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OUR INTEREST

Fast electron detectors are gaining ground in traditional high-resolution microscopy studies, 

particularly 4D ptychographic datasets which are believed to contain a wealth of information about 

structure and properties of materials. However, currently available data analysis methods are either 

too general, only allowing for analysis of simplest objects, or too reductive, effectively recreating 

traditional detectors from these datasets before interpretation. This project aims to explore the ways 

that symmetry mode analysis can be adapted to analyze 4D datasets of materials such as 

multifunctional complex oxides, or perovskites.



INTRODUCTION TO PROJECT - PEROVSKITES

What is a perovskite structure?

• Any one of many crystalline materials with a structure of ABX3 , such as calcium titanium 

oxide, or CaTiO3

• These structures are of interest to material science, and have potentially useful 

conductivity and dielectric properties for use in solar cell development

• They can have very different properties depending on the sample’s exact molecular 

structure and distortion, with determining the type of distortion present in a particular 

sample is the goal of this project.



OVERVIEW OF PROBLEM SET UP

• What we have:

• 3 baseline modes, M1, M2, and M0

• 16 images, x, each consists of a combination of these 3 modes

• 3 4x4 true weight matrices

What we want: the true model of the composition of the image, such 

that the calculated weights of the 3 modes equal the true weights.

Beginning model: linear least squares optimization:

x = αM1 + βM2 + γM0, with α, β, and γ being the weights of the three 

modes and x being the resulting image.



LEAST SQUARES SOLUTION

First possible solution executed in Matlab.

x = αM1 + βM2 + γM0 ↔ ||x-(αM1+βM2+γM0)||_2=0   ↔ Aw = x

A=[M1 M2 M0] : 7,225,344-by-3 : a matrix containing the data of the 3 modes.

x: 7,225,344-by-1 : a vector of the data of the resulting image.

Formulation: let w=[α; β; γ] (3-by1), find w that minimizes ||Aw-x||_2, to solve Aw = x.

4-by-4 unit cells4-by-4 weights for each mode.

Weight Matrix (Calculated):                                   Weight Matrix (True):                           

0.8284    0.8117   -0.4186   -0.4570                        1.0000  1.0000  -1.0000  -1.0000

0.8349    0.8117   -0.4692   -0.5001                        1.0000  1.0000  -1.0000  -1.0000

0.9280    0.9676   -0.3302   -0.3538                        1.0000  1.0000  -1.0000  -1.0000

0.9544    0.9881   -0.2990   -0.3590                        1.0000  1.0000  -1.0000  -1.0000



GOALS

Our general goals for this summer consist of:

• Increasing the accuracy of the calculated weights, by using alternative algorithms

• Increase the speed the calculations can be performed, by changing the programming language, 

using a GPU for calculations, and/or implementing it in parallel

• Explore the possibility in using machine learning to find the correct weights, in place of the 

standard mathematical approaches



Model Improvement: Gradient

(M0) 

G0x(:,1)=M0(:,2)-M0(:,1);                        G0y(1, : )=M0(2,: )-M0(1,: )

G0x(:, j)=M0(:, j+1)-M0(:, j);                     G0y(i , : )=M0(i+1, : )-M0(i , : );

…                                                              …

G0x(:,14)=M0(:,1)-M0(:,14);                    G0y(14,: )=M0(1, : )-M0(14, : );



Model Improvement: Gradient

G0x:                                                                                                    G0y:



Model Improvement: Gradient

Original Model - Simple linear:

x=αM1+βM2+γM0       Or     Aw = x

Add the gradients            Improved Model:

x=αM1+βM2+γM0+a*G1x+b*G2x+c*G0x+d*G1y+e*G2y+f*G0y 

Algorithm: Least Square

 Find α, β, γ, a, b, …, f such that 

|| αM1+βM2+γM0+a*G1x+b*G2x+c*G0x+d*G1y+e*G2y+f*G0y – x||_2

is minimized. 

α, β, γ, the weights of the three modes



Model Improvement: Gradient

Result:

Total Difference=∑|Calculated Weight – True Weight|

From original model: 11.6405

From improved model: 2.9635

M1(improved):                                     M1(original): 

0.7063    0.8202   -0.9917   -1.1031                  0.8284    0.8117   -0.4186   -0.4570

0.9238    0.8443   -1.0185   -1.0838                  0.8349    0.8117   -0.4692   -0.5001

1.0107    0.9142   -0.8604   -0.9573                  0.9280    0.9676   -0.3302   -0.3538 

1.0271    0.9366   -0.9759   -1.0386                  0.9544    0.9881   -0.2990   -0.3590



Algorithm Improvement:
L1-Regularized Least Square

Goal: To force the results to be more piecewise constant

Idea:  minimize  ||Aw-x||2
2 +|grad(w)|                              

where |grad(w)|=∑|w(:, j+1)-w(:, j)|+∑|w(i+1, :)-w(i, :)|

Formulation: find u that minimizes 

m||Au-x||2
2 +|E1u|1+|E2u|1  

u : 144x1 unknown.

u1-u48 : weights of the modes themselves;

u49-u96: weights of gradients in x direction;

u97-u144: weights of gradients in y direction.

E1 ( 36x144) : gradient calculation in x direction;

E2   (36x144): gradient calculation in y direction.



Algorithm Improvement:
L1-Regularized Least Square

Find u that minimizes m||Au-x||2
2 +|E1u|1+|E2u|1  

A=                                                         (16*196X144) 

A*u=α*M1+β*M2+γ*M0+a1*G1x+b1*G2x+c1*G0x+a2*G1y+b2*G2y+c2*G0y 

Each I = a single image

x =               ( 16*196x1)                            ||Au-x||2
2 : Total Error of all 16 

unit cells.         

Method : Split Bregman Method.                                    



Algorithm Improvement:
L1-Regularized Least Square

Split Bregman Method:

Initialization:                                  = 0 (36x1)

For k=0:N

uk+1=(mATA+λE1
TE1+λE2

TE2)
-1(mATb+λ E1

T ( )+λE2
T(                );

(          ) j = shrink( (Eiu
k+1)j+(      )j, 1/λ ) , i=1,2;

where shrink(z, a)=(z/|z|)*max(|z|-a, 0) 



Algorithm Improvement:
L1-Regularized Least Square

Results:

M1(Split Bregman):                                            M1(original):

0.7333    0.7971   -0.9936   -1.0665                        0.8284    0.8117   -0.4186   -0.4570

0.9198    0.8443   -0.9936   -1.0511                        0.8349    0.8117   -0.4692   -0.5001

0.9885    0.9051   -0.9082   -0.9804                        0.9280    0.9676   -0.3302   -0.3538 

0.9992    0.9051   -0.9433   -1.0020                        0.9544    0.9881   -0.2990   -0.3590

Total Difference=∑|Calculated Weight – True Weight|

Original Model: 11.6405

Improved Model with Simple Least Square: 2.9635

Improved Model with L1-Regularized Least Square: 2.8833



Implementation: Parallel code -> Version 1

Improved Model with Simple Least Square:

I1

I1, I2, …, I16, M1, M2, M0 P0      MPI_Bcast

A, I2    A,I3 A,I4      A,I5              A,I16 & MPI_Scatter

P1  P2 P3                  P4 …     P15         

||Aw-I1||2    ||Aw-I2||2      ||Aw-I3||2 …  … ||Aw-I16||2

w1                          w2                w3                                                             w16

MPI_Gather

P0                                    



Implementation: Parallel code -> Version 2

Improved Model with Simple Least Square

MPI_Bcast

M1 P0  A P0                  I1

M2                P1     MPI_Send &Recv P1                  I2

M0 P2                                … 

P15                 I16

Pi : ||Aw-Ii+1||2



LAPACK

Using LAPACK was the first of our attempts at improving the time 

necessary to complete calculations. Since this linear algebra library was 

made with speed and efficiency in mind, simply using some of these 

pre-made functions (namely dgels and dgemm) works very well to 

provide speed up, with a minimum of trouble.

Using Bridges PSC Basic Least 

Squares

Simplified LS with Gradient Split Bregman (20 iterations)

Size of matrix 7,225,344 by 3 196 by 9 144 by 144

Matlab ~ 33 seconds ~ 21 seconds ~ 21 seconds

CPU, using LAPACK ~ 7 seconds ~ 0.75 seconds ~ 0.76 seconds



MAGMA

The next framework we tried was MAGMA, an implementation of LAPACK meant to run on a GPU. 

Because the main part of the program was still run on a CPU, all the data had to be moved over to 

the GPU for calculations, and the results had to be moved back to be available to display. All this 

data movement added considerable overhead, which would be counter-balanced by hopefully 

reduced time needed for making the calculations.

CPU GPU
Data movement



MAGMA

The idea was that it could work calculations on large matrices much 

faster, but it turned out that since our matrices were far longer than 

wide, it couldn’t help with calculations much, and in fact took longer 

than before, likely due to having to copy data to and from the GPU.

Using Bridges PSC Basic Least 

Squares

Simplified LS with 

Gradient

Split Bregman 

(20 iterations)

Size of matrix 7,225,344 by 3 196 by 9 144 by 144

GPU, using MAGMA ~ 50 seconds ~ 4 seconds Not made



MAKING PARALLEL

The third basic version attempted was finding some means of running the program 

in parallel. For this purpose, we tried:

• Message Passing Interface (MPI), which uses various functions for sending and 

receiving data across multiple processors 

• OpenMP, which uses compiler directives to generate parallel executables without 

the user having to interfere or be too specific 

• ScaLAPACK, an implementation of LAPACK made for parallel processing.

Using Bridges PSC Basic Least 

Squares

Simplified LS 

with Gradient

Split Bregman 

(20 iterations)

Size of Matrix 7,225,344 by 3 196 by 9 144 by 144

Using LAPACK and MPI ~ 53 seconds ~ 1 second ~ 1.5 seconds

Using LAPACK and OpenMP ~ 7.4 to 26 

seconds

~ 0.7 to 3 

seconds

Not made

Using ScaLAPACK Not made ~ 30s to 6min Not made



CONCLUSIONS OF ALGORITHMIC METHOD

From the algorithmic approach side of this project, the current best approach, as judged by accuracy 

of results, speed of calculations, and ease of understanding how it works, would have to be the least 

squares plus gradient implemented with LAPACK.

• It improves upon the basic least squares’ accuracy almost as best as we were able

• It ties for fastest program

• And it is a highly understandable solution, without adding many additional complications

Had the data been better suited to GPU processing, or we had far more than 16 data sets to work 

through, one of the other methods could have come out ahead, but as it now lies, this is the clear 

winner.



NEURAL NETWORK

• Neural network is essentially a feed-back 

mechanism.

• Vectors are propagated forward to produce 

outputs, and outputs are propagated back to 

adjust the neural network. 

• The behaviours of the layers are similar to the 

neurons in a biological brain.

• The process of propagation is essentially 

matrix multiplication.



OVERVIEW OF PROBLEM SET UP

• What we have:

• 3 baseline modes, M1, M2, and M0

• 16 images, x, each consists of a combination of these 3 modes

• 3 4x4 true weight matrices

What we want: the true model of the composition of the image, such 

that the calculated weights of the 3 modes equal the true weights.

Beginning model: linear least squares optimization:

x = αM1 + βM2 + γM0, with α, β, and γ being the weights of the three 

modes and x being the resulting image.



MACHINE LEARNING: GOAL

• Let                        be three modes, and    be a target image. We try to find a 

linear representation of the input image with the three modes, namely,

• The goal: find the coefficients alpha, beta and gamma. 

• Images (up to some transformation): 



PROBLEM

• The problem is that if you solve the three coefficients directly, using 

least square method, the result you have will be very bad.

• The reason is that  there is a non-linear bias in the dependence. 

Namely,  

• So working out the bias is an important part of this project.



BIAS

• The method to work out the bias is by interpolation.

• Assume that the bias is caused by the interactions between the M1 and M2 modes

• From the assumption above, for each pixel          in   , the bias for this pixel is  

• Which is a function of beta and gamma, though the form of this function is not 

known.

• We can interpolate bias from the data we know.



INTERPOLATION

• Recall we have 16 input images, every four of them share the 

same coefficients. 

• Therefore from this dataset we can know the value of the bias 

function at 4 points, i.e.,

• B(1,1),B(-1,1),B(1,-1),B(-1,-1)

• If we take the coefficients of M1 and M2 into account during 

interpolation, we also know the values of the bias function at two 

more points:

• B(0,1),B(1,0)
• Therefore, we have two kinds of interpolation: 4-point and 6-point.



INTERPOLATION

• 4-point interpolation(cubic): 6-point interpolation(cubic):

Note that in the 4 point interpolation,

The surface is more smooth; for the 6 

point interpolation, more points makes

the interpolation more complicated, so

the surface is not that smooth.



CHOICE OF INTERPOLATION METHOD

• Synthetic training examples are generated by:

• 1. Pick       randomly from the interval (-1,1) and fix          .

• 2. Generate the example by taking the linear combination and 

then adding the bias term:   

• The computations are carried out with following parameters:       

• 2 hidden layers, hidden layer size = 15;

• Regularisation parameter = 0.05;

• 200 synthetic examples;

• A CG method for learning. 



COMPARISON BETWEEN INTERPOLATION METHODS

• Use 4-point interpolation.

Note that all interpolation methods works

fine except the v4 interpolation(biharmonic).

So in the future computations, linear, cubic and 

natural neighbour interpolation will be used.



PREDICTION RESULTS

• The prediction with 4-point cubic interpolation:



MORE TEST

• With 4-point natural interpolations:

• The true coefficients are:



ON GPU

• CPU-GPU communication is very time consuming. 

• Trick: All large data structures should not leave GPU, to reduce such 

communication.

• New CUDA routines implemented to keep data on GPU.

• Elementwise functions and elementwise product is implemented.

• Part of the code:



PERFORMANCES

NVIDIA P100 GPU is used. 



PERFORMANCES

Note: the CPU curve is increasing

sharply, looking like a straight line.

While the GPU curve is smooth and 

the value is not high even for large

datasets.



MACHINE LEARNING :SUMMARY

Three basic modes:

• Why use machine learning method for this problem?

• This way we don’t have to analyse the detailed structure and the features of the 

image. 

• It is really troublesome to analyse this kind of image. 



MORE…

• More thinking: essentially what this neural network is doing is to solve an 

overdetermined nonlinear system.

• Then why don’t we extend this idea further? Maybe we can solve a big linear 

system with neural network.

• Or maybe even other linear algebra problems may be solved with neural 

network.



COMPUTE MATRIX INVERSE

• For invertible matrix      ,                

• Cost function:             

• Gradient

• For the gradient, I prove that the spectral radius is

• is the time step,

• are eigenvalues of

• are singular values of 



Q & A

ANY QUESTIONS?


