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REFERENCE

    There are three known basic modes,                  , each of 
which is a 2688 by 2688 image.  The problem is, for each 
input  image    , we try to find a representation of    using the 
three basic modes. It is known that the input image can be 
closely represented as a linear combination of the three 
basic modes, namely,     

    The problem can easily be solved by least square 
method. However,  the result of least square is quite far 
away from what we desire. For example, for one of the input 
images , where the true coefficients are                            , 
the output of least square method is                                   . 
For                                  , the result of least square is                                                 
                                      , which has large notable error.  

    A machine learning method with interpolation is proposed 
to achieve better accuracy for current data. For example, for  
an image with                                 , the output of the neural 
network is                                       , with 2 hidden layers, 15 
nodes in each hidden layer and regularisation parameter = 
0.01. 

          
   The above is M0. M1 and M2 look similar. 

  In future computations, we do the following assignments: 
M1 - M0 -> M1, M2 - M0 -> M2. 

     
    Currently, only 16 input images are provided and every 
four of them share the same set of coefficients. Namely,  

    This shortage of data makes it impossible to train a 
neural network with what we now have. The remedy is to  
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METHOD

(↵,�, �) = (1,±1,±1)

generate synthetic data with interpolation. For each of the 
pixels in an input image, we know the bias of linear 
approximation. It is assumed that the bias is a result of 
mutual effect of     and    . Namely, the bias for a pixel           
can be written as following: 

    We can interpolate the bias using the four points for each 
pixel. If we take       and        also as input images, we can 
interpolate using six points. 

    To simplify the inputs we sum up all pixel in a 192 by 192 
block in an input image or basic mode; we will only consider 
the 14 by 14 summed image. 

    
  
     The activation function is tanh except for output layer, 
which is the identity. 

       Different interpolation methods  
can be chosen. The figure on the right 
shows the 6-point cubic interpolation  
of one pixel. 

    The cost function is minimised by a CG method.1     
    With 200 training examples, regularisation parameter = 
0.01, and linear interpolation, the changes of cost functions 
are shown in the following figure. 

Note that in the 4-point case the training is much faster. 
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COMPUTATIONS&RESULTS

Results: 
( 4-point case, one input image for each set of coefficients ) 

( 6-point case, one input image for each set of coefficients )                                                                                                 

Recall: M1 and M2 are two of the basic modes 
Note that in the 4-point case, predictions on M1 and M2 failed.

        True coef  
   coef

(1,1,1) (1,1,-1) (1,-1,1) (1,-1,-1) (1,1,0) 
(M1)

(1,0,1) 
(M2)

0.9934 1.0019 0.9972 0.9953 0.9947 1.0025
0.8718 1.0750 -1.0476 -0.9736 0.9907 0.0199

1.0464 -1.0962 0.9614 -0.9915 0.0310 1.0205
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ANALYSIS&FUTURE WORK
   A better testing of the algorithm is to directly input        and 
check if the output is (1,0,0). In fact, the output is (1.0050, 
-0.0829, 0.0054), which is quite close. This successful 
prediction on        gives us confidence that this interpolation-
training method can work for other test data.  
    In the future, if more data can be experimentally 
acquired, this algorithm can be more rigorously tested. If it 
does not work well with the new data,  we can interpolate 
with the new data and thus improve the model. 
    Implementation of the algorithm using MAGMA is being 
worked on.                    
    Essentially, this neural network is solving this problem 
similar to using least square method, except that there is a 
non-linear bias of unknown mathematical form. Therefore 
this idea can possibly be used to solve other linear algebra 
problems based on  the NN formulation, such as to 
compute the matrix inverse. 
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Bias

        True coef  
   coef

(1,1,1) (1,1,-1) (1,-1,1) (1,-1,-1) (1,1,0) 
(M1)

(1,0,1) 
(M2)

0.9891 1.0053 0.9823 0.9925 0.9911 1.0051
1.0010 0.9735 -0.9755 -1.0396 -0.0494 1.1258

0.9946 -0.9931 0.9914 -1.0123 1.1155 0.0359
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