
TEMPLATE DESIGN © 2008 www.PosterPresentations.com

CONCLUSIONS

INTRODUCTION

METHODS

CONTACT INFO

METHODS cont.

PRELIMINARY RESULTS

ALGORITM ANALYSIS

REFERENCES

Haihang You
hyou@utk.edu

Kenneth McKanders
kamckanders@gmail.com

There is a growing consensus that many
socioeconomic dynamics are spatially
concentrated, such as unemployment and
violence. Recently, researchers have recognized
that spatial and temporal factors in crime events
should be addressed jointly instead of being
treated separately. Near Repeat calculation is
designed to reveal the correlation of these
factors between events; however, during the
examination of an event chain with multiple
events, the computational complexity of Near
Repeat calculation increases exponentially. This
research is focused on the development of a
parallel solution for Near Repeat computation,
as well as a fast algorithm for multi-event Near
Repeat calculation. In particular, this study will
be conducted using randomly generated datasets
of events that consist of x and y coordinates and
timestamps.

Given a list of events represented as a tuple
containing the X and Y coordinates, as well as
the time of the event, the range of time, and the
operational range (distance), the algorithm
should return N11, N12, N21, N22 where:
N11 is defined as the set of points within the
specified space-time:
​𝑁↓11 = |​(𝑖, 𝑗) ⁠𝑑(𝑖, 𝑗) ≤𝑑 𝑎𝑛𝑑 𝑡(𝑖, 𝑗) ≤𝑡 |
N12 is defined as the set of points within the
specified space, but outside of the specified
time:
​𝑁↓12 = |​(𝑖, 𝑗) ⁠𝑑(𝑖, 𝑗) ≤𝑑 𝑎𝑛𝑑 𝑡(𝑖, 𝑗) >𝑡  |
N21 is defined as the set of points outside of the
specified space, but within the specified time:
​𝑁↓21 = |​(𝑖, 𝑗) ⁠𝑑(𝑖, 𝑗) >𝑑 𝑎𝑛𝑑 𝑡(𝑖, 𝑗) ≤𝑡  |
N22 is defined as the set of points outside of the
specified space-time:
​𝑁↓22 = |​(𝑖, 𝑗) ⁠𝑑(𝑖, 𝑗) >𝑑 𝑎𝑛𝑑 𝑡(𝑖, 𝑗) >𝑡  |
In order to generate these numbers, events must
be compared to each other to determine their
relationship. When events are related, they
create a cluster within the dimensions of the
space-time area. Events within this cluster have
a certain probability that they were performed by
the same person. Since this probability
deprecates over time (needs reference), it is
therefore understood that a wider time
specification means that it is less likely that the
events are related by the person that performed
them.

Traditionally, when comparing elements in a
pairwise manner, a 2-D grid is constructed
which shows the relationships for each possible
pair. While this is fine for smaller datasets, the
space requirement for larger datasets far
exceeds not only the allowable space for a
program (usually 2GB), but also most standard
RAM sizes. Therefore, a new storage method is
required for these relations.
Additionally, the algorithmic complexity for
finding these pairwise relations is 𝑶(​𝒏(𝒏−𝟏)/𝟐 ), and
increases exponentially for the number of
elements in the relation set; this means that a
new relation function is required to reduce the
calculation complexity for sets of higher
numbers.

First, the size issue was handled. The original
storage method was an 𝑛×𝑛 grid. There are two
things known about storing relations in this
way:
•  The elements along the diagonal of the grid

represent the relations between any event
and itself

•  The grid is mirrored about this same
diagonal

With this knowledge, we can simplify the grid
into a single array in the following manner:

​𝑨↓𝒙𝒚 : 1 2 3 4

1 Related Related Distance Time

2 1. Related Related Distance Time

3 2. Distance 4. Distance Related Unrelated

4 3. Time 5. Time 6. Unrelated Related

​𝑩↓𝒛 : 1. Related 2. Distance 3. Time 4. Distance 5. Time 6. Unrelated

The elements are related between the two structures
in the following manner:
•  ​𝐴↓𝑥𝑦 = ​𝐵↓𝑧  𝑤ℎ𝑒𝑟𝑒 𝑧=(∑𝑗=0↑𝑚𝑖𝑛(𝑥,𝑦)▒𝑛−𝑗−1 )+𝑚𝑎𝑥(𝑥,𝑦)−𝑚𝑖𝑛(𝑥,𝑦)

However, this is still not enough reduction for a
sparse matrix. The structure can be further reduced
into a Compressed Row Storage format.

The Compressed Row Storage object (Q) is
constructed in the following manner:
•  ​𝑄↓𝑎 = ​​𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛↓𝑥𝑦  ⁠𝑥, 𝑦 𝑎𝑟𝑒 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑 
•  ​𝑄↓𝑏 = ​𝑦⁠𝑣=∑𝑗=0↑𝑚𝑖𝑛(𝑥,𝑦)▒𝑛−𝑗−1 , (𝑥,𝑦)=(𝑣,𝑧−𝑣) 
•  ​𝑄↓𝑐 = ​​𝑣𝑎𝑙↓𝑝  ⁠{█■𝑝=0, 𝑣𝑎𝑙=0⁠𝑝>0, ​𝑣𝑎𝑙↓𝑝 − ​𝑣𝑎𝑙↓𝑝−1 =𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝑝   

Once this structure has been created in memory,
it becomes easier to find relations of elements
using the relation:
•  ​𝐴↓𝑥𝑦 ={█■𝑥=𝑦, 𝑟𝑒𝑙𝑎𝑡𝑒𝑑⁠█■𝑥 ≠𝑦, ​𝑄↓𝑎 [𝑘] 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ​𝑄↓𝑐 [​min ⁠(𝑥, 𝑦) ]≤𝑘< ​𝑄↓𝑐 [​min ⁠(𝑥,𝑦) 

+1], ⁠​𝑄↓𝑏 [𝑘]= ​max ⁠(𝑥,𝑦) −min​(𝑥,𝑦)   

Given this storage of the pairwise relations
between each element, finding relations for any
size set becomes a recurrent relation:
•  𝑓(​𝑖↓1 , ​𝑖↓2 , ⋯, ​𝑖↓𝑟 )={█■𝑟=2, 𝑡𝑎𝑏𝑙𝑒 𝑙𝑜𝑜𝑘𝑢𝑝⁠2<𝑟≤𝑛, 𝑓(​𝑖↓1 , ​𝑖↓2 , ⋯, ​𝑖↓𝑟−1 )⋀↑▒⋀𝑗=1↑𝑟

−1▒𝑓(​𝑖↓𝑗 , ​𝑖↓𝑟 )    

Preliminary testing was done on 5, 15,000, and
150,000 event datasets. Each event was
composed of an x and y coordinate, and a
timestamp. The distance was measured as the
Euclidean distance between two points, and the
time as the difference in time between the two
given events. Results were generated in serial
code.

𝑡(𝑖, 𝑗) ≤𝑡 𝑡(𝑖, 𝑗)>𝑡

𝑑(𝑖, 𝑗) ≤𝑑 ​𝑁↓11  ​𝑁↓12 

𝑑(𝑖, 𝑗)>𝑑 ​𝑁↓21  ​𝑁↓22 

Parallel Solution
for Near Repeat

Analysis

OVERVIEW

Dr. Haihang You, Kenneth McKanders

The 5-event dataset was written purposely to find
relations in time, distance, and a combination of
the two. The other datasets, however, were
written to find relations between completely
random events. While the 5-event set gave
expected results, the 15,000- and 150,000-event
sets quickly showed that a parallel solution is
required for large datasets. Future work will be to
finish implementing the program on Kraken, and
to run analysis of the 15,000- and 150,000-event
sets with relation sets of 3 or more events.

Knox, G. (1964). The detection of space-time
interactions. Applied Statistics 13:25-29.

