
1 
 

 

 

 

 

 

Unmixing 4-D Ptychographic Images 

Algorithmic Approach 

Huanlin Zhou(CUHK), Zhen Zhang(CUHK), and Michaela Shoffner(UTK) 

August 4th, 2017 

 

 

Abstract 

Fast electron detectors are gaining ground in traditional high-resolution microscopy studies. In particular, 

4D ptychographic datasets collected over a range of real and reciprocal space coordinates are believed to 

contain a wealth of information about structure and properties of materials. However, currently available 

data analysis methods are either too general, only allowing for analysis of simplest objects, or too reductive, 

effectively recreating traditional detectors from these datasets before interpretation. This project aims to 

explore the ways that symmetry mode analysis, the tool used to a great effect in theoretical studies of 

materials, can be adapted to analyze 4D datasets of materials such as multifunctional complex oxides. 

 

 

Overview 

In the originally provided Matlab code, the program takes in data for three models, consisting of the 

baseline, and two different distortions. These form the basis for our solutions, as we determine the 

coefficient each is multiplied by before being summed into the provided image. The program is then 

provided with 16 different image data sets, each with 7,225,344 values corresponding to a 192 by 192 by 

14 by 14 grid (see figure 1). The coefficients, or weights, for each of the three models must be determined 

for every image, or unit cell. For each of the images, a linear algebra problem of the form Ax=b is set up, 

with A’s three columns being the numbers from each of the three base models in vector form, and b having 

the complete data from a single unit cell as a vector. Since this is an extremely overdetermined system, the 

method of least squares is used to solve for the weights. Using this method gives results that are relatively 

close to the known answers, but the average error is still ranging from 0.0331 to 0.356, or 3.3% to 35.6% 

(see figure 2). A better technique, with results closer to the known values, is an important goal of this 

research project.  
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Figure 1-A representation of the image data, shown as a two-dimensional picture 

 

 

 

Figure 2-Initial results and error 

 

 

Objectives 

In the current implementation, the resulting weights are significantly different from the known values. This 

should primarily be because of two factors: the presence of outliers and potential nonlinear terms. Outliers 

will cause perceptible error when using just a simple least squares algorithm, while the current calculation 

assumes strictly linear terms. Our plans for improving upon the unmixing algorithm consist of two 

approaches. The first involves adding the gradient of each model, in both the vertical and horizontal 

directions, as additional columns in the model matrix, as well as averaging and condensing the data down 
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to a smaller set. The addition of the gradient terms should help cover any potential nonlinear terms, while 

the smaller data set will both help compensate for outliers and reduce the total time needed to run 

calculations. The second planned algorithm features the Split Bregman method, an iterative approach that 

would solve all of the 16 cells at the same time, but requires multiple passes to reach a reasonable answer. 

The other goal for this side of the project involves converting the entire program into the C programming 

language. While Matlab makes interacting with matrices very easy, it sacrifices speed for a user-friendly 

interface. If the data processing is instead implemented using the LAPACK library in C, there should be a 

significant reduction in time taken by the program. Once this has been accomplished, the next step consists 

of changing the code to run on a GPU, using the MAGMA library. The current incarnation of the program 

was made to run on a basic CPU, such as a laptop, but with more processors available, far greater speed 

should be possible. Finally, investigations will be made into various options for making the code parallel, 

to further increase speed. Formats to be tried include Message Passing Interface(MPI), OpenMP, and 

ScaLAPACK. 

 

Least Squares Improvement 

Since the true weights are piecewise constant, we want the calculated weights to be piecewise constant as 

well. To force the calculated weights to be more piecewise constant, we add an L1-regularization: |grad(w)|, 

which is defined by: 

|grad(w)|= ∑ |w(i + 1, j) − w(i, j)|3
𝑖=1 +∑ |w(i, j + 1) − w(i, j)|3

𝑗=1  

It acts like the total variation of the matrix w. We want the error as well as this total variation to be as small 

as possible, so we formulate an L1-regularized problem: 

min |grad(w)|+m||Aw − x||22 

 Here m is an optimization parameter whose value depends on how small we want the gradient or how small 

we want the error. For example, if we choose a larger m, we attach more importance to the L2-error. To 

avoid possible contradiction between different sets of solutions, we sum up the gradients of all 3 modes and 

the error of all 16 unit cells to get this single expression:  

∑ |grad(w)| + m∑ ||Aw − x||16
1

3
1 2

2. 

By minimizing it, we can solve for all of the 48 unknown weights together.  

To solve the L1-regularized problem, we apply a Split Bregman method. The standard model is: 

min |Ф(u)|+H(u) 

Here | | is the L1-norm. Since we want to solve for 48 unknowns, here u is a 48-by-1 column vector.  

Since we have 4x4 blocks and each consists of 3 modes, we can represent the weights as: 

[

α, β, γ    α, β, γ     α, β, γ     α, β, γ
α, β, γ    α, β, γ     α, β, γ     α, β, γ
α, β, γ    α, β, γ     α, β, γ     α, β, γ
α, β, γ    α, β, γ     α, β, γ     α, β, γ

] 
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Where α, β, and γ represent the weights for mode1s 1, 2, and 0. Then, taking the entries row by row, we get 

this 48-by-1 vector, u. 

We let E1, E2 be two 36x48 matrices for gradient calculation:  

E1 =   

[
 
 
 
 
1  0 0 − 1 0 0 0,… , 0
0 1 0 0 − 1 0 0, … ,0

……
……

0 0 0,…  0 1 0 0 − 1 ]
 
 
 
 

 

E1 is for w(i, j)-w(i, j+1). For example, the first row of E1*u is (u1-u4), which is w(1,1)-w(1,2). Similarly, 

E2 is for w(i, j)-w(i+1, j). Then we get: 

Ф1(u)=E1*u, Ф2(u)=E2*u 

  

A is diagonal in block sense:  

A = [

[M1 M2 M0] ⋯ 0
⋮ [M1 M2 M0] ⋮
0 ⋯ [M1 M2 M0]

] 

It consists of 16 identical diagonal blocks [M1 M2 M0]. x is a column vector containing all data in 16 unit 

cells:  

x = 

(

 
 

I1
I2
:
:

I16)

 
 

 

  

We then get: 

H(u)=m||Au-x||22 

 

The Split Bregman method uses d1, d2 to approximate E1*u and E2*u, so it splits the L1 and L2 parts. Now 

the problem becomes finding the u, d1, and d2 that minimize:  

|d1|+|d2|+H(u)+λ||E1u-d1||22+λ||E2u-d2||22 

Then we can solve it iteratively as follows: 

To choose appropriate u0,d1
0, d2

0, b1
0, b2

0,  we let u0 be the least squares result, and all others be zeros.  

Then for k=0, 1,…, N: 

uk+1=min (
u

H(u) +  λ|| d1
k − 𝐸1𝑢 − 𝑏1

𝑘‖
2

2
+  λ‖𝑑2

𝑘 − 𝐸2𝑢 − 𝑏2
𝑘‖

2

2
); 



5 
 

d1
k+1 = min (

d
|d| + λ||d - E1uk+1 - b1||22); 

d2
k+1 = min

d
(|d|+λ||d - E2uk+1 - b2||22); 

b1
k+1 = b1

k + E1u
k+1 − d1

k+1; 

b2
k+1 = b2

k + E2u
k+1 − d2

k+1; 

 

Since H(u) = m||Au-x||22 = m(Au-x)T*(Au-x); 

λ||di
k-Eiu-bi

k||22 = λ(Eiu- di
k + bi

k)T*(Eiu- di
k + bi

k), i=1,2. 

It is easy to calculate its gradient, and, by using the first derivative test, the minimum point is  

uk+1=(mATA+λE1
TE1+λE2

TE2)-1(mATu+λ E1
T(d1

k − b1
k)+λE2

T(d2
k − b2

k)) 

Since ATA, E1
TE1, E2

TE2, and ATx remain unchanged in each iteration, we can calculate them before the 

iteration starts and keep the values, which saves a lot of time. 

di
k+1 can be calculated by  

(di
k+1)j = shrink (Фi(u)j+(bi

k)j, 1/λ) = 
Фi(u)j+(bi

k)j

|Фi(u)j+(bi
k)j|

∗ max (|Фi(u)j + (bi
k)j| − 1/λ, 0), i=1,2 

 (reference: The Split Bregman method for L1-regularized problem). 

 

To find the correct model: 

The resulting image might be linear terms plus some combination of the gradients of the 3 modes (suggested 

by Dr. Archibald). To simplify the data, we take the average over each of the 192x192 pixels, that is, 

M=squeeze(mean(mean(M))), to make each model 14x14. And here each mode has 2 gradient matrices: 

Gx and Gy, also of size 14x14. Gx is the gradient in the x (row) direction: 

Gx(:,j) = M(:, j+1) – M(:, j)       for j < 14, and 

Gx(:,14) = M(:, 1) – M(:, 14)    for j = 14  

Gy is the gradient in the y (column) direction: 

Gy(i, :) = M(i+1, :) – M(i, :)       for i < 14, and 

Gy(14, :) = M(1, :) – M(14, :)    for i = 14  

 

We assume 

x=αM1+βM2+γM0+a1G1x+b1G2x+c1G0x+a2G1y+b2G2y+c2G0y 

By the least squares method, the resulting weights (α, β, γ) are much closer to true weights; previously, the 

total absolute difference was 11.6405, now it is 2.9635. 
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If we apply the above Split Bregman method to the model with the gradients added, then u is of length 144 

(3 modes * 16 unit cells * (mode itself + gradient in x direction + gradient in y direction)). u1 to u48 are the 

weights of the modes themselves, u49 to u96 are the weights of the gradients in the x direction, and u97 to 

u144 are the weights of the gradients in the y direction. E1 and E2 are 36-by-144. Ei(:, 1:48) is the same as 

above and all other entries are zeroes, so that Ei*u is still the gradient of u1 through u48. A is size 3,136-by-

144, and is built as: 

A =  [

 [M1 M2 M0]                   [G1x G2x  G0x]                   [G1y G2y G0y]       
…

                                                    …
                   [M1 M2 M0]                 [G1x G2x G0x]                           [G1y G2y G0y]  

] 

 

So that the i-th block of A*u will be: 

α*M1+β*M2+γ*M0+a1*G1x+b1*G2x+c1*G0x+a2*G1y+b2*G2y+c2*G0y 

for the i-th unit cell, i=1,2,…,16. Now we have A, Ф1 and Ф2, the rest is the same as above. 

The result depends on the choice of m. So far, m = 2.0917*1013 has given the best result, with the converging 

value of total difference being about 2.8833, slightly better than the least squares method with gradient. 

See appendix for the Matlab code that implements both the least squares plus gradient method and the Split 

Bregman method. 

Tables 1 through 3 give experimental results from the different algorithms. 

 

Table 1-model 1 weights 

Unit Cell # 
Desired 

Value 
Basic Least Squares 

Least Squares with 

Gradient 

Split Bregman with 

Gradient 

1 1.0000 0.8284 0.7063 0.7333 

2 1.0000 0.8349 0.9238 0.9199 

3 1.0000 0.9280 1.0107 0.9878 

4 1.0000 0.9544 1.0271 1.0000 

5 1.0000 0.8117 0.8202 0.7971 

6 1.0000 0.8117 0.8443 0.8443 

7 1.0000 0.9676 0.9142 0.9015 

8 1.0000 0.9881 0.9366 0.9101 

9 -1.0000 -0.4186 -0.9917 -0.9934 

10 -1.0000 -0.4692 -1.0185 -0.9937 

11 -1.0000 -0.3302 -0.8604 -0.9095 

12 -1.0000 -0.2990 -0.9759 -0.9446 

13 -1.0000 -0.4570 -1.1031 -1.0663 

14 -1.0000 -0.5001 -1.0838 -1.0514 

15 -1.0000 -0.3538 -0.9573 -0.9804 

16 -1.0000 -0.3590 -1.0386 -1.0008 

     

TOTAL DIFF  5.6886 1.3511 1.2027 

AVG ERROR  0.3560 0.0844 0.0753 
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Table 2-model 2 weights 

Unit Cell # 
Desired 

Value 

Basic Least 

Squares 

Least Squares with 

Gradient 
Split Bregman with Gradient 

1 1.0000 0.7945 0.7436 0.7697 

2 1.0000 0.8472 0.9840 0.9354 

3 -1.0000 -0.4802 -0.9208 -0.9070 

4 -1.0000 -0.4999 -0.8786 -0.8958 

5 1.0000 0.8798 0.8228 0.8454 

6 1.0000 0.8754 0.8844 0.8844 

7 -1.0000 -0.4627 -0.9958 -0.9290 

8 -1.0000 -0.4921 -1.0007 -0.9450 

9 1.0000 0.9440 0.9605 0.9623 

10 1.0000 0.9474 0.9840 0.9596 

11 -1.0000 -0.3569 -0.9774 -0.9211 

12 -1.0000 -0.4003 -0.7466 -0.8381 

13 1.0000 0.9379 0.9905 0.9809 

14 1.0000 0.9591 1.1163 1.0582 

15 -1.0000 -0.3422 -0.8607 -0.8381 

16 -1.0000 -0.3582 -0.7989 -0.8130 

     

TOTAL DIFF  5.4221 1.6083 1.6712 

AVG ERROR  0.3390 0.0980 0.1040 

 

Table 3-base model weights 

Unit Cell # 
Desired 

Value 

Basic Least 

Squares 

Least Squares with 

Gradient 
Split Bregman with Gradient 

1 1.0000 0.9950 1.0004 1.0004 

2 1.0000 0.9924 1.0002 1.0002 

3 1.0000 0.9700 1.0004 1.0004 

4 1.0000 0.9712 1.0004 1.0004 

5 1.0000 0.9927 1.0000 1.0000 

6 1.0000 0.9882 1.0000 1.0000 

7 1.0000 0.9652 1.0003 1.0003 

8 1.0000 0.9645 0.9997 0.9997 

9 1.0000 0.9678 1.0000 1.0000 

10 1.0000 0.9631 1.0003 1.0003 

11 1.0000 0.9320 1.0004 1.0004 

12 1.0000 0.9467 1.0003 1.0003 

13 1.0000 0.9716 0.9997 0.9997 

14 1.0000 0.9660 0.9995 0.9995 

15 1.0000 0.9409 1.0001 1.0001 

16 1.0000 0.9426 0.9998 0.9998 

     

TOTAL DIFF  0.5304 0.004199 0.004130 

AVG ERROR  0.0331 0.000258 0.000258 
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C code, using a GPU, and working in parallel 

While the difference in speeds between Matlab and C may be inconsequential for smaller problems, since 

this computation can involve matrices with over seven million rows, the speed differential is far more 

dramatic. Thus, it should be more efficient to convert the entire program to C code. 

As a starting point to be improved upon, the Matlab version of the basic least squares runs about 35 seconds. 

Because Matlab is set up to make matrix manipulation as intuitive as possible, it takes a bit of effort to 

determine the equivalent statements in C. For the first iteration, this is where LAPACK comes in, a C library 

which supplies functions made to work with large matrices. While it can be a bit harder to follow, and care 

must be taken with memory allocation, LAPACK allows for a much simpler transition than if we had to 

create it all from the beginning. The other challenge lay in obtaining the image data. This data is initially 

supplied by four DM3 files, the format used by the machines that generated the data. These files are not 

simple to read from, and the original code contained a convoluted function just to interpret the data files. 

Since it appeared to be very difficult to replicate in C, insofar as our knowledge extends, we elected to take 

the simpler route and simply wrote a Matlab program that used the given function to read in the data, then 

had it print the matrices to a simple text file, which could be easily, albeit slowly, read into the C variables. 

With all that formatting out of the way, it merely took the correct use of the functions dgels and memcpy 

to get practically identical results to the original program. While we are certain it could be more elegantly 

implemented, this was a satisfactory first attempt, though the time needed to run was barely changed, 

coming in at 33 seconds. The biggest problem at this stage would be that so much time is taken to read in 

the data that the quicker calculations are largely off-set. This was solved by changing the data files from 

ascii text into binary, allowing large blocks of data to be read far more quickly. The final result has a run 

time of about 7 seconds.  

Both the least squares plus gradient algorithm and the Split Bregman method were likewise implemented 

in C using LAPACK and binary files, with both having a run time of approximately 0.75 seconds. 

Now having a baseline to start from, we next considered how to adapt it to run on a GPU. While changing 

it to C resulted in a significant reduction in run time, using a GPU should hopefully see additional decreases. 

In order to achieve this, we turned to the MAGMA C library, an implementation of LAPACK meant to run 

on a GPU, for extremely large matrices. Since MAGMA was made rather recently, it has much less in the 

way of online documentation, and what exists is harder to parse for an inexperienced programmer. Because 

of this, this step took significant research for associated literature and some trial and error efforts to achieve 

results. Once a working version of MAGMA code was completed, it had an unexpected result. Likely 

because of the time needed to move all the data from the CPU to the GPU, the code using MAGMA takes 

far longer than the other implementations, coming in at around 50 seconds. 

The least squares plus gradient version was similarly adapted, likewise with a drop in speed, though not as 

dramatic, running about 4 seconds.  

The final goal consisted of writing versions of the program to run in parallel on multiple CPU processors, 

still using LAPACK. Both Message Passing Interface (MPI) and OpenMP were explored to see what further 

improvements could be made on running time.  

When beginning work with MPI, we started with the least squares with gradient code, since it was giving 

satisfactory results, but it was still straightforward to determine how to adapt it. Since there are 16 unit cells, 

and their calculations are independent of each other, they can easily be done in parallel. The first version 

of MPI code was quite simple: set the number of processes to be 16, and have process 0 read and simplify 
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all the data. Each process calls MPI_Bcast to broadcast A to all 16 processes, and calls MPI_Scatter to 

divide x into 16 equal-sized parts (one unit cell to each processor). After that, each process, having a copy 

of A and the data of one of the 16 unit cells, works through the least squares calculation and finds the 

weights of the 3 modes. After finishing the calculations, each process calls MPI_Gather to send the 

calculated weights back to process 0, after which process 0 prints out all the results. 

Since some amount of time is used for reading in all the data, we also considered reading data in parallel: 

dividing x into 16 separate data files, each process reading in one file and doing the simplification, with the 

first 3 processes also reading in and simplifying the data of the three standard modes. Then processes 1 to 

15 send the simplified data to process 0, and the rest is completed identically to before. 

The MPI code for the least squares plus gradient algorithm performed reasonably well, if not as well as 

we’d hoped. The second version tends to outperform the first, with an average reduction of about 0.9 

seconds, but both can be very volatile in their speed. Additionally, with the most consistent time elapsed 

for the second version being around 2.8 seconds, it still lags behind the basic LAPACK implementation, 

though even the first version was at least faster than MAGMA or Matlab. 

One final variation was made, upon realizing that it was needless to have each process send the simplified 

data file to process 0, only to re-distribute it back to all the processes. After removing this step, and having 

each process act upon the data it just read and simplified, the time was drastically reduced, now running 

between 0.7 and 1.4 seconds. 

When MPI was used for the basic least squares algorithm (only version one), it also performed poorly, with 

the running time clocking in at approximately 53 seconds, even longer than the MAGMA implementation. 

OpenMP, implemented for the same two algorithms, fared better, with its best speeds tending to run just 

under or just over the speed of the LAPACK implementations. This more or less equivalent running time 

is still not the significant improvement we’d hoped for, but at least it wasn’t significantly worse like the 

MPI versions. Unexpectedly, it runs faster on average when fewer threads are used, with its peak speed in 

the least squares plus gradient version actually being noticeably better than the standard LAPACK 

implementation, coming in at 0.665 seconds. Unfortunately, this implementation had the most volatile 

running times so far, with vastly different times reported among each thread count tested (1, 2, 4, 8, 16); 

this would need further testing before good conclusions can be drawn. 

As for the Split Bregman method, since all 16 cells are calculated simultaneously already, and each iteration 

needs the result from the previous, it cannot be directly performed in parallel. However, inside each 

iteration, we must solve a 144x144 linear system, and this can be done in parallel using ScaLAPACK, a 

parallel version of LAPACK. 

ScaLAPACK chooses 2-D block cyclic data distribution to optimize BLAS3 (matrix-matrix) operation. It 

is not as straightforward as LAPACK. We need to distribute the data to each process in a process grid 

manually, in a cyclic manner. Then call the ScaLAPACK subroutine pdgesv. In the distribution of the data, 

we set the process grid to be 4x4, that is, there are 16 processes. We divide the 144x144 matrix into 2x2 

small blocks. Since we have 4x4 processes and each block is 2x2, each cycle should be 8x8, and there are 

totally 18x18 cycles. In a cycle, each process takes its 2x2 block. Then each process has a 36x36 submatrix. 

For vector b, it is only divided in column direction, in the same way as A. And only processes in column 0 

has their part of b, which is a 36x1 vector. The local b for other processes is a zero vector.  

After calling pdgesv, only processes in column 0 have their part of the solution, in the same location as 

their part of b. For example, if process (0,0) has b1 and b2, then after the routine, it will have u1 and u2. 
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Since in the next step, we need E1u and E2u where u is the complete solution, we have to gather different 

parts of the solution together. To do this, we initialize u for each process to be a 144x1 zero vector, then 

put the parts of the solution into their corresponding location in u, leaving all other entries zero. Then we 

can simply sum up all 16 u’s to get the complete solution by calling blacs routine dgsum2d, which is the 

routine that performs element-wise summation over all processes. 

The time for running this ScaLAPACK code is even more inconsistent than OpenMP, ranging from 30 

seconds to over 6 minutes, usually taking much longer than any previous version. That might because we 

let each process read in the full set of data, and that takes lots of memory. Also, ScaLAPACK is designed 

for solving very large system, however, our system is only 144x144, too small for ScaLAPACK to show 

its advantage. Therefore, what can be done next might be letting process 0 read and simplify all the data 

and send other processes their own part, which can reduce the memory usage. We may also let each process 

read and simplify one part of the data and generate their own local data, just as what we have done with 

MPI. We simply did not have the time to continue working on this program during our allotted time. 

See tables 4 through 6 for a complete list of running times of the three algorithms in various forms. 

 

Basic least squares - Program version Peak Running time 

Original code, run from Matlab on a laptop, using DM3 files ~ 35 seconds 

LAPACK implementation on CPU, run from Bridges system, using text files ~ 33 seconds 

LAPACK implementation on CPU, run from Bridges system, using binary files ~ 7 seconds 

MAGMA implementation on GPU, run from Bridges system, using text files ~ 87 to 98 seconds 

MAGMA implementation on GPU, run from Bridges system, using binary files ~ 50 seconds 

MPI implementation mk 1, run from Bridges system, using binary files ~ 53 seconds 

OpenMP implementation, run from Bridges system, using binary files ~ 7.4 to 26.3 seconds 
Table 4-program running times for versions of the basic least squares algorithm, all generating the same results 

 

Least squares plus gradient - Program version Peak Running time 

First version, in Matlab, run from Bridges system, using DM3 files ~ 21 seconds 

LAPACK implementation on CPU, run from Bridges system, using binary files ~ 0.75 seconds 

MAGMA implementation on GPU, run from Bridges system, using binary files ~ 4 seconds 

MPI implementation mk 1, run from Bridges system, using binary files ~ 3.7 seconds 

MPI implementation mk 2, run from Bridges system, using binary files ~ 2.8 seconds 

MPI implementation mk 3, run from Bridges system, using binary files ~ 0.7 to 1.4 seconds 

OpenMP implementation, run from Bridges system, using binary files 0.66 to 2.99 seconds 
Table 5-program running times for versions of the least squares plus gradient algorithm, all generating the same results 

 

Split Bregman method - Program version Peak Running time 

First version, in Matlab, run from Bridges system, using DM3 files ~ 22 seconds 

LAPACK implementation on CPU, run from Bridges system, using binary files ~ 0.76 seconds 

MPI implementation, run from Bridges system, using binary files ~ 1.5 seconds 

ScaLAPACK implementation on CPU, run from Bridges system, using binary files ~ 30 seconds 
Table 6-program running times for versions of the Split Bregman algorithm, all generating the same results 
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Next Steps 

Should this project be continued, recommended next steps for the algorithmic approach include the 

following: 1) further investigation into why OpenMP is faster the fewer threads are requested and how to 

make it run more as expected, 2) continuing to work with ScaLAPACK to see if it could be a viable 

alternative to our other parallel techniques, and above all, 3) further testing with larger pools of data, to 

determine how these results expand beyond our limited example group.  
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Appendix 

New algorithms – Matlab code 

 

%Least squares with gradient, final version 

clear; 

addpath('D:\'); 

 

full_data = DM3Import('STO_Modes_even.dm3'); 

 

[Nx Ny Nz] = size(full_data.image_data); 

N_full = sqrt(Nz); 

 

full_data.image_data = reshape(full_data.image_data,[Nx Ny N_full 

N_full]); 

 

image_full_I = zeros(Nx*N_full,Ny*N_full); 

for jx = 1:N_full 

    for jy = 1:N_full 

        image_full_I((1:Nx)+Nx*(jx-1),(1:Ny)+Ny*(jy-1)) = 

full_data.image_data(:,:,jx,jy); 

    end 

end 

 

Model1 = DM3Import('STO_Mode1_14x14_cbeds.dm3'); 

 

[Nx Ny Nz] = size(Model1.image_data); 

N_model = sqrt(Nz); 

 

Model1.image_data = reshape(Model1.image_data,[Nx Ny N_model 

N_model]); 
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Model2 = DM3Import('STO_Mode2_14x14_cbeds.dm3'); 

 

[Nx Ny Nz] = size(Model2.image_data); 

 

Model2.image_data = reshape(Model2.image_data,[Nx Ny sqrt(Nz) 

sqrt(Nz)]); 

 

image_full_M1 = zeros(Nx*sqrt(Nz),Ny*sqrt(Nz)); 

for jx = 1:sqrt(Nz) 

    for jy = 1:sqrt(Nz) 

        image_full_M1((1:Nx)+Nx*(jx-1),(1:Ny)+Ny*(jy-1)) = 

Model1.image_data(:,:,jx,jy); 

    end 

end 

 

image_full_M2 = zeros(Nx*sqrt(Nz),Ny*sqrt(Nz)); 

for jx = 1:sqrt(Nz) 

    for jy = 1:sqrt(Nz) 

        image_full_M2((1:Nx)+Nx*(jx-1),(1:Ny)+Ny*(jy-1)) = 

Model2.image_data(:,:,jx,jy); 

    end 

end 

 

 

Model_base = DM3Import('STO_mode0_14x14_cbeds.dm3'); 

[Nx Ny Nz] = size(Model_base.image_data); 

N_model = sqrt(Nz); 

Model_base.image_data = reshape(Model_base.image_data,[Nx Ny N_model 

N_model]); 

 

image_full_M0 = zeros(Nx*sqrt(Nz),Ny*sqrt(Nz)); 

for jx = 1:sqrt(Nz) 
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    for jy = 1:sqrt(Nz) 

        image_full_M0((1:Nx)+Nx*(jx-1),(1:Ny)+Ny*(jy-1)) = 

Model_base.image_data(:,:,jx,jy); 

    end 

end 

M1=squeeze(mean(mean(Model1.image_data))); 

M2=squeeze(mean(mean(Model2.image_data))); 

M0=squeeze(mean(mean(Model_base.image_data))); 

 M1=M1-M0; 

 M2=M2-M0; 

 l=196; 

  

   

        g1x=zeros(14); 

        g1y=zeros(14);          

        g2x=zeros(14); 

        g2y=zeros(14); 

        g0x=zeros(14); 

        g0y=zeros(14); 

 for i=1:14 

    for j=1:14 

      if j<14 

         g1x(i,j)=M1(i,j+1)-M1(i,j); 

         g2x(i,j)=M2(i,j+1)-M2(i,j);     

         g0x(i,j)=M0(i,j+1)-M0(i,j);     

      else 

          g1x(i,j)=M1(i,1)-M1(i,j); 

          g2x(i,j)=M2(i,1)-M2(i,j); 

          g0x(i,j)=M0(i,1)-M0(i,j); 

      end 

    end 
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 end 

 

 for i=1:14 

   for j=1:14 

      if i<14 

         g1y(i,j)=M1(i+1,j)-M1(i,j); 

         g2y(i,j)=M2(i+1,j)-M2(i,j); 

         g0y(i,j)=M0(i+1,j)-M0(i,j);     

      else 

          g1y(i,j)=M1(1,j)-M1(i,j); 

           g2y(i,j)=M2(1,j)-M2(i,j); 

          g0y(i,j)=M0(1,j)-M0(i,j);  

      end 

   end 

 end 

  w_Model1_prim = zeros(4); 

w_Model2_prim = zeros(4); 

w_Model_base_prim = zeros(4); 

err_prim = zeros(4); 

 

w_Model1_true = zeros(4); 

w_Model1_true(:,1:2) = 1; 

w_Model1_true(:,3:4) = -1; 

w_Model2_true = zeros(4); 

w_Model2_true(1:2,:) = 1; 

w_Model2_true(3:4,:) = -1; 

w_Model_base_true = ones(4); 

A=[M1(:),M2(:),M0(:),g1x(:),g2x(:),g0x(:),g1y(:),g2y(:),g0y(:)]; 

 

for jx = 1:4 



17 
 

    for jy = 1:4 

    x = full_data.image_data(:,:,(1:14)+14*(jy-1),(1:14)+14*(jx-1)); 

    x=squeeze(mean(mean(x))); 

    w=A\x(:); 

    w_Model1_prim(jx,jy)=w(1); 

    w_Model2_prim(jx,jy)=w(2); 

    w_Model_base_prim(jx,jy)=w(3); 

    end 

end 

total_diff=sum(abs(w_Model1_prim(:)-

w_Model1_true(:)))+sum(abs(w_Model2_prim(:)... 

    -w_Model2_true(:)))+sum(abs(w_Model_base_prim(:)-

w_Model_base_true(:))); 
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%Split Bregman method, final version 

clear; 

addpath('/pylon2/ac5610p/huanlin'); 

 

L=input('lambda='); 

N=input('number of iteration='); 

M=input('coeff of ||Au-x||_2='); 

 

full_data = DM3Import('STO_Modes_even.dm3'); 

 

[Nx Ny Nz] = size(full_data.image_data); 

N_full = sqrt(Nz); 

 

full_data.image_data = reshape(full_data.image_data,[Nx Ny N_full 

N_full]); 

 

image_full_I = zeros(Nx*N_full,Ny*N_full); 

for jx = 1:N_full 

    for jy = 1:N_full 

        image_full_I((1:Nx)+Nx*(jx-1),(1:Ny)+Ny*(jy-1)) = 

full_data.image_data(:,:,jx,jy); 

    end 

end 

 

Model1 = DM3Import('STO_Mode1_14x14_cbeds.dm3'); 

 

[Nx Ny Nz] = size(Model1.image_data); 

N_model = sqrt(Nz); 

 

Model1.image_data = reshape(Model1.image_data,[Nx Ny N_model 

N_model]); 
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Model2 = DM3Import('STO_Mode2_14x14_cbeds.dm3'); 

 

[Nx Ny Nz] = size(Model2.image_data); 

 

Model2.image_data = reshape(Model2.image_data,[Nx Ny sqrt(Nz) 

sqrt(Nz)]); 

 

image_full_M1 = zeros(Nx*sqrt(Nz),Ny*sqrt(Nz)); 

for jx = 1:sqrt(Nz) 

    for jy = 1:sqrt(Nz) 

        image_full_M1((1:Nx)+Nx*(jx-1),(1:Ny)+Ny*(jy-1)) = 

Model1.image_data(:,:,jx,jy); 

    end 

end 

 

image_full_M2 = zeros(Nx*sqrt(Nz),Ny*sqrt(Nz)); 

for jx = 1:sqrt(Nz) 

    for jy = 1:sqrt(Nz) 

        image_full_M2((1:Nx)+Nx*(jx-1),(1:Ny)+Ny*(jy-1)) = 

Model2.image_data(:,:,jx,jy); 

    end 

end 

 

 

Model_base = DM3Import('STO_mode0_14x14_cbeds.dm3'); 

[Nx Ny Nz] = size(Model_base.image_data); 

N_model = sqrt(Nz); 

Model_base.image_data = reshape(Model_base.image_data,[Nx Ny N_model 

N_model]); 

 

image_full_M0 = zeros(Nx*sqrt(Nz),Ny*sqrt(Nz)); 



20 
 

for jx = 1:sqrt(Nz) 

    for jy = 1:sqrt(Nz) 

        image_full_M0((1:Nx)+Nx*(jx-1),(1:Ny)+Ny*(jy-1)) = 

Model_base.image_data(:,:,jx,jy); 

    end 

end 

M1=squeeze(mean(mean(Model1.image_data))); 

M2=squeeze(mean(mean(Model2.image_data))); 

M0=squeeze(mean(mean(Model_base.image_data))); 

 M1=M1-M0; 

 M2=M2-M0; 

 l=196; 

 x=zeros(16*196,1); 

 for jx = 1:4 

    for jy = 1:4 

        x_tmp = full_data.image_data(:,:,(1:14)+14*(jy-

1),(1:14)+14*(jx-1)); 

        x_tmp=squeeze(mean(mean(x_tmp))); 

      x(((4*(jx-1)+jy-1)*l+1):(4*(jx-1)+jy)*l)=x_tmp(:); 

    end 

 end 

  

        g1x=zeros(14); 

        g1y=zeros(14);          

        g2x=zeros(14); 

        g2y=zeros(14); 

        g0x=zeros(14); 

        g0y=zeros(14); 

 for i=1:14 

    for j=1:14 

      if j<14 
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         g1x(i,j)=M1(i,j+1)-M1(i,j); 

         g2x(i,j)=M2(i,j+1)-M2(i,j);     

         g0x(i,j)=M0(i,j+1)-M0(i,j);     

       else 

          g1x(i,j)=M1(i,1)-M1(i,j); 

          g2x(i,j)=M2(i,1)-M2(i,j); 

          g0x(i,j)=M0(i,1)-M0(i,j);     

      end 

    end 

 end 

 

 for i=1:14 

   for j=1:14 

      if i<14 

         g1y(i,j)=M1(i+1,j)-M1(i,j); 

         g2y(i,j)=M2(i+1,j)-M2(i,j); 

         g0y(i,j)=M0(i+1,j)-M0(i,j);     

      else 

          g1y(i,j)=M1(1,j)-M1(i,j); 

          g2y(i,j)=M2(1,j)-M2(i,j); 

          g0y(i,j)=M0(1,j)-M0(i,j);   

     end 

   end 

 end 

w_Model1_true = zeros(4); 

w_Model1_true(:,1:2) = 1; 

w_Model1_true(:,3:4) = -1; 

w_Model2_true = zeros(4); 

w_Model2_true(1:2,:) = 1; 

w_Model2_true(3:4,:) = -1; 



22 
 

w_Model_base_true = ones(4); 

 

E1_tmp=zeros(36,48); 

for k=1:4 

  for i=1:9 

    E1_tmp(i+9*(k-1),i+9*(k-1)+3*(k-1))=1; 

    E1_tmp(i+9*(k-1),i+9*(k-1)+3*k)=-1; 

  end 

end 

E1=zeros(36,144); 

E1(:,1:48)=E1_tmp; 

 

E2_tmp=zeros(36,48); 

for i=1:36 

  E2_tmp(i,i)=1; 

  E2_tmp(i,i+12)=-1; 

end 

E2=zeros(36,144); 

E2(:,1:48)=E2_tmp; 

 

A_unit=[M1(:),M2(:),M0(:)]; 

Gx_unit=[g1x(:),g2x(:),g0x(:)]; 

Gy_unit=[g1y(:),g2y(:),g0y(:)]; 

 

err_sum_origin=0; 

l=196; 

A=zeros(l*16,48*3); 

 

  for jx = 1:4 

    for jy = 1:4 
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      A(((4*(jx-1)+jy-1)*l+1):(4*(jx-1)+jy)*l,(3*(4*(jx-1)+jy-

1)+1):3*(4*(jx-1)+jy))=A_unit; 

      A(((4*(jx-1)+jy-1)*l+1):(4*(jx-1)+jy)*l,(3*(4*(jx-1)+jy-

1)+1+48):3*(4*(jx-1)+jy)+48)... 

     =Gx_unit; 

      A(((4*(jx-1)+jy-1)*l+1):(4*(jx-1)+jy)*l,(3*(4*(jx-1)+jy-

1)+1+96):3*(4*(jx-1)+jy)+96)... 

     =Gy_unit; 

    end 

 end 

 

u=zeros(48*3,1); 

for i=1:4 

   for j=1:4 

       u(12*(i-1)+3*(j-1)+1)=w_Model1_true(i,j); 

       u(12*(i-1)+3*(j-1)+2)=w_Model2_true(i,j); 

       u(12*(i-1)+3*(j-1)+3)=w_Model_base_true(i,j); 

   end 

end 

u_true=u; 

 

% Split bregman iteration. 

d1=E1*u; d2=E2*u; b1=zeros(36,1); b2=zeros(36,1); 

AtransA=A'*A; 

Atransx=A'*x; 

for n=1:N 

   disp(['n=',num2str(n)]); 

   

u=(M*AtransA+(L/2)*(E1'*E1)+(L/2)*(E2'*E2))\(M*Atransx+(L/2)*E1'*(d1-

b1)+(L/2)*E2'*(d2-b2)); 

     tmp1=E1*u; 

     tmp2=E2*u; 
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   for j=1:36 

       xj1=tmp1(j)+b1(j); 

       d1(j)=(xj1/abs(xj1))*max(abs(xj1)-1/L,0); 

       xj2=tmp2(j)+b2(j); 

       d2(j)=(xj2/abs(xj2))*max(abs(xj2)-1/L,0); 

    end 

  b1=b1+E1*u-d1; 

  b2=b2+E2*u-d2; 

end 

 

w_Model1_prim = zeros(4); 

w_Model2_prim = zeros(4); 

w_Model_base_prim = zeros(4); 

 

for i=1:4 

  for j=1:4 

     w_Model1_prim(i,j)= u(12*(i-1)+3*(j-1)+1); 

     w_Model2_prim(i,j)= u(12*(i-1)+3*(j-1)+2); 

    w_Model_base_prim(i,j)= u(12*(i-1)+3*(j-1)+3); 

end 

end 

total_diff=sum(abs(w_Model1_prim(:)-

w_Model1_true(:)))+sum(abs(w_Model2_prim(:)... 

    -w_Model2_true(:)))+sum(abs(w_Model_base_prim(:)-

w_Model_base_true(:))); 


