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Abstract 
A Brain-Computer Interface (BCI) platform can be utilized by a patient to control 
an external device without making any overt movements. This can be beneficial 
to a variety of patients who suffer from paralysis, loss of limb, or 
neurodegenerative diseases. In this project, we introduce a noninvasive method to 
read and decode brain signals using imagined body kinematics to control an 
onscreen cursor. A linear regression model was designed to predict intended 
cursor velocity from a subject’s thoughts. Using channel identification, clear 
patterns in relevant horizontal and vertical channels were found. A directional 
classifier was also investigated to improve the prediction accuracy. By 
implementing these new techniques, we aim to optimize the training protocol of a 
BCI platform to control a computer cursor. 

 
1. Introduction 
 
Brain computer interface (BCI) has greatly advanced since the initial establishment in the 1960s 
[1]. A brain-controlled computer cursor is probably the simplest testbed for BCI. Many systems 
have been developed for the cursor control problem using invasive brain imaging techniques 
such as ECoG, single units, and local field potentials on humans and primates [2-6]. Various 
researchers have also designed and developed cursor control systems using noninvasive brain 
signals such as electroencephalogram (EEG). Using noninvasive EEG monitoring, several 
different paradigms have been developed, including mental state, external stimulation, and 
imagined body kinematics.  

As a popular EEG paradigm, the mental states acquired by imaginary movement of large body 
parts (imaginary movements of hands, legs and tongue) [7] have been employed in many studies 
to control a computer cursor in one dimension [8], 2D space [9, 10], and 3D space [11]. These 
mental states cause changes in sensorimotor rhythms which include mu rhythm and beta rhythm, 
and these changes can be mapped to different command signals in cursor control task.  

In addition to using sensorimotor paradigm in controlling a computer cursor, some studies 
investigated the hybrid EEG paradigm to perform the control task. In hybrid studies, the 
researchers combined mental states with other paradigms to control a computer cursor. External 
stimulation as one of the popular paradigms can be detected in recorded EEG signals and was 
combined with mental states. Trejo et al. [12] in 2006, utilized a target practice BCI system 
based on mental activity to deal with 1D cursor control problem (right-left) and they also 
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investigated 2D space cursor control problem (right-left, up-down) based on Steady State Visual 
Evoked Potential (SSVEP) approach. Allison et al. [13] in 2012, combined the mental states and 
steady state visual evoked potential (SSVEP) for two-dimensional cursor control problem. Li et 
al. [14] jointed mental states and P300 potential to control a 2D computer cursor. P300 potential 
is defined as peak reflection of an external stimulation such as flicking on generated EEG 
signals.  

The main drawbacks of mentioned noninvasive BCI systems in 2D or 3D cursor control in those 
based on sensorimotor rhythms is the lengthy training time required by the subjects to gain 
satisfactory performance (some weeks to several months). These lengthy training EEG-based 
systems require subjects to learn how to modulate specific frequency bands of neural activity in 
order to move the cursor to a specific and corresponding direction and acquire targets. Also, in 
cases with external stimulations the fatigue phenomenon has been reported by subjects and 
researchers while it should be noted that this paradigm is not reflecting the natural way of cursor 
control. Another issue concerning these paradigms is the discrete control of cursor directions due 
to switching among several imagined large body parts [10] or switching among more than one 
paradigm [13].   

In noninvasive devices, Bradberry et al. [15] investigated the 2D cursor control problem by 
introducing a new EEG-based BCI paradigm (natural imaginary movement) in time-domain and 
by minimizing the training time similar to invasive devices. They reported positive performance 
in cursor control problem just after about 40 minutes of training and practice. This 
accomplishment substantiated the approach used in invasive devices in which the subjects with 
implanted electrodes in his/her brain could gain high success rate in target acquisition based on 
continuous imagined kinematics of just one body part [3, 16]. All these studies proved the 
employing of natural imagined body kinematics paradigm can dramatically reduce the training 
time for the subject and even it could be a promise of developing a generic model which can be 
operated with zero-training.  

In previous study, a decoder model of Multiple Linear Regression was used to predict the 
velocity of the computer cursor from EEG. This model allowed for fast processing times and 
decent accuracy during online trials. Here in present study, by using the EEG paradigm called 
“imagined body kinematics” [2-4, 6, 15, 16-18] and nonlinear machine learning techniques, we 
aim to develop a more accurate cursor control platform in a noninvasive BCI. 
 
2. Methods 
 
2.1 Experimental protocol and tasks 
All experimental procedures were approved by the Institutional Review Board at the University 
of Tennessee. A total of 33 subjects were fully informed about experimental procedures, 
potential risks and benefits and gave written content. Subjects participated the experiments after 
signing the informed consent. For the experiments, a PC with dual monitor was provided; one 
monitor for the experimenter and another one for the subjects. Participants were asked to sit 
comfortably in a fixed chair and at arm’s length in front of their own monitor, with their hands 
resting in their lap. Data was acquired noninvasively using the 14 channel Emotiv EPOC EEG 
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recording headset with 128 sampling time and filtered using BCI2000 software (0.16 Hz as high 
pass filter, 30 Hz as low pass filter) [19]. The subjects had to continuously follow the instructions 
on their own monitors with a 2D workspace dimension of about 33 cm × 33 cm which is placed 
at one arm’s length away from the face of subject. The cursor diameter is chosen to be 1.5cm 
(0.20% of workspace) and targets are 2.4% of workspace with width 8% and length 30% of 
screen width.  

During the training phase, the healthy subjects with no prior experience in participating in BCI 
studies, were asked to sit comfortably in a fixed chair with their hands resting in their laps and 
their faces kept an arm’s length from monitor. During the experiments, EEG signals were 
acquired wirelessly by using an Emotiv EPOC [20] device with 14 channels and through 
BCI2000 [19] software (with 128 sampling time, high pass filter at 0.16Hz, and low pass filter at 
30Hz). In subject’s monitor, a computer cursor was shown whose movements started from the 
center and was controlled by an automated trajectory. The subjects were instructed to track the 
movement (vertical or horizontal movement) of the cursor (on their own monitor) while they 
were free to have normal eye movements, as well (Figure 1). During the movements and 
observation of cursor, the subjects were asked to imagine the same direction and speed-matched 
movements while imagining that they are moving the cursor with their own right index fingers. 
Meanwhile, to prevent any further artifacts, they were asked to try not blink or move their own 
body parts. The training consisted of 10 runs of continuous training (each 60s) for vertical 
movement (5 runs) and horizontal movement (5 runs) and therefore, the total time of training 
was around 10 minutes.  

 

Figure 1: Training protocol for horizontal (left) and vertical (right) trials 

The collected EEG data for each subject was decoded and mapped into the observed kinematic 
movements (directions and speeds). Data was used to correlate the EEG data to subject’s 
observed trajectories parameters and kinematics and obtaining a calibrated decoder for each 
subject. The EEG data of the assumed subject was decoded into kinematic parameters (cursor 
velocities) in x (horizontal) and y (vertical) directions by employing some points of memory in 
recorded EEG data and velocities.  
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2.2 Data acquisition 
A convenient and comfortable EEG headset called Emotiv EPOC with 14 channels was chosen 
to collect EEG signals wirelessly. The electrodes were hydrated and then the headset was placed 
on subjects’ heads in a way to make correct contact between electrodes and scalp. Emotiv 
software (TestBench) was used to check the quality of EEG signals during recording EEG 
signals. Both EEG data and cursor kinematics were collected and stored by BCI2000 software 
system at 128 Hz during the experiments. Meanwhile, a high pass filter at 0.16 Hz and a low 
pass filter at 30 Hz was applied in collecting EEG signals. Also, BCI2000 (with MATLAB 
engine) was employed to deal with the real-time processing in controlling the cursor and 
acquiring targets by the subjects.  
 
2.3 Regression 
Many previous works confirmed that among body kinematics parameters (position, velocity), 
velocity encoding/decoding showed the most promising and satisfactory performance in 
theoretical analysis and real-time implementation [15, 21-23].  

In order to identify and correlate brain activities and body movements, many decoding 
algorithms for EEG data have been investigated by researchers in frequency and time domains. 
Most of sensorimotor-rhythms-based studies were developed in frequency domain for cursor 
control and external devices control [8-11, 24-29]. Also, in time domain, various linear and 
nonlinear decoding methods have been developed to directly present a prediction model for the 
body kinematics parameters based on EEG signals. For example, some nonlinear methods such 
as Kalman filter [30], particle filter model [31] and kernel ridge [32] were applied in decoding 
EEG signals for offline analysis and prediction of body velocity parameter. As the most popular 
method in linear decoding, multiple regression model has been employed for decoding EEG data 
in offline modes [21-23, 32-34] and in real-time implementation [15] by prediction of body 
kinematics parameters. This linear analysis can be presented by the following equations. The 
equations 1 & 2 map the acquired EEG data to the observed cursor velocities in x and y 
directions in training data. In other words, the aim is to reconstruct the subject’s trajectories off-
line from EEG data and obtaining a calibrated decoder for real-time implementation. Output 
velocities at time sample 𝑡 in x direction is 𝑢 𝑡  and in y direction is 𝑣 𝑡 .  
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/
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In these equations 𝑒*[𝑡 − 𝑘] is the measured voltage for EEG electrode 𝑛 at time lag 𝑘 and for 
the total number of EEG sensors 𝑁 = 14 and total lag number 𝐾 = 5.  These numbers were 
chosen and optimized based on best performance reported in previous published works by 
authors [35, 36]. The variables 𝑎 and 𝑏 are the weights that could be obtained through multiple 
linear regression. 
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In training of the multiple linear regression model, the current sample and 12 previous points of 
EEG data from each channel in memory were used as features to train the model. The model is 
then cross validated against the other 4 trials of the same dimension. This cross validation is 
repeated for all 5 combinations of models to ensure the most accurate prediction. The models are 
evaluated using a goodness of fit correlation score. This scoring technique separates the 60 
second trial into 5 windows and averages the Pearson correlation scores. This method provides a 
better representation of fit by not allowing one improperly fit window to reduce the overall 
model’s score. 
 
2.4 Classification 
To improve the prediction accuracy from the linear regression model, it was hypothesized that a 
classifier for horizontal and vertical motion should be employed. A classification model could be 
used as a gate in front of regression to generate predictions on a model tailored for horizontal or 
vertical data. Features for the classifier were collected by taking the Fourier Transform of 1 
second of data for each channel. The mean, median, maximum, and minimum power spectral 
density values across the Theta (4-7 Hz), Alpha (8-15 Hz), Beta (16-32 Hz), and Gamma (32-40 
Hz) bands were used to train a Random Forest Classifier. Cross-validation was done by taking 
the one second samples randomizing their order, and split 70% of samples for training and 30% 
for testing. Results were quantified using accuracy as the metric.    
 
2.5 Channel Importance/Analysis  
Channel importance was identified by running each of the 14 individual channels through the 
linear regression model. The filtered frequency at each sample along with the 12 previous 
samples in memory were used as features. Channels with the highest average prediction accuracy 
for all subjects were determined to be the most important. By identifying what channels are most 
important for velocity, we can optimize the model using only relevant channels and potentially 
eliminate channels that are just noise.   

Each channel’s model for a trial is cross validated using the same trial-wise method presented 
above in the regression section 2.3. One trial was used as the test set while the other 4 trials in 
the same dimension were used to train the regression model. The prediction accuracy was then 
scored using the goodness of fit method. 
 
3. Results 
 
The linear regression model was used as a predictor of cursor velocity from the filtered EEG 
signals (Figure 2). Ten trials for all 33 subjects analyzed, and their prediction scores were 
averaged for vertical and horizontal trials. Goodness of fit scoring was also used to calculate the 
prediction accuracy. Each trial was cross validated by training the linear regression model on the 
other four trials and testing on the current trials. The results for average horizontal accuracy 
across all subjects was 70.77%, and the average vertical accuracy was 44.67%. 
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Figure 2: Regression results of one subject across all horizontal (top) and vertical (bottom) 
trials. Predicted velocity (orange) and target velocity (blue) with goodness of fit score above plot 

Aside from linear regression, the model was also trained using several other algorithms such as 
adaboost regression, ridge regression, kernel ridge regression, support vector regression, and 
multilayer perceptron. From our cursory analysis of the performance of these models, linear 
regression demonstrated one of the best results for both horizontal and vertical predictions. 
Furthermore, many of these models were more computationally expensive than linear regression 
making them impractical for real time prediction (Figure 3).  

 

Figure 3: Predicted velocities plotted over the target for linear regression and kernel ridge 

Channel-wise identification yielded a significant pattern between the horizontal and vertical data 
by taking the average prediction accuracy from all 33 subjects (Figure 4). The horizontal data 
showed that the F7 and F8 channels contributed the most toward velocity prediction. The right 
hemisphere of the brain also showed higher prediction accuracy over the left hemisphere. The 
vertical data showed highest prediction in the AF3, F3, F4, and AF4 channels.  
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Figure 4: Heat map for channel-wise prediction in horizontal (top) and vertical (bottom) trials 

Using this information from the most important channels, different combinations of these 
relevant channels can be used in our prediction model (Table 1). Horizontal accuracy can be 
improved most by using the channel combination of F7, FC5, T8, FC6, F4, and F8. For vertical 
accuracy, it was found that all channels are necessary for the highest prediction accuracy. 

Table 1: Prediction accuracy for various channel combinations 

Channels Horizontal Accuracy Vertical Accuracy 

All Channels 70.77% 44.67% 

F7, 02, P8, T8, FC6, F4, F8, AF4 71.03% 41.68% 

F7 and F8 69.93% 25.64% 

F7, FC5, T8, FC6, F4, F8 72.73% 36.98% 

AF3 AND AF4 41.93% 30.29% 

AF3, F3, F4, and AF4 49.21% 33.09% 

AF3, F3, F7, F8, F4, and AF4 69.97% 41.61% 
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The Random Forest Classifier was used to determine horizontal or vertical movement. The 
average classification accuracy was 79% for all channels and all features of mean, median, 
maximum and minimum of the four frequency bands of Theta, Alpha, Beta, and Gamma. Using 
only the mean values from the four frequency bands yielded an average classification accuracy 
of 80%. The same methods of all features and only means were repeated on the 6 frontal EEG 
channels of AF3, F3, F7, F8, F4, and AF4. These provided an average classification accuracy of 
68% and 69% respectively (Figure 5). 

 

Figure 5: Average classification accuracies. (1) All channels and all features; (2) all channels 
and means; (3) six channels and all features; (4) six channels and means. 

 
4. Discussion 
 
Several models were used to test the prediction accuracy of the BCI platform. Models such as 
adaboost regression, ridge regression, kernel ridge regression, support vector regression, and 
multilayer perceptron often provided comparable accuracy to linear regression, but at a much 
longer processing time. For this reason, linear regression was chosen as the model to use for the 
remaining tests. 

For channel importance, it is interesting to note that there is a distinct pattern between the most 
predictive channels for horizontal and vertical trials. The F7 and F8 channels showed the highest 
standalone prediction for horizontal trials while the AF3, F3, F4, and AF4 channels were the 
highest for vertical. Using just the F7 and F8 channels as features for the linear regression model 
provided a prediction accuracy that was less that 1% lower than using all channels for horizontal 
trials. This implies that a headset with two sensors can be used with great effectiveness in 
horizontal tasks compared to 14 channels. Vertical channels were unable to be improved by 
using different channel combinations.  

It can be seen in these results that horizontal prediction accuracy is much higher than vertical 
prediction accuracy. There are many possible reasons why the vertical directions have a 
significantly lower accuracy, but more research is necessary to draw a definitive conclusion. It is 
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also interesting to note that Figure 4 shows the channels located on the right hemisphere of the 
brain as more relevant to velocity prediction. This is intriguing because 31 out of 33 subjects 
were right handed, and right hand movement is usually governed by the left hemisphere of the 
brain.  This shift could be explained by the use of the imagined body kinematics paradigm where 
the subjects were not making any overt movements. 

The results of the classification approach show a very promising method of distinguishing 
between intended horizontal and vertical movement. By achieving an average accuracy of 80%, 
this classifier can potentially be used in front of the regression model to improve performance. It 
is also interesting to note that subjects with high goodness of fit scores did not always achieve 
high classification accuracies. In some cases, subjects with low velocity prediction scores have 
much higher classification scores. 
 
5. Conclusion 
 
A decoder model of Multiple Linear Regression was used to predict the velocity of a computer 
cursor from EEG signals. This model allowed for fast processing times and decent accuracy 
during online trials. Different channels seem to correspond to different tasks. Both horizontal and 
vertical trials showed distinct patterns across all subjects. By utilizing different combinations of 
channels as well as adding a classifier for horizontal and vertical movement, this model can be 
optimized to provide higher prediction scores. With the combination of these two methods, the 
real-time prediction model stands a good chance of seeing improvement. By optimizing the 
training protocol for this BCI platform, we aim to allow a new method of interaction to the 
environment for those with disability.   
 
6. Future Work 
 
While linear regression has given the best results so far, there remains the question of whether it 
is optimal. We would like to spend more time tuning other models to see if they can give us 
better prediction. Furthermore, we aim to implement and tune a long term short term recurrent 
neural network (LSTM-RNN). We wish to also take steps to implement what we have learned in 
real-time testing. We would like to implement our classifier along with the regression approach 
to improve our real-time prediction. It will also be interesting to see if there is a way to 
implement the different channel combinations in real-time testing. Once the cursor trials receives 
satisfactory results, we would like to implement our platform on other devices such as 
controlling a robotic arm or wheelchair.  
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