
High Performance Computing for Neutron Tomography
Reconstruction

A Parallel Approach to Filtered Backprojection

Zongpu Li1, Cain Gantt2, and Rick Archibald3*

1Department of Physics and Materials Science, City University of Hong
Kong

2Department of Mathematics, Georgia College & State University
3Oak Ridge National Laboratory

*Mentor

August 4, 2017

Abstract

For model reconstruction in neutron tomography and laminography applications, Filtered
Backprojection (FBP) is a commonly used and reliable method. Long program execution
times and large memory requirements are obstacles to practical use of these algorithms in a
laboratory setting. During the Research Experiences in Computational Science, Engineer-
ing, and Mathematics (RECSEM) program, we explored implementations of a number of
approaches to the parallelization of FBP algorithms with the goal of reducing program exe-
cution time. Specifically, we created a program to perform FBP on supercomputing clusters,
and investigated both the use of the Message Passing Interface (MPI) library and parallel
code execution on a Graphics Processing Unit (GPU). These are both increasingly avail-
able resources on High Performance Computing platforms, and our insights can be used for
improvements to image reconstruction.

Background

Filtering is necessary for any backprojection method to create a useful reconstructed vol-
ume[1]. When backprojection is performed without filtering, most fine details are lost to

1

blurring. Even a simple ramp filter, commonly used in tomography, could be used to im-
prove image quality. We set out to test a number of filters particularly the inverse filter
function described by Myagotin, Voropaev, Helfen, et al., with the equation outlined below:

H̄(kx, ky, kz) =

 sinφ
2

√
k2x + k2y − k2z · cot2 φ, |kz| ≤

√
k2x+k

2
y

cotφ
;

0, otherwise,
(1)

where kx, ky, kz represent coordinates in the Fourier domain, and φ is the laminography
angle.

This inverse filter function is three-dimensional and lies in the Fourier domain. Ideally,
the filter is applied by first calculating its inverse Fourier transform, then computing its
three-dimensional convolution with the volume after backprojection. The application of the
Fourier Slice theorem allows the 3D convolution to be replaced by a set of 2D convolutions,
and the convolution theorem allows the computation of the convolution in the spatial domain
to be replaced by multiplication in the Fourier domain [2]. The 2D filter function derived
from 1 for a particular projection is given by

H̄(kx, ky) =
sinφ

2

∣∣ky∣∣. (2)

which is dependent only on the column index and the geometry of the laminography
experiment. This allows further reduction to a set of 1D Fourier transforms of each column
in a projection, which is then filtered by multiplication in the Fourier domain with the inverse
filter function. This approach allows the filtering step to be completed with less intensive
computation than with the 3D convolution, improving program execution time and memory
requirements. The MATLAB program provided to us by our mentor Rick Archibald (ORNL)
utilized this approach to projection filtering.

Objectives

We set out to accomplish a number of goals towards the overall reduction of computation and
memory requirements without compromising the quality of the quality of the reconstructed
model. We first needed to determine which inverse filter function to use in our implementa-
tion, balancing the computation time required and the image quality that it produced. Next,
we wanted to implement the inverse radon transform algorithm in C, which would allow the
program to run on a wider range of high performance computation (HPC) platforms. Once
the program was functioning in C, we explored a number of approaches to execute different
parts of the code simultaneously through parallelization on the CPU and on the GPU.

Inverse Filter Selection

To begin, we tested the performance of the MATLAB code without filtering. Then, we
examined the filtered image and make a comparison. With the only filter stated in original

2

material, it is necessary to research into other type of filters, try to apply them in Matlab
code, and analyze their difference in performance. If possible, we will do some experiments
in the combinations of these filters.

With the simulated data, we have tested the Matlab code with or without the filtering
section. This helps us to understand the algorithm of the filtering and the reconstruction
process. Ramp Filter in the form of line chart, the image output with Ramp Filter, the
image output without Ramp Filter. A noticeable change in image quality was detected
when comparing the filtered output with an unfiltered one. We also run the Matlab code
with industrial data, which was gathered in ORNL. The visual effect is even more sharper.
The five dark areas can be clearly recognized in the filtered image. We can even see the tape
used to stabilize the rotated plate. The difference in color indicates the different materials
inside the object.

It is not difficult to apply a single filter to projections, though choosing a proper filter
and implementing it in code is more challenging. Most of the time, we find a filter function
that has already been built by other scientists, so it is vital for us to understand the meaning
of mathematical equations and parameters that appear in their paper. That is definitely a
time-consuming task. Other than this, another complex part in filter application is to figure
out the data layout in every part of the code. For example, the data layout in Matlab is
column-major, while in C, it is row-major. It is very easy to be lost in the data layout,
the direction of the matrix, fourier transform, and the filtering. To deal with this situation,
we first used a small dataset, and run through the Matlab code step by step, to see what
happened in every single step. Then, we do the same thing with C code. We record them
in our notebook, and make a comparison between them. After figuring out how they differ
from each other, it is much clearer how we should arrange our data allocation to achieve the
same output.

The Discrete Fourier Transform algorithms provided by the FFTW library are especially
fast for input sizes equal to a power of 2. In our tests, we increased the transform size from
1000 to 1024, and did 1,000 times of transform. The average running time of the size 1,000
is 34.56 second per 1,000 times, while the running time of size 1,024 is 28.14 second per 1000
times. The size of transform is increased by 2.4%, but the running time is reduced by 18.6%.
This would help us to further reduce the program running time.

Serial Program Development

We wanted to increase the portability of the program to other machines with a C implemen-
tation of the projection filtering and the inverse radon transform. C compilers allow a greater
degree of optimization for particular computers hardware configuration, so we expected to
see improvements in the execution time and memory usage once the program was written in
C[3].

Since both the data generated by the MATLAB simulation and the data collected from
neutron tomography at Oak Ridge National Laboratory were formatted for use in MATLAB,
we needed a way to convert this data into a format that the C program could read. We

3

chose to write the variables and arrays from MATLAB into a binary file. This prevented
erroneous modification of the data or its precision, which would complicate comparison with
the MATLAB program. By first writing the dimensions of the projection, we are able to
determine how much memory to allocate for each array, then to read directly from the binary
file into the memory for the array.

Our next step was to implement the laminographic ramp filter. Since the inverse filter
is applied in the Fourier domain, we used the FFTW libraries to transform each column
of the projection [4]. The filter array is longer than each column of the projection, so the
projections are zero-padded before calculation to prevent the transform from being periodic.
The filter is then applied with element-wise multiplication of the transformed column with
the filter array, and their product is processed with an inverse transform to create the filtered
projection.

Once the projections are filtered, they are back projected into the volume to create
the model. Each volume pixel (voxel) in the 3D array is given a triplet of coordinates in
space, which is then used to calculate where the voxels shadow lies on the detector plane
as determined by the rotation and laminographic angles. For the voxels that fall on the
filtered projection, the value at that point is interpolated from the filtered projection; this
calculation is not performed for voxels that land outside the bounds of the projection. We
used bilinear interpolation for its balance between accuracy and computation time, though
other algorithms could be used for improvements on either of those fronts.

The MATLAB codes implementation of the backprojection calculations involve the cre-
ation of a meshgrid to keep track of the coordinates, i.e. three 3-dimensional matrices, each
the size of the volume holding the x, y, or z component of the coordinate triplet for each
point in the voxel. Since the rotation on each of the voxels is independent from the others,
we were able to reduce the memory footprint in this step by only holding in memory the
coordinates for a single voxel at a given time. This greatly reduces the memory requirements
for the backprojection calculation, which can become prohibitively large at even a modest
resolution.

Parallel Program Development

To further reduce program execution time, we set out to structure portions of our program
to execute simultaneously. As Myagotin, Voropaev, Helfen, et al. have proposed, the back-
projection algorithm can be run in parallel one of two ways: computation distribution by
projections, or memory distribution by portions of the reconstructed volume. We chose to
implement the former through the use of Message Passing Interface (MPI).

A single process is assigned to read the binary data from storage and to initialize the
filter array. It first broadcasts the dimensions of the data to all other processes, which
then allocate an appropriate amount of memory to then receive the projection data and
the filter array. Each process performs filtering and backprojection on only a portion of the
projections. Using an MPI Reduce call, the volume from each process is summed into a single
array to be written as output.

4

Our first implementation for parallelization faces a number of drawbacks. Since each
process must record values for the entire volume, the total amount of memory required
grows with both the resolution of the volume and the number of processes used. This could
be remedied by using a shared memory configuration, so long as I/O operations can be
synchronized to prevent collisions.

GPU Acceleration

The major purpose of the GPU implementation is to reduce the running time of our program.
Compared with a Central Processing Unit (CPU), Graphics Processing Units (GPUs) have
heavily parallelized architecture, and are built upon thousands of smaller cores, which are
optimized for multitasking simultaneously. This feature can boost our program since our
code consists of three calculation-intensive sections, most of them are independent and thus
can be run at the same time. For example, there are 1094 projections in our input, each
of which undergoes element-wise multiplication by a vector. In our current algorithm, the
CPU will loop every element inside a column, loop every column inside a page, and loop
every page in the whole array. In this process, we waste a big amount of time in waiting for
the former loop to finish. So if this could be done in parallel, the total running time will
reduce significantly.

There are two major approach to use GPU to accelerate a CPU code. The first one is
to use drop-in libraries such as MAGMA (Matrix Algebra on GPU and Multicore Archi-
tectures), cuBLAS (Nvidia’s CUDA Basic Linear Algebra Subroutine Library), or cuFFT
(Nvidia’s CUDA FFT library). These libraries are more like C language extensions, which
means they have similar structure as CPU code, and are relatively easier to learn. The
second method is to generate accelerator code as a variant of CPU source. It is possible to
deeply access the hardware and thereby achieve high performance. However, this might re-
quire one to have adequate knowledge in both hardware and coding. In consideration of the
program duration and our backgrounds, we decided to use the first approach to accelerate
our code.

There are three parts in our project that can benefit from GPU resource: fourier trans-
form, filter application, and bilinear interpolation. So far we have had two attempts in the
first two of them. For fourier transform, we decided to use cuFFT library, in which there
is a function performs exactly the same as Matlab does. In the simulated data testing, the
running time of serial code is 31 times that of the parallel code. These testing was doing the
fourier transform and inverse fourier transform to a 1024 by 1000 matrix, where the transform
direction was along the columns. An interesting condition to mention is that, when further
increasing the matrix size, the running time of serial code increases dramatically. However,
the performance of GPU code seems not to be affected. For the filter application part, we
have made good progress in cuBLAS code, and it works well in our testings. However, in
our final code, cuBLAS function cannot generate expected result.

Although CUDA has huge enormous technical resource on the internet, its documentation
is also well written, we still encountered many problems when we try to use their function

5

in our code. For example, in the filter application part, we have to redesign the layout
of our filter to fit the structure of cuBLAS function. In addition, the data computed by
cuFFT function has to be in the form of cufftDoubleComplex, while in cuBLAS function, it
is set to be cuDoubleComplex. In our attempt, we transferred the output of cuFFT back to
host memory, converted the data type, then transferred them into GPU again for cuBLAS
function. In this process, we would waste a lot of time in data transfer and it will reduce
the efficiency of GPU computing.

The bottleneck of data transfer is worse than we expected. As mentioned above, in our
testing fourier transform codes, GPU code runs significantly faster than CPU code. However,
in our programs for laminography, GPU code can barely run faster than a CPU code. This
can be explained by too many data transfer functions, as well as too many loops in our GPU
code. We might improve this in the future.

Data

We measured the time that Matlab took to run one part of the code, the“iradon transform”
section. In this way, we can better compare it with the running time of our Real Data Code,
which basically only contains the “iradon transform” section. The table of running time is
as follows:

Data Type Size Filter Average Running Time Variance
Phantom 32 X 32 N/A 4.6517 0.0366
Phantom 32 X 32 Ramp Filter 4.5633 0.0124
Phantom 64 X 64 Ramp Filter 45.6303 1.8069
Phantom 128 X 128 Ramp Filter IP IP

Real 1501 X 1501 N/A IP IP
Real 1501 X 1501 Scaled Ramp Filter 740.7562 IP

We collected run time data with varying data sizes and using a number of different pro-
cesses. The testing was performed on the Bridges system at the Pittsburgh Supercomputing
Center[5], [6].

Processes Volume Resolution Trials Avg. Run Time (s) Standard Deviation
1 65x65x65 30 1.3347 0.0359
12 129x129x129 30 2.9256 0.0123
12 257x257x257 10 29.6125 0.0840
16 129x129x129 30 2.6369 0.0157
16 257x257x257 15 26.1720 0.0578
20 129x129x129 30 2.5259 0.0169
20 257x257x257 20 27.3555 0.1506
24 129x129x129 30 2.4983 0.0310
24 257x257x257 20 38.5717 0.3838
28 129x129x129 30 3.3688 0.2424
28 257x257x257 20 47.8398 1.5117

6

Future Works

Currently, our objective is to convert the Matlab code into C code. After this, we will begin
to parallelize the C code. In our plan, there are three stages of the parallelization. In the
first stage, we are going to use MPI, doing the data decomposition, broadcasting them to
several workers. Then each of the workers will do one part of the reconstruction. In the
end, we will gather these together to obtain the final image of reconstruction. In the second
stage, we will further parallelize the code with MPI, such as using the “ring” operation in
MPI. We might also try some better methods to decompose the data. In the third stage,
we will try to parallelize the codes that are sent to the nodes. We will enable GPUs in each
nodes and do the parallel computing.

Acknowledgements

We would like to thank our home institutions, Georgia College and State University and
City University of Hong Kong for their support with our research careers. We would also
like to thank the University of Tennessee, Knoxville and to Dr. Kwai Wong for leading the
Research Experiences in Computational Sciences, Engineering, and Mathematics (RECSEM)
program, a Research Experiences for Undergraduates (REU) program that is funded and
made possible by the National Science Foundation. Our work used the Extreme Science
and Engineering Discovery Environment (XSEDE), which is supported by National Science
Foundation grant number OCI-1053575. Specifically, we used the Bridges system, which is
supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center
(PSC).

References

[1] G. L. Zeng, “Revisit of the Ramp Filter”, IEEE Transactions on Nuclear Science, vol. 62,
no. 1, pp. 131–136, Feb. 2015, issn: 0018-9499. doi: 10.1109/TNS.2014.2363776.

[2] A. Myagotin, A. Voropaev, L. Helfen, D. Hänschke, and T. Baumbach, “Efficient volume
reconstruction for parallel-beam computed laminography by filtered backprojection on
multi-core clusters”, IEEE Transactions on Image Processing, vol. 22, no. 12, pp. 5348–
5361, Dec. 2013, issn: 1057-7149. doi: 10.1109/TIP.2013.2285600.

[3] V. Menon and A. E. Trefethen, “Multimatlab integrating matlab with high perfor-
mance parallel computing”, in Supercomputing, ACM/IEEE 1997 Conference, Nov.
1997, pp. 30–30. doi: 10.1109/SC.1997.10011.

[4] M. Frigo and S. Johnson, “The design and implementation of FFTW3”, Proceedings
of the IEEE, vol. 93, no. 2, pp. 216–231, 2005, Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

7

[5] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S.
Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “Xsede:
Accelerating scientific discovery”, Computing in Science and Engineering, vol. 16, no. 5,
pp. 62–74, 2014, issn: 1521-9615. doi: doi.ieeecomputersociety.org/10.1109/

MCSE.2014.80.

[6] N. A. Nystrom, M. J. Levine, R. Z. Roskies, and J. R. Scott, “Bridges: A uniquely
flexible hpc resource for new communities and data analytics”, in Proceedings of the 2015
XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure,
ser. XSEDE ’15, St. Louis, Missouri: ACM, 2015, 30:1–30:8, isbn: 978-1-4503-3720-5.
doi: 10.1145/2792745.2792775. [Online]. Available: http://doi.acm.org/10.1145/
2792745.2792775.

8

