
Fast electron detectors are gaining ground in traditional high-

resolution microscopy studies. In particular, 4D ptychographic

datasets collected over a range of real and reciprocal space

coordinates are believed to contain a wealth of information

about structure and properties of materials. However, currently

available data analysis methods are either too general, only

allowing for analysis of simplest objects, or too reductive,

effectively recreating traditional detectors from these datasets

before interpretation. This project aims to explore the ways that

symmetry mode analysis, the tool used to a great effect in

theoretical studies of materials, can be adapted to analyze 4D

datasets of materials such as multifunctional complex oxides.

Unmixing 4-D Ptychographic Images

Part A: Algorithmic Approach

Future Work

Abstract Process and Algorithms

Students: Michaela Shoffner(UTK), Zhen Zhang(CUHK), and Huanlin Zhou(CUHK)

Mentors: Dr. Richard Archibald(ORNL), Dr. Azzam Haidar(UTK), Dr. Stanimire Tomov(UTK),

and Dr. Kwai Wong(UTK)

Acknowledgements
With thanks to all of our mentors, who have guided us every step of the way.

This work used the Extreme Science and Engineering Discovery Environment (XSEDE),

which is supported by National Science Foundation grant number ACI-1548562.

This project was sponsored by Oak Ridge National Laboratory, the Joint Institute for

Computational Sciences, the University of Tennessee, Knoxville, and the Chinese University

of Hong Kong.

This project was made possible by support from the National Science Foundation.

Last but not least, thanks to Dr. Google, without whom this would have been impossible.

Results

Goals

Research Questions

Given Matlab code using the least square model unmixing

method and three sample base-model data files, we seek to

improve upon the baseline program. Our primary two goals

are to implement an improvement to the current unmixing

algorithm, and to improve speed and performance by

converting the program to C code, using LAPACK, and

then having it run on a GPU, using MAGMA.

In the case of our problem, it can be formulated as

𝛼𝑀1 + 𝛽𝑀2 + 𝛾𝑀0 = 𝑏
Where 𝛼, 𝛽, and 𝛾 are the coefficients we’re trying to find,

each M is a matrix representing one of the baseline models,

and b is the given image. Represented as a grayscale picture,

each image looks with the complete

something like this ↓, set of 16 here.

Since our example data has

known coefficients, yet the

original program does not find

particularly close numbers, our

task is to seek ways to get

greater accuracy in the

calculated values.

Starting from a basic least squares algorithm and a basic

linear model, we began implementing various methods to
solve this unmixing problem.

Next steps include:

• Working with OpenACC to parallelize the code

• Debugging and further streamlining what currently

works

• Getting the MPI least squares and GPU simplified

least squares plus gradient working

All of our programs are run on the Bridges system.

Both simplified least squares with gradient and the Split-

Bregman get greater accuracy than basic least squares,

though they are quite similar to each other, with Split-

Bregman being slightly better.

The total difference in results from actual values is:

>> 11.6405 For basic least squares

>> 2.9635 For simplified least squares with gradient

>> 2.8782 For the Split-Bregman method

As for speed, both of the latter two methods have very similar

speeds and are faster than the equivalent implementation for

basic least squares.

In the attempt to better solve for the coefficients, we used three

different methods, but the workflow for each was still quite similar:

Least Squares

For A = [𝑀1 𝑀2 𝑀3] , b is the final image data, and x =

𝛼
𝛽
𝛾

, the

basic least squares is implemented by changing 𝐴𝑥 = 𝑏 into

𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏, as this allows for the overdetermined matrix to be

solved easily using LAPACK functions, but since it can be greatly

affected by outliers and there is something missing in the simple

linear model, it is also the least accurate method.

Simplified Least Squares with gradient

4 representative biases:

𝛼𝑀1 + 𝛽𝑀2 + 𝛾𝑀0 − 𝑏,

α,β,γ : the true weights

Gradients:

(of the 3 modes)

As seen in the figures, both bias and gradient are highly symmetric

and have similar patterns, so the gradient might be the missing

part. Thus, we design a new model by including the gradients,

formulated as
𝑏 = 𝛼𝑀1 + 𝛽𝑀2 + 𝛾𝑀0 + 𝑎 ∗ 𝑔1𝑥 + 𝑏 ∗ 𝑔2𝑥 + 𝑐 ∗ 𝑔0𝑥 + 𝑑 ∗ 𝑔1𝑦 + 𝑒 ∗ 𝑔2𝑦 + 𝑓 ∗ 𝑔0𝑦

Split-Bregman Method

This method is used to solve the L1-regularized least squares

problem: apart from solving the basic least square form, we also

want to minimize the L1-norm of the gradient of the resulting

weight matrices, so that the resulting weights are more piecewise

constant, just as the true weights appear.

Matlab
Code

C code for
CPU with
LAPACK

C code for
GPU with
MAGMA

C
Parallelizing

Basic Least

Squares

Simplified LS with

Gradient

Split-Bregman

(20 iterations)

Matlab ~ 33 seconds ~ 21 seconds ~21 seconds

CPU, using LAPACK ~ 7 seconds ~ 0.75 seconds ~ 0.76 seconds

GPU, using MAGMA ~ 50 seconds ~ 4 seconds In-progress

CPU, using LAPACK

and MPI

In-progress ~ 3 seconds In-progress

