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Abstract

Brain computer interface (BCI) has greatly advanced since the initial establishment in the 1960s
[Nicolas-Alonso, L.F. and J. Gomez-Gil, 2012]. A brain-controlled computer cursor is probably the sim-
plest testbed for BCI. Many systems have been developed for the cursor control problem using
invasive brain imaging techniques such as ECoG, single units, and local field potentials on hu-
mans and primates [Hauschild, M., et al., 2012] [Hochberg, L.R., et al., 2006] [Kim, S.-P., et al., 2008]
[Mulliken, G.H., et al., 2008] [Hauschild, M., et al., 2012] [Gilja, V., et al.., 2012]. Various researchers
have also designed and developed cursor control systems using noninvasive brain signals such as elec-
troencephalogram (EEG). In the project, we have analysised the EEG data that captured during imagining
controlling a computer cursor by using signal processing technique, such as filter bank, and machine learning
methods, neural network, recurrent neural network and gradient boosting. With the aid of supercomputers,
we achieve impressive result that we built a model that can predict the direction of horizontal movement with
0.90 of AUC and that of vertical movement with 0.71 AUC.

I. Introduction

In this report, we are going to present the detail
of the purposes and objective of our project, the
data collecting processes, the methods that we
used to build our models and the results of the
models.

i. Objective

The goal of our project is to provide a usable
interface that users can use to control a com-
puter cursor. Accuracy and responding time
from the system are critical to users’ experi-

ence. Besides that, the EEG-based method can
avoid the risk of invasive methods and, more
importantly, EEG-signal can be captured read-
ily and with low cost, Hence, our objectives are
as follow:

• To classify users intending cursor move-
ment direction by using EEG-signal with
high accuracy, and

• To accelerate the classify processes to ac-
ceptable speed
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ii. Background Knowledge: EEG

Electroencephalography (EEG) is an electro-
physiological monitoring method that records
electrical activity on the surface of brains by
placing electrodes on the scalp. Some signif-
icant advantages of EEG are that it is non-
invasive and has low operating cost. Compar-
ing to other brain state monitoring techniques,
such as fMRI, which has high operation cost,
and PET, which injects radioactive material to
patients body, EEG can capture signals with a
tiny headwear device, and thus it is a promis-
ing technique for BCI.

iii. Data Description

The training data were collected in Nonlin-
ear Biodynamics Lab of University of Ten-
nessee. During the experiments, subjects was
instructed to imagine that they were controlled
the cursor moving on the monitor by their
master hand. Meanwhile, a headwear EEG
device on the subjects’ scalp was collecting
data in 128Hz. For each subject, there were 5
trials and each of them lasted for 1 minutes.
[Abiri, R., Zhao, 2017]

iv. Formulated Problem

In the sense of machine learning, our work is to
solve a supervised multiclass classification. In
this type of problems, a training and a testing
dataset are given. In the training dataset, each
input datapoint is corresponding to a label, the
classifiers will make use of them to predict the
label of the datapoint in the testing dataset,
in which only datapoints are given. For our
application, the specification is as follow:

• Input Data: The past EEG signal, a time
series with 128 Hz and 14 channels, of a
given time point.

• Labels: The direction of the velocity of
a cursor that experimental subjects in-
structed to imagine. Each axis has 3 labels.

Table 1: The details of the labels

Axis Direction

Horizontal Left Right No Movement
Vertical Up Down No Movement

v. Related Study

As a popular EEG paradigm, the mental states
acquired by imaginary movement of large
body parts (imaginary movements of hands,
legs and tongue) [Morash, V., et al., 2008]
have been employed in many studies to
control a computer cursor in one dimen-
sion [Wolpaw, J.R., et al., 1991], 2D space
[Wolpaw, J.R. and D.J. McFarland, 2004]
[Xia, B., et al., 2015], and 3D space
[McFarland, D.J., et al., 2010]. These men-
tal states cause changes in sensorimotor
rhythms which include mu rhythm (8-12Hz)
and beta rhythm (18-26Hz), and these changes
can be mapped to different command signals
in cursor control task.

In addition to using sensorimotor paradigm
in controlling a computer cursor, some
studies investigated the hybrid EEG paradigm
to perform the control task. In hybrid
studies, the researchers combined mental
states with other paradigms to control
a computer cursor. External stimulation
as one of the popular paradigms can be
detected in recorded EEG signals and
was combined with mental states. Trejo et al.
[Trejo, L.J., R. Rosipal, and B. Matthews, 2006]
in 2006, utilized a target practice BCI sys-
tem based on mental activity to deal
with 1D cursor control problem (right-left)
and also they investigated 2D space cur-
sor control problem (right-left, up-down)
based on Steady State Visual Evoked
Potential (SSVEP) approach. Allison et al.
[Trejo, L.J., R. Rosipal, and B. Matthews, 2006]
in 2012, combined the mental states and steady
state visual evoked potential (SSVEP) for two
dimensional cursor control problem. Li et al.
[Li, Y., et al., 2010] jointed mental states and
P300 potential to control a 2D computer cursor.
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P300 potential is defined as peak reflection
of an external stimulation such as flicking on
generated EEG signals.

The main drawbacks of mentioned noninva-
sive BCI systems in 2D or 3D cursor control
in those based on sensorimotor rhythms is the
lengthy training time required by the subjects
to gain satisfactory performance (some weeks
to several months). These lengthy training
EEG-based systems require subjects to learn
how to modulate specific frequency bands of
neural activity in order to move the cursor
to a specific and corresponding direction and
acquire targets. Also, in cases with external
stimulations the fatigue phenomenon has been
reported by subjects and researchers while
it should be noted that this paradigm is not
reflecting the natural way of cursor control.
Another issue concerning these paradigms is
the discrete control of cursor directions due
to switching among several imagined large
body parts or switching among more than one
paradigm.

In noninvasive devices,
[Bradberry, T.J., et al., 2011] investigated
the 2D cursor control problem by introducing
a new EEG-based BCI paradigm (natural
imaginary movement) in time-domain and
by minimizing the training time similar to
invasive devices. They reported positive
performance in cursor control problem just
after about 40 minutes of training and prac-
tice. This accomplishment substantiated the
approach used in invasive devices in which
the subjects with implanted electrodes in
his/her brain could gain high success rate
in target acquisition based on continuous
imagined kinematics of just one body part
[Kim, S.-P., et al., 2008]. All these studies
proved the employing of natural imagined
body kinematics paradigm can dramatically
reduce the training time for the subject and
even it could be a promise of developing a
generic model which can be operated with
zero-training.

In previous study, a decoder model of
Multiple Linear Regression was used to
predict the velocity of the computer cursor

from EEG. This model allowed for fast
processing times and decent accuracy during
online trials. Here in present study, by using
the EEG paradigm called "imagined body
kinematics" [Mulliken, G.H., et al., 2008]
[Bradberry, T.J., et al., 2011]
[Velliste, M., et al., 2008]
[Dangi, S., et al., 2014] and nonlinear ma-
chine learning techniques, we aim to develop
a more accurate cursor control platform in a
noninvasive BCI.

vi. Our Contribution

We have applied various machine learning tech-
niques, such as neural network and logistic re-
gression, combining with domain related tech-
niques, such as filter bank, to achieve high
AUC and accuracy in classification.

II. Methods

This section presents the feature extraction and
machine learing techniques that involved in
our project.

i. Overview of the models

In this project, there were two level of models.
The first level consisted of numerous logistic
classifiers and neural network. The second
level consisted of ensemble models, which took
the models in that first level as meta-features
to construct a more accurate model.

Our models did point-to-point prediction.
For any given timepoint, the models took the
past 128 timepoints as input data to predict
the label. If the timepoint is in the first 128
timepoints, we padded 0 as EEG signal.

i.1 Feature Extraction: Filter Banks

Filter banks is a signal processing technique
that separates a segment of time series into
multiple components which are some of the
frequency bands of the input signal. In our
implementation, 5th-order butter filter from
SciPy was used.
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Table 2: The used frequency on low-pass filters

0.5, 1, 2, 3, 4, 5, 6, 7, 9, 15, 30 Hz
1, 5, 10, 30 Hz

The main purposes of applying filter banks
are to denoise the EEG-signal and extract the
information that related to psychological states.
EEG is very sensitive. For example, the muscle
contraction that closes to the scalp would gen-
erates noise with high-frequency component.
On the other hand, the existence of the rela-
tionship between EEG rhythm and behavioral
states has been revealed [Wnek, G. E., 2008].
Hence, filter banks are promising features for
the classification.

i.2 Classification: Multiplelayer Perceptron

Multiplelayer perceptron, as known as Neu-
ral Network, is a widely used neural network
architecture. The network consists of layers,
which have input and output units, a weight-
ing matrix and a non-linear activation function.
The principle of this neural network is provid-
ing a simplified version of biological neural
network and using it to intimate some simple
decision-making processes that human does.
In the recent years, This architecture has ap-
plied to various aspects and some of them ob-
tained impressive results. Hence, we included
it in our models.

i.3 Classification: Recurrent Neural Net-
work

Recurrent Neural Network (RNN) is another
type of Neural Network. Comparing with Mul-
tiplelayer Perceptron, which assumes that the
order of input data is not important, It has the
capability to handle sequential data input. The
units in this network would remember some
input sequence of previous and forget some of
them so that it can be stateful but would not
request excessive memory space.

In some applications which input data have
temporal structure, such as speech recogni-
tion, RNN performed very well. Hence, we

applied this technique on our application since
the EEG-signal is time series.

i.4 Ensembling: Gradient boosting

Gradient boosting is a machine learning tech-
nique that aggregates many weak models to
produce a more predictive models. In practice,
machine learning models are not perfect, but,
base on the randomness of the models, they
perform well at different areas. Hence, The
idea of ensembling is to give different weight-
ing for different areas in the input data space.

In the ensemble models training process, gra-
dient boosting computes the error between the
ground truth and the models prediction, and
takes the derivative this point. By using gradi-
ent descent method, the ensemble models can
give the optimal weighting of basic models at
a given input data.

In our implementation, we took all the basic
models that adopted neural network, recurrent
neural network and logistic regression as input
models, and used XGBoost to compute the
ensemble models on GPU.

ii. Multithreading

Since we need to generate massive models for
12 subjects and to perform cross-validation for
each of them, the amount of computation was
huge. Fortunately, the model generation and
each validation could run idependently. To
shorten the time we take, we had changed the
code so that the training processes could run
in multithreads.

In our implementation, we used 32 threads
for the data preprocessing and the logistic re-
gression training, resulting in a huge decrease
in total training time.

III. Experimental Setup

During the models training, 12 subjects’ data
were used, each of them has 5 trials of horizon-
tal and vertical movement.
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i. Cross-validation

To ensure the models that we built has the ca-
pability to classify the EEG signal instead of
fitting its parameters to the noise in EEG signal,
we conducted cross-validation to prevent over-
fitting problems. In the basic models training
process, we took the 3 out of 5 trials as training
data, and validate the models on the others 2
trials. Hence, there are C5

3 = 10 combinations
of training-validation sets.

ii. Envirnment

The modeling processes ran on an XSEDE-
bridges GPU node, which had 32 CPU-cores
and Nvidia P100 GPU.

IV. Results

In this section, we are going to present the
average AUC and accuracy of each model.

As shown in 1, in the best model we built
for horizontal movement, the prediction and
the ground truth were matched at most of the
time.

The best model for the horizontal movement
is the ensemble model using gradient boosting
for the neural network, which achieved 0.905
AUC and 79.95% accuracy. The details of each
model are listed in 3 and 4.

However, the model’s performance on ver-
tical movement were worse than that of the
horizontal movement. As shown in 5 and 6,
the best model has accuracy of 56.7% and 0.701
AUC.

It is worth noting that the accuracy and AUC
of the models vary from subjects to subjects.
The models can perform poorly on some sub-
ject, However, as shown in 2 and 3, they per-
form well in most of the cases.

The total training time of the models for
horizontal and vertical movement are 9.96 and
8.92 hours respectively.

V. Discussion

The models that we built have achieved impres-
sive AUC, but the models training time was

massive. To make the model building process
usable for Brain-Computer Interface, the thing
we need to do is as follow:

• To simplify the models building process-
ing.

• To accelerate the neural network model by
building it on MAGMA-DNN, which is a
fast deep learning framework that possible
to increase the model speed by a factor of
10.

VI. Conculsion

In the project, we have analysised the EEG data
that captured during imagining controlling a
computer cursor by using signal processing
technique, such as filter bank, and machine
learning methods, neural network, recurrent
neural network and gradient boosting. With
the aid of supercomputers, we achieve impres-
sive result that we built a model that can pre-
dict the direction of horizontal movement with
0.90 of AUC and that of vertical movement
with 0.71 AUC.
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Table 3: The accuracy, ACC and computational time of the basic models on horizontal movement, sorted by AUC.
PCA stands for Principle Component Analysis
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Table 4: The accuracy, ACC and computational time of the ensemble models on horizontal movement, sorted by AUC.
PCA stands for Principle Component Analysis

NN stands for Neural Network

The Basic Models For Horizontal Movement Accuracy AUC Time (second)

Gradient Boosting with the NN Models 0.799546 0.905200 144.865309
Gradient Boosting with the NN, Filter Bank and PCA Models 0.797972 0.904438 224.737503

Gradient Boosting with the NN and Filter Bank Models 0.797678 0.905202 187.536030
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Table 5: The accuracy, ACC and computational time of the basic models for vertical movement, sorted by AUC

The Basic Models For Vertical Movement Accuracy AUC Time (second)

Recurrent Neural Network with Filter Bank and 64 units 0.528191 0.623572 2188.234048
Recurrent Neural Network with Filter Bank and 128 units 0.530132 0.623200 2131.600924

Neural Network and 32 units 0.528703 0.621362 989.125282
Neural Network and 64 units 0.527434 0.620336 982.597968

Logistic Regression with Filter Bank 0.536444 0.620087 1129.119794
Neural Network with Filter Bank and 64 units 0.537087 0.619620 1410.017158

Neural Network and 128 units 0.530119 0.619255 978.031274
Neural Network with Filter Bank and 32 units 0.536616 0.618402 1400.734973

Neural Network and 16 units 0.524865 0.618376 987.327580
Neural Network with Filter Bank and 16 units 0.537359 0.618097 1393.121692

Neural Network and 8 units 0.521785 0.614292 990.296301
Neural Network with Filter Bank and 8 units 0.536701 0.613716 1401.227266

Recurrent Neural Network with Filter Bank and 32 units 0.518252 0.611834 2142.493766
Neural Network with Filter Bank and 128 units 0.526426 0.611520 1409.297503

Neural Network and 4 units 0.514401 0.609085 993.969200
Neural Network with Filter Bank and 4 units 0.526606 0.602391 1397.103773

Recurrent Neural Network with Filter Bank and 16 units 0.506556 0.595184 2125.818702
Recurrent Neural Network with Filter Bank and 8 units 0.496167 0.579068 2137.976398
Recurrent Neural Network with Filter Bank and 4 units 0.487520 0.553930 2192.026060

Table 6: The accuracy, ACC and computational time of the ensemble models for vertical movement, sorted by AUC

The Ensemble Models For Vertical Movement Accuracy AUC Time (second)

Gradient Boosting for Neural Network with Filter Bank 0.567199 0.700547 191.888139
Gradient Boosting for Neural Network 0.564843 0.697473 142.679986
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Figure 1: The Prediction v.s. the Ground Truth on Horizontal Movement.
Red: GroundTurth, Blue: Our Prediction

Figure 2: The accuracy of each subject on the best model

Figure 3: The AUC of each subject on the best model
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