be more.

14

References

[1] Chien-Sheng Chen; Jium-Ming Lin. Applying Rprop Neural Network for the
Prediction of the Mobile Station Location. Sensors, 2011, 11, 4207-4230;
doi:10.3390/s110404207.

[2] Yann Lecun; Toshua Bengio; Geoffrey Hinton. Deep Learning. Nature, 2015,
Vol. 521, pp 436-444; doi:10.1038 /nature14539.

[3] Carl Edward Rasmussen. fmincg().m, 2001 and 2002.

[4] Matthew D.Zeiler. ADADELTA: An Adaptive Learning Rate Method.
arXiv:1212.5701v1 [es.LG], 2012.

[5] M. Arioli; F. Romani. Relations between condition numbers and the condition
convergence of the Jacobi method for real positive definite matrices. Numerische
Mathematik 46, 31-42 (1985).

[6] Jorg Liesen; Petr Tichy. Convergence analysis of Krylov subspace methods.
MSC(2000) 15A06, 65F10, 41A10.

15

Acknowledgements

This project is done under the RECSEM program at JICS, UTK. The program
is sponsored by NSF, JICS and the Chinese University of Hong Kong.

Let me extend my gratitude to my mentors: Dr. S. Tomov, Dr. A. Haidar and
Dr. K. Wong from UTK and Dr. R. Archibald from ORNL.

16

	Introduction
	Description of the Algorithm
	Image Simplification
	Bias Interpolation
	Neural Network
	Training

	Computations and Results
	Least Square Results
	Choice of Interpolation Method
	Predictions in 4-point Case
	Predictions in 6-point case

	Acceleration
	Communication Control
	New CUDA Routines
	Performances

	Future Work
	Neural Network
	Learning Method
	Momentum
	ADAGRAD
	ADADELTA
	Second Order Methods

	Linear Algebra with Neural Network
	Image Preprocessing

	Summary

