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Traffic Assignment

Traffic assignment is a kernel component in 
transportation planning and real-time applications in 
optimal routing, signal control, and traffic prediction 

in traffic networks.



Introduction



Traffic Assignment Problem
Node

Link
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Time Cost 



Traffic Assignment Problem
Optimization

● System equilibrium

● User equilibrium

Time Cost Function



Traffic Assignment Problem
Given:

1. A graph representation of the urban transportation network

2. The associated link performance functions

3. An origin-destination matrix

Find the flow (and travel time) on each of the network links, such that the 
network satisfies user-equilibrium （UE） principle.



Variational Inequality

❖What?

➢ Definition

(y−x)TF(x) ≥ 0, ∀y ∈ K 

➢Graphically



Variational Inequality

❖ Category



Variational Inequality

❖Why?

➢ Intuitive: Either scenorio A or scenorio B

➢ closely related to equilibrium

❖ Application

➢ Nash Equilibrium Problem

➢ Economic Equilibrium Problem

➢ Pricing America Options



Traffic Assignment Problem

❖ Category

➢ Static Traffic Assignment

➢ Dynamic Traffic Assignment (continuous or discrete)



STA



VI on Static Traffic Assignment Problem (STA)

Frank 

Wolfe 

Algorithm



VI on Static Traffic Assignment Problem (STA)

Nonlinear Complementarity Problem (NCP) 



Traffic Problem Nonlinear 
complementarity problem

VI on Static Traffic Assignment Problem (STA)



VI on Static Traffic Assignment Problem (STA)

❖ Limitation

➢ Unrealistic to find all 

path for a big graph



VI on Static Traffic Assignment Problem (STA)

❖ Solution

➢ Find 7 nonsimilar path for each OD-pair to reduce Matrix size

➢ Use Shortest Path Algorethm

➢ Get approximate Optimization



Algorithm
Step 1:  Use One to All shortest path algorithm to find 7 paths for each OD 
pair. Here the solver uses nvGRAPH package in CUDA library which runs on 
GPU.

nvgraphStatus_t nvgraphSssp (nvgraphHandle_t,const 
nvgraphGraphDescr_t , const size_t,                     const 
int *, const size_t);



Algorithm
Step 2:  Convert all data in to NCP formulation in  Siconos, which is a non-
smooth numerical simulation package



Algorithm
Step 3:  Use NCP FBLSA Algorithm to solve the problem with given error 
bound. Here the solver uses Siconos and MUMPS library, which is a parallel 
sparse direct solver using MPI.

info = ncp_driver(problem, z, F, &options);



Sample input



Result with 4 OD Pair



Result with 24 OD Pair



Result 
The accuracy varies with path number for each OD pair



Analysis - Compared with Frank  Wolfe Algorithm

NCP:

1. Dominant cost: Matrix solver

2. Approximate optimize

3. A little faster when graph is big 

and with a few OD pair (Matrix 

size is OD pair number + path 

number)

FW:

1. Dominant cost: shortest path 

algorithm

2. Real Optimize

3. Faster when OD pair is more



Conclusion

1. Frank  Wolfe Algorithm is still better than NCP Algorithm in general.

2. In special cases, when graph is big and number of OD - Pair is little NCP 

Algorithm is faster than Frank Wolfe Algorithm.

3.When select 7 paths for each OD - pair in NCP algorithm, the result 

accuracy can reach 95%.



Future Work

❖ Do comprehensive tests

❖ Use cuSPARSE direct calculate Sparse Matrix



DTA



Mathematical Formulation

➢ Variational Inequality formulation:

○ Nash equilibrium nature



Mathematical Formulation

➢ Dynamic Network Loading:

○ Given h, return path delay operator

○ Approximated by ODE systems



DTA: Algorithm

➢ Overview
Input hk for all p

while (convergence 
condition == true)

ODE = 
makeOde(hk)

hk+1 = iteration(Phi,v) for all p

x = solution(ODE)

Phi = getPhi(x)

v = getV(Phi), for all p

...

...

...

Output hk+1 for all p

...

...

...



DTA: Algorithm

➢ ODE = make_ODE(h)

➢ x = solution(ODE)



DTA: Algorithm

➢ Dp = getDp(x)

○ x: arc volume

○ Dp: traversal time

○ Phi: cost function

➢ Phi = getPhi(Dp)

○ F: penalty function



DTA: Algorithm

➢ v = solution(Phi)

➢ h_k+1 = iteration(h_k)



Result: Sioxfalls network



Result: Departure rate and Optimum cost



Future Work

➢ High speed

➢ Large practical case



END


