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Abstract: 
The process of generating genome sequence data is constantly getting faster, cheaper, 

and more accurate.  Unfortunately, assembling the data into a finished genome sequence is still 
a challenge despite our technological advances.  While we have a variety of assembly tools, 
many of these tools differ in performance and final composition of an assembled sequence.  
Sequencing results in bioinformatics have shown the need for a benchmark in sequence 
assemblers. 
 

Introduction: 
One fundamental principle of biology is that within each cell of DNA there are genes that 

encode RNA which is used to produce proteins that regulate all of the biological processes 
within an organism.  Bioinformatics is the application of computer technology to aid in the 
management of biological information, and is a field that encompasses different tools and 
techniques from three separate disciplines; molecular biology, computer science, and data 
analysis algorithms.  Through technological advances in bioinformatics we have a better 
understanding of how gene sequences code specific proteins from various types of data.     

Background: 

To understand the process of generating genome sequence data, there first needed to 
be an understanding related to the field of bioinformatics and what genome sequences 
encompasses.  Being familiar with the National Center for Biotechnology Information (NCBI) [2], 
Multiple Sequence Alignment (MSA) [3], and Sequence Analysis methods [4] proved helpful in 
the study on gene sequencing. However, a web journal titled “What is bioinformatics? An 
introduction and overview” [5] provided a broad array of topics related to bioinformatics, such as 
they types of formats used, Different databases, ways data gets organized, and different ideas 
for the future of bioinformatics.   

To prepare to work with large amounts of data, there was a need to attend training on 
parallel computing.  The training attended addressed some of the new features of the Beacon 
Many Integrated Core (MIC) architecture, as it combines many Central processing Units (CPU) 
into one chip providing better performance with faster computations. Although Beacon supports 
FORTRAN, C, and C++; some things to note is that even though you can use C++ code to call 
functions, you aren’t able to transfer classes, and you  don’t send a function to a Message 
passing Interface (MPI), but have  the function go to an Open Multi Processing Interface 
(OpenMPI) to run the code in parallel.  This would allow the use of more than one core when 
running a program, thus taking full advantage of the parallel processing performed on Beacon. 

  

Project: 
  



The process of generating genome sequence data is constantly getting faster, cheaper, 
and more accurate thanks to the high throughput Next Generation Sequencing (NGS) machines. 
Sequence assembly is the merging and ordering of shorter fragments called “reads”, sampled 
from the larger sequence.  Sequence assemblers generally take a file of short sequence reads 
and a quality-value file as the input [6].  The quality value reflects the how accurate an 
alignment is of a particular sequence. Due to the high memory requirements of high-throughput 
short reads from NGS machines, sequence data is always initially formatted to a specific data 
structure to reduce the total amount of memory used. To understand NGS assemblers we first 
conducted an experiment on Short Sequence Alignment (SSA) Tools. 
 
 

Aligners: 
Methods: 
         The aligners chosen for comparison were BLAST (Basic Local Alignment Search Tool) 
and MUMmer (Maximal Unique Matches or MUM).  To get an understanding on how aligners 
worked, two FASTA [7] formatted files related to the same nucleotide were used.  One file 
contained the database and the other the query sequence.  Before these files can be used they 
needed to reformat the database to read nucleotide sequences using BLAST.  BLAST achieves 
its speed is by using sequences in a binary format thus avoiding the overhead of parsing 
sequences stored in ASCII format. Once formatted the new output files to represent the 
database had the extension .nhr, .nin, and .nsq [8], which represented the header file, the index 
file, and the sequence file. 
         Once the file was formatted we could run the BLAST program against the database in 
relation to the sequence file.  This returned a tabular output file that contained Node surface 
area of DNA, the contig [9], and their respective lengths, mismatches, gaps, and other related 
fields.  To begin comparisons, a Python script was written to read the data and to find out how 
many values were returned in this file. The programming language chosen was Python as it is 
more of a script base language than an actual programming language.  This would make it 
easier for a non-programmer to understand or modify to achieve the same or different results. 
When the file was parsed, the results showed that the particular nucleotide sequence had 
552,305 reads, and produced 160,749 contigs. To see how accurate the sequence was aligned, 
the script was modified the script to show that the reads returned a value of 198,259 hits [10], 
while the contigs returned 123,070 hits. 

The process for MUMmer was similar as it used the same dataset used in the BLAST 
testing. However, instead of using ASCII format like BLAST, MUMmer uses a suffix-tree [11] 
architecture which makes it an important data structure for large-scale genome analysis. The 
use of suffix-trees provides a faster alignment time than BLAST while the memory usage is 
decreased.  To read the MUMmer output file, the program was modified, which returned the 
results that were 121,829 contig that were hit compared to blast 123,070.  As these values on 
their own don’t signify anything, another test was initiated to compare how accurately they 
aligned their contig values.   To accomplish this we had to compare the contig values based on 
its coverage.  This was accomplished by first getting the lengths of each node related to a 
specific contig and get their lengths while taking only the difference between overlapping 
lengths. 



 

 

 

 

 

Results: 

The results in Fig. 1 shows the number of contigs based on that percent of coverage.   

 
Fig. 1:

 
Shows frequency of contig coverage for both BLAST and MUMmer. 
 

What this graphs shows is that the contig coverage using MUMmer is greater than that 
covered by BLAST on the higher percentages. As a result, even though MUMmer produced 
fewer contigs than BLAST, it is a more accurate Alignment tool than BLAST. 
 

Assemblers: 
Research: 

For the past 29 years Sanger Sequencing [12] produced longer reads with a low error 
rate, but it was relatively more expensive to produce the reads. Sanger sequencing contigs, 
overlapping segments of DNA, were initially built using string graphs. However, due to the rapid 
rate of increase in competing technologies, there has been a change in the field has moved 
towards shorter reads at a much lower cost for a given volume of reads.  Genome assemblers 



generally take a file of short sequence reads and a file of quality-value as the input.  Tools such 
as PHRED reflect the actual error rates in the aligned sequences in data providing a quality 
value [13]. The higher this quality value, the better the alignment.  Because the quality-value file 
for the high throughput short reads is usually memory-intensive, first generation tools such as 
PHRAP (PHRagment Assembly Program), Celera, and ARCHNE, were used for numerous high 
quality assemblies.  These tools used an overlap layout consensus approach (Zerbino and 
Birney 2008) and didn’t follow the paradigm (Kunin et al. 2008) [14]. This was obscuring the 
intra-strain variation results found and assumes that deviations were errors than real genetic 
variations. 
Algorithm types: 

Currently there are two main formats styles: string-based implemented with the Greedy 
extension algorithm, called “Greedy Algorithm” [15], which are mainly reported for the assembly 
of small genomes [16-18],and graph-based model formatting\which are designed at handling 
complex genomes [19-21].   The near-identity of sequences of the Greedy Algorithm is 
characterized by a small positive number instead of a large one.  In other words an alignment is 
assessed by counting the number of its differences (i.e. the columns that do not align identical 
nucleotides). The distance between strings and is then defined as the minimum number of 
differences in any alignment of those strings.  Greedy alignment algorithms work directly with a 
measurement which is the difference between two sequences, rather than their similarity. 

While the graph-based approaches are generally superior in terms of assembly quality, 
the computer resources required for building and storing a large graph is very high. One primary 
area of concern is how to process repetitive fragments from complicated genome through the 
assembly of next-generation short reads.  Due to the length of some sequences, Paired-end 
(PE) sequencing can compensate for the read lengths.  PE sequencing reads both the forward 
and reverse template strands of each cluster during one Paired end read, and both reads 
contain long range positional information allowing for highly precise alignment of reads.  One 
possible solution to this problem can be to use longer reads, but currently that isn’t possible with 
our current technology [22].   

Assemblers, such as SSAKE [23], SOAPdenovo [20], AbySS [21], and Velvet [24] 
exploit PE sequencing information to reduce gaps, an insertion or deletion within the input 
sequence alignment as missing data [25], from assembled contigs.  For string-based 
assemblers the time and memory cost is proportionate to the dataset size.  SSAKE, a string 
based assembler, runs in less time than other peer assemblers, but the RAM (or memory)  
usage increases dramatically as the dataset size increases.  In comparison graph based Short-
read Sequencing tools such as Velvet, SOAPdenovo, ALLPATHS [26], and ABySS implement 
assembly task with fairly little computational power, and are more suited for large datasets 
which use the De Bruijn graph method [27].  In this method a certain proportion of base errors 
are incorporated into contigs during construction of the graph with k-mers( DNA ‘words’ of 
length k) generated from the input, thus creating a series of overlapping reads and represents a 
candidate Hamiltonian cycle assembly reading each series of k-mers only once. 

  

NGS Related Issues: 



Because adjacent reads usually overlap, data loss is a primary concern when using 
Short-read Sequencing tools. When the data is read by the assembler some base pairs are lost 
either by being discarded as mistakes or repeat sequences, or by being joined in the wrong 
place or orientation [28].  In fact it is now also recognized that short reads have made the 
assembly problem significantly harder due to the complexity involved in resolving long repeats.  
To solve this problem, the assembler tools used are based on the assumptions that if two reads 
share a sufficiently long subsequence then they belong to the same location in the genome.   

Currently, there are more than 20 different assemblers, and these assemblers have 
been designed to mitigate the complexity of assembling Next Generation Sequence (NGS) 
reads. The issue with that many different assemblers is that there is no single computational 
method that is accepted as the best way to find similarities between genomes of different 
species.  This raised the concern for a computational benchmark for assemblers.  To achieve 
this benchmark, competitions such as the Assemblathon and Assemblathon 2 were conducted 
to compare methods of assembling full genomes from the short segments of genetic information 
produced by genetic sequencing technologies.  Unfortunately the results from both these 
competitions showed that large differences exist between the assemblies, and that there are 
inconsistencies when using the same assembler (i.e. two groups could run the same program 
and get different results). 

  

Conclusion: 

In summary, MUMmer is a more accurate alignment tool than BLAST and there are 
numerous sequencing problems caused by the new sequencing methods of Next Generation 
Sequencing. These sequencing issues may be fixed by taking longer sequences instead of a 
large amount of short sequences. Due to the different parameters related to different 
assemblers, you should not depend on a single metric, and choose assemblers that excel in a 
specific area of interest. 

 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  

 References: 
1.	
   Bruce	
  Alberts,	
  Alexander	
  Johnson,	
  Julian	
  Lewis,	
  Martin	
  Raff,	
  Keith	
  Roberts,	
  and	
  Peter	
  Walter	
  Molecular	
  
Biology	
  of	
  the	
  Cell,	
  2007,	
  ISBN	
  978-­‐0-­‐8153-­‐4105-­‐5 
2.	
  	
   NCBI	
  -­‐	
  	
  develops	
  new	
  information	
  technologies	
  to	
  aid	
  in	
  the	
  understanding	
  of	
  fundamental	
  molecular	
  and	
  
genetic	
  process	
  that	
  control	
  health	
  and	
  disease 

3.	
  	
   MSA	
  -­‐the	
  Alignment	
  of	
  three	
  of	
  more	
  biological	
  sequences	
  usually	
  DNA,	
  proteins,	
  or	
  RNA 

peptide	
  sequence	
  -­‐	
  the	
  order	
  of	
  which	
  amino	
  acids	
  connect	
  to	
  peptide	
  bonds 

4.	
  	
   N.M.Luscombe,	
  D.	
  Greenbaum,	
  and	
  M.	
  Gerstein(2001)	
  Yearbook	
  of	
  Medical	
  Informatics	
  What	
  is	
  
bioinformatics	
  An	
  introduction	
  and	
  overview 

5.	
   Sensen,	
  C.	
  W.	
  "Sequenceing	
  Terminology."	
  Essentials	
  of	
  Genomics	
  and	
  Bioinformatics.	
  Weinheim:	
  Wiley-­‐
VCH,	
  2002.	
  N.	
  pag.	
  Print 

6.	
   FASTA	
  -­‐	
  is	
  a	
  text-­‐based	
  format	
  for	
  representing	
  either	
  nucleotide	
  sequences	
  or	
  peptide	
  sequences,	
  in	
  
which	
  nucleotides	
  or	
  amino	
  acids	
  are	
  represented	
  using	
  single-­‐letter	
  codes	
  zhanglab.ccmb.med.umich.edu/FASTA/ 

7.	
   Farrar,	
  Michael	
  S.	
  "NCBI	
  BLAST	
  Database	
  Format."	
  HHMI,	
  Janelia	
  Farm	
  Research	
  Campus,	
  Mar.-­‐Apr.	
  2010.	
  	
  	
  
Web. 

8.	
   Contig	
  -­‐	
  is	
  a	
  set	
  of	
  overlapping	
  DNA	
  segments	
  that	
  together	
  represent	
  a	
  region	
  of	
  DNA.	
  	
  	
  	
  	
  	
   

9.	
   Staden,R	
  (1980)	
  A	
  new	
  computer	
  method	
  for	
  the	
  storage	
  and	
  manipulation	
  of	
  DNA	
  gel	
  reading	
  data",	
  
Nucleic	
  Acids	
  Res.	
  8,	
  3673-­‐3694 

10.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hits	
  -­‐	
  has	
  an	
  area	
  of	
  coverage 

11.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Suffix-­‐tree	
  -­‐	
  is	
  a	
  data	
  structure	
  for	
  representing	
  all	
  the	
  substrings	
  of	
  a	
  string,	
  whether	
  that	
  string	
  is	
  a	
  DNA	
  
sequence,	
  a	
  protein	
  sequence,	
  or	
  plain	
  text. 

Kurtz,	
  Stefan,	
  Adam	
  Phillippy,	
  Arthur	
  L.	
  Delcher,	
  and	
  And	
  Others.	
  "Versatile	
  and	
  Open	
  Software	
  for	
  Comparing	
  
Large	
  Genomes."	
  Genome	
  Biology.	
  N.p.,	
  30	
  Jan.	
  2004.	
  Web. 



12.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Earl	
  D,	
  Bradnam	
  K,	
  John	
  JS,	
  Darling	
  A,	
  Lin	
  D,	
  et	
  al.	
  (2011)	
  Assemblathon	
  1:	
  A	
  competitive	
  assessment	
  of	
  de	
  
novo	
  short	
  read	
  assembly	
  methods.Genome	
  Res	
  21:	
  2224–2241. 

13.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Sensen,	
  C.	
  W.	
  "Sequenceing	
  Terminology."	
  Essentials	
  of	
  Genomics	
  and	
  Bioinformatics.	
  Weinheim:	
  Wiley-­‐
VCH,	
  2002.	
  N.	
  pag.	
  Print 

14.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Timothy	
  Graham	
  Amos	
  “Metagenomics”	
  	
  From	
  Organism	
  Diversity	
  to	
  Micro-­‐heterogeneity:	
  Confident	
  
Assessment	
  of	
  Fine-­‐scale	
  Variation	
  within	
  Metagenomic	
  Data:	
  Thesis	
  2011 

15.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Zheng	
  Z.	
  Scott	
  S.	
  Lukas	
  W.	
  and	
  Webb	
  M.	
  (2000)“A	
  Greedy	
  Algorithm	
  for	
  Aligning	
  DNA	
  Sequences”	
  
JOURNAL	
  OF	
  COMPUTATIONAL	
  BIOLOGY	
  Volume	
  7,	
  Numbers	
  1/2,	
  2000	
  Mary	
  Ann	
  Liebert,	
  Inc.	
  Pp.	
  203–214 

16.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Dohm	
  JC,	
  Lottaz	
  C,	
  Borodina	
  T,	
  Himmelbauer	
  H	
  (2007)	
  SHARCGS,	
  a	
  fast	
  and	
  highly	
  accurate	
  short-­‐read	
  
assembly	
  algorithm	
  for	
  de	
  novo	
  genomic	
  sequencing.	
  Genome	
  Res	
  17:	
  1697–1706.	
  doi:	
  10.1101/gr.6435207. 

17.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Bryant	
  DW	
  Jr,	
  Wong	
  WK,	
  Mockler	
  TC	
  (2009)	
  QSRA:	
  a	
  quality-­‐value	
  guided	
  de	
  novo	
  short	
  read	
  assembler.	
  
BMC	
  Bioinformatics	
  10:	
  69.	
  doi:	
  10.1186/1471-­‐2105-­‐10-­‐69. 

18.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Jeck	
  WR,	
  Reinhardt	
  JA,	
  Baltrus	
  DA,	
  Hickenbotham	
  MT,	
  Magrini	
  V,	
  et	
  al.	
  (2007)	
  Extending	
  assembly	
  of	
  short	
  
DNA	
  sequences	
  to	
  handle	
  error.	
  Bioinformatics	
  23:	
  2942–2944.	
  doi:	
  10.1093/bioinformatics/btm451. 

19.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Li	
  R,	
  Fan	
  W,	
  Tian	
  G,	
  Zhu	
  H,	
  He	
  L,	
  et	
  al.	
  (2010)	
  The	
  sequence	
  and	
  de	
  novo	
  assembly	
  of	
  the	
  giant	
  panda	
  
genome.	
  Nature	
  463:	
  311–317. 

20.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Li	
  R,	
  Zhu	
  H,	
  Ruan	
  J,	
  Qian	
  W,	
  Fang	
  X,	
  et	
  al.	
  (2010)	
  De	
  novo	
  assembly	
  of	
  human	
  genomes	
  with	
  massively	
  
parallel	
  short	
  read	
  sequencing.	
  Genome	
  Res	
  20:	
  265–272.	
  doi:	
  10.1101/gr.097261.109. 

21.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Simpson	
  JT,	
  Wong	
  K,	
  Jackman	
  SD,	
  Schein	
  JE,	
  Jones	
  SJ,	
  et	
  al.	
  (2009)	
  ABySS:	
  a	
  parallel	
  assembler	
  for	
  short	
  
read	
  sequence	
  data.	
  Genome	
  Res	
  19:	
  1117–1123.	
  doi:	
  10.1101/gr.089532.108. 

22.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Zhang	
  W,	
  Chen	
  J,	
  Yang	
  Y,	
  Tang	
  Y,	
  Shang	
  J,	
  et	
  al.	
  (2011)	
  A	
  Practical	
  Comparison	
  of	
  De	
  Novo	
  Genome	
  
Assembly	
  Software	
  Tools	
  for	
  Next-­‐Generation	
  Sequencing	
  Technologies.	
  PLoS	
  ONE	
  6(3):	
  e17915.	
  
doi:10.1371/journal.pone.0017915 

23.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Warren	
  RL,	
  Sutton	
  GG,	
  Jones	
  SJ,	
  Holt	
  RA	
  (2007)	
  Assembling	
  millions	
  of	
  short	
  DNA	
  sequences	
  using	
  SSAKE.	
  
Bioinformatics	
  23:	
  500–501.	
  doi:	
  10.1093/bioinformatics/btl629. 

24.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Zerbino	
  DR,	
  Birney	
  E	
  (2008)	
  Velvet:	
  algorithms	
  for	
  de	
  novo	
  short	
  read	
  assembly	
  using	
  de	
  Bruijn	
  graphs.	
  
Genome	
  Res	
  18:	
  821–829.	
  doi:	
  10.1101/gr.074492.107. 

25.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Steve.E,	
  Tandy	
  W.	
  (2011)	
  Phylogenetic	
  analyses	
  of	
  alignments	
  with	
  gaps.	
  Tech	
  Report	
  807:	
  
statistics.berkeley.edu 

26.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Butler,	
  J.	
  et	
  al.	
  Genome	
  Res.	
  18,	
  810–820	
  (2008) 

27.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Phillip	
  C,	
  Pavel	
  P,	
  and	
  Glenn	
  T	
  (2011)	
  Nature	
  Biotechnology	
  29,	
  987–991	
  doi:10.1038/nbt.2023	
  Published	
  
online	
  08	
  November	
  2011 

28.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Monya	
  Baker	
  (2012)	
  Nature	
  Methods	
  “De	
  novo	
  denome	
  assembly:	
  what	
  every	
  biologist	
  should	
  know”	
  doi:	
  
10.1038/nmeth.1935 

 
 

 

 


