
OpenDIEL
Supported by The National Science Foundation

Tristin Baker, Jordan Scott, and Zachary Trzil
Mentor: Dr. Kwai Wong

Introduction

What is OpenDIEL?

● Lightweight workflow framework for HPC’s to run multiple parallel softwares as
OpenDIEL Modules from one executable

○ Allows for communication and data transfer between the different modules

● Uses a driver to drive the IELExecutive
○ Driver reads a workflow file to identify the different modules/groups/sets the IELExecutive will

use in order to run

● Uses MPI (Message Passing Interface) to facilitate transfer of data and
information the different modules need

● Has two forms of communication
○ Direct Communication and Tuple Space Communication.

3

What is OpenDIEL? (cont.)

● Used for simulating system-wide scientific applications
● Comparison to other Scientific workflow managers

○ Main use is for multidisciplinary work
○ Scalable computational performance
○ DIEL’s 2 types of communication

● OpenDIEL

4

OpenDIEL Requirements

5

● Driver File
● Config File
● User source code

○ ModMaker

ModMaker

6

● Python Package

● Transforms a C, C++, or Fortran file
(or directory of files) into an openDIEL
module(s)

OpenDIEL Workflow: Modules

7

● An openDIEL compatible piece of
code.

● Each module is given parameters

● Can be Parallel or Serial

modules=(
 function="laplace0"
 args=()
 libtype="static"
 shared_bc_read=([500,999])
 shared_bc_write=([0,499])
 size=1

OpenDIEL Workflow: Groups

8

● Allows user to specify which order to
run modules in

● Groups can have dependencies to
other groups

○ The specified group must finish
before the dependent one can
run

● Modules contained in groups always
run in serial

● User can also specify how many
iterations each group should run

group2:
{
 order=("HELLO1, HELLO2")
 iterations=1
 depends=(“group1”)
}

OpenDIEL Workflow: Sets

9

● Allows user to specify which groups
should run concurrently

○ Each group’s modules run in serial, but
the groups can run concurrently

● Allows user to specify the number of
iterations a set will run

○ This determines how many times each
group in the set will run

 set1:
 {
 num_set_runs=1
 group1:
 {
 order=("laplace0")
 iterations=1
 }
 group2:
 {
 order=("laplace1")
 iterations=1
 }
 group3:
 {
 order=("laplace2")
 iterations=1
 }
 }
}

Graphical User Interface

GUI and Workflow

● Interface is used to organize
modules, sets, and groups and to
create the “workflow.cfg” file that
is used by the OpenDIEL driver to
run

● This will be done by using Java’s
DnD (Drag and Drop) functions

● User can use GUI to execute
code once workflow file is written

num_shared_bc=2000
tuple_space_size=1
modules=(
 {
 function="ielTupleServer";
 args=();
 libtype="static";
 library="libIELexec.a";
 size=1;
 },
 {
 function="laplace0"
 args=()
 libtype="static"
 shared_bc_read=([500,999])
 shared_bc_write=([0,499])
 size=1
 },
 {
 function="laplace1"
 args=()
 libtype="static"
 shared_bc_read=([0,499],[1500, 2000])
 shared_bc_write=([500,999],[1000, 1499])
 size=1
 },
 {
 function="laplace2"
 args=()
 libtype="static"
 shared_bc_read=([1000,1499])
 shared_bc_write=([1500, 2000])
 size=1
 }
)

workflow:
{
 tuple_set:
 {
 tuple_group:
 {
 order=("ielTupleServer")
 iterations=1
 }
 }
 set1:
 {
 num_set_runs=1
 group1:
 {
 order=("laplace0")
 iterations=1
 }
 group2:
 {
 order=("laplace1")
 iterations=1
 }
 group3:
 {
 order=("laplace2")
 iterations=1
 }
 }
}

11

Using GUI for Execution

● User can now execute code through the GUI
using Java’s ProcessBuilder and Process
classes.

● The output of the program will be sent to the
OpenDIEL’s output tab, which has also seen
improvements this summer.

● User specifies where script is.

private void
runIconActionPerformed(java.awt.event.ActionEvent
evt) {

 String[] args = new String[] {"/bin/sh",
 "-c",
 "./runscript"};

 String line;
 Process p;

ProcessBuilder pb = new
ProcessBuilder(args);

 pb.redirectErrorStream(true);
 pb.directory(new
File(System.getProperty("user.dir")));
 tabPanel.setSelectedIndex(3);
 p = pb.start();
 InputStream is = p.getInputStream();
 InputStreamReader isr = new
InputStreamReader(is);
 BufferedReader input = new
BufferedReader(isr);
 System.out.flush();
 while((line = input.readLine()) != null) {
 this.output.readFromExecution(line);
 }
 input.close();
 JOptionPane.showMessageDialog(this,
"Done!");
 }

12

Output Tab

● Now has the ability to show output of execution of programs.
● User can save output into a text file for later viewing.
● Gives live feedback of output

● Improvements:
○ Make this process multithreaded so output will show even when scrolling down.

13

Live Demonstration

Not Yet Implemented

● The Drag-and-Drop features does not yet work, but the framework is
implemented in the GUI and does not require much more work to get
functioning.

● Allowing the user to launch code remotely via SSH.
● Allowing the user to convert their code to OpenDIEL compatible modules by

using the “ModMaker”.

15

Direct Communication

Direct Communication

● Method for modules to share data directly between one another
● Facilitated by a shared boundary condition

○ Main method of direct communication
○ Found in IEL_exec_info_t data structure as double * shared_bc

■ Each module has shared_bc_write and shared_bc_read
● Sizes modified in workflow configuration file

○ shared_bc size is set in the workflow configuration file

● IEL_bc_put and IEL_bc_get
○ Method the modules use for their shared_bc_read and shared_bc_write to communicate
○ Wrappers around MPI_Send and MPI_Receive
○ IEL_bc_exchange

17

Direct Communication Visualized

18

Using Direct Communication For Laplace Example

● OpenDIEL implementation of MPI Laplace example program

● In the original, the 1000x1000 matrix existed in one function.

● With the OpenDIEL implementation, the matrix can be any size and can be split
into however many functions the user wants thanks to the shared_bc.

● Within the workflow configuration file, the user sets where the modules can
read from and write to.

○ In this example, the user will want the ‘shared_bc_write’ to be equal to its top and bottom rows,
and its ‘shared_bc_read’ field to be able to read from the module above and below’s
‘shared_bc_write’ field.

19

Laplace Example Visualized

20

Laplace Example Visualized

21

Laplace Example Visualized

22

To Do:

● Remove Global shared_bc
○ In its current implementation, if direct communication is being used, OpenDIEL designates a

shared_bc array of size num_shared_bc to each module. This is a waste of memory for the
most part, and is not scalable.

23

Tuple Space Communication

Tuple Space - What is it?

● In short, a tuple is a list

○ Example: Cartesian Coordinate system --
a “repository” of two-tuples

○ We use three-tuples to store data. A value that
identifies the server (our ‘x coordinate’), a value
 that identifies the data location on that server
(our ‘y coordinate’), and the data itself

○ Imagine if at every point there was a ‘bucket’
in which data could be dumped. This would be a
representation of our 3-dimensional tuple space.

25

Tuple Space - What is it?

● In more technical terms, a tuple space is an associative memory paradigm for
distributed/parallel computing

○ Repository of tuples that can be accessed concurrently

○ Processes can put, read, and delete tuples from the repository

○ Goals: Minimize blocking communication and maximize scalability and usability
■ All processes communicate with each other through the tuple space

26

Tuple Space Communication

● Requirements:

○ Non-blocking -- Sender does not wait for message to be received

|---Axxxxx--| |------------D-|
|--------Bxx-| |-------Exx---| VS
|-------------C| |--Fxxxxxx--|

○ Asynchronous -- Concurrent processing in multithreaded environments is necessary for parallel
computing

○ Reliability -- Scientific studies require repeatability. Asynchrony can lead to race conditions if not
handled properly

27

|---A--| |----------D-|
|--------B-| |------E--| x = wait time for blocking I/O
|-------------C| |--F--|

Tuple Space - Previous Work

● Facilitated by the Tuple Server

○ The tuple server listens for and intercepts all MPI_Send/Recv calls with MPI_Probe
■ Used the MPI_ANY_TAG to listen

○ Flags are used by the sender to let the tuple server know how to respond to requests and are
used during server initialization

■ These flags were errantly picked up by already initialized servers

○ Data is stored in a RB-Tree of arbitrary size. Each individual node has a “data tag” (hash)

○ Within each node, there is a queue of messages to be read

○ Data profile: [data tag (hash) | data size | data]

28

Distributed Tuple Space

● Modules may use a distributed array of tuple servers to store data in system
memory

○ The user may specify a single server to
place data on and may access multiple
tuple servers concurrently

○ A process that calls for data must wait
until the data is put on the server -- blocking

29

Distributed Tuple Space

● Modules may use a distributed array of tuple servers to store data in system
memory

○ The user may instead request that the
data be distributed evenly among the tuple
servers

○ The user does not need to choose which
server to use

○ Both methods may be used in conjunction
with each other

○ Does not block! Returns immediately if the data is not present

30

Distributed Tuple Space - Why?

● Speed of communication

○ Each server is its own process with its own memory. Large data transfers can take place on
multiple tuple servers simultaneously instead of proceeding serially on a single tuple server

● Data Resiliency

○ Data can be striped across tuple servers to prevent data loss if connection to a node is lost

○ Each server can write critical data to disk when not in use, protecting from system crashes

31

Distributed Tuple Space Implementation

● Each instance of a tuple server is run as a module
○ Driver file and workflow file must be consistent with the number of

tuple servers being used

● Server 0 initializes the metadata server and is reserved
for managerial tasks

● Server 1 is the metadata server and is reserved
○ Server 1 also contains a struct that stores relevant information about

the state of the servers

● All other tuple servers are available for data storage

32

Distributed Tuple Space Implementation

● Sending data

○ A client can send data to the distributed array of tuple servers by calling IEL_dist_tput()
○ The data is distributed evenly among the available tuple servers
○ Sets up two arrays of meta data:

■ The server rank in the order used
■ The size of the corresponding piece of

data sent to the tuple server

○ Stores the metadata on the first tuple server

33

Distributed Tuple Space Implementation

● Receiving data

○ A client can receive data stored on the distributed array of tuple servers by calling
IEL_dist_tget()

○ Uses the metadata to pull the data from
the servers in the order in which it was stored

○ Reconstructs the data into an array that the
caller has access to

34

Distributed Tuple Space API

● IEL_dist_tput (size_t size, const char *tag, void *data)

○ Size is the size of the data to be sent

○ The tag is a user-defined string to uniquely identify the data (NOTE: it is expected that the string
is NULL terminated, otherwise unexpected behavior may occur.)

○ The data is the data to store on the server. If this data is stored in an array, simply pass the array
as the parameter

35

Distributed Tuple Space API

● IEL_dist_tget (size_t *size, const char *tag, unsigned char del, void **data)

○ Size will be set by the function call and is the size of the data returned to the user

○ The tag is the user-defined string to identify the data -- the same tag passed to IEL_dist_tput()

○ The del variable is a TRUE/FALSE (1/0) value indicating to delete the data from the server(s) if
TRUE and to keep it in place if FALSE.

○ The data is the memory address of an UNALLOCATED pointer to the data that the function will
fill in

36

Distributed Tuple Space API

● The original tput and tget functions can be used to access tuple servers
concurrently!

○ IEL_tput(size_t size, int tag, int serverRank, void *data)

○ IEL_tget(size_t *size, int tag, int serverRank, unsigned char del, void **data)

● These currently do not interact with the metadata server. In the future, the
metadata server can keep track of these calls as well so that a non-blocking
version of each function can be created

37

Distributed Tuple Space Testing

● Methodology
○ The running time of openDIEL was benchmarked with two modules communicating using a

single tuple server, distributed tuple
servers, and file I/O

● Results
○ The distributed tuple server

performance was comparable with the
single tuple server performance with a
constant small overhead for openDIEL
to initialize the extra processes

38

Future Work

● Create non-blocking versions of the original tput/tget functions

● Develop an algorithm to stripe data across the distributed tuple servers

● Develop a scheme to tag data as critical and write this critical data to disk at
certain checkpoints when the tuple server is not in use

○ Create a restore feature to relaunch after a failure

● Create easy to follow documentation and user-guides so that end users can
begin using openDIEL for their projects

● Release an alpha version of openDIEL

39

Acknowledgements

● Funding
○ The National Science Foundation (NSF)

● Facilities
○ The University of Tennessee (UTK) & The Joint Institute for Computational Sciences (JICS)

● Program director/Mentor
○ Dr. Kwai Wong

40

