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There is a growing consensus that many 
socioeconomic dynamics are spatially 
concentrated, such as unemployment and 
violence. Recently, researchers have recognized 
that spatial and temporal factors in crime events 
should be addressed jointly instead of being 
treated separately. Near Repeat calculation is 
designed to reveal the correlation of these 
factors between events; however, during the 
examination of an event chain with multiple 
events, the computational complexity of Near 
Repeat calculation increases exponentially. This 
research is focused on the development of a 
parallel solution for Near Repeat computation, 
as well as a fast algorithm for multi-event Near 
Repeat calculation. In particular, this study will 
be conducted using randomly generated datasets 
of events that consist of x and y coordinates and 
timestamps. 

Given a list of events represented as a tuple 
containing the X and Y coordinates, as well as 
the time of the event, the range of time, and the 
operational range (distance), the algorithm 
should return N11, N12, N21, N22 where: 
N11 is defined as the set of points within the 
specified space-time: 
​𝑁↓11 =  |​(𝑖,  𝑗) ⁠𝑑(𝑖,  𝑗)  ≤𝑑  𝑎𝑛𝑑  𝑡(𝑖,  𝑗)  ≤𝑡 | 
N12 is defined as the set of points within the 
specified space, but outside of the specified 
time: 
​𝑁↓12 =  |​(𝑖,  𝑗) ⁠𝑑(𝑖,  𝑗)  ≤𝑑  𝑎𝑛𝑑  𝑡(𝑖,  𝑗)  >𝑡   | 
N21 is defined as the set of points outside of the 
specified space, but within the specified time: 
​𝑁↓21 =  |​(𝑖,  𝑗) ⁠𝑑(𝑖,  𝑗)  >𝑑  𝑎𝑛𝑑  𝑡(𝑖,  𝑗)  ≤𝑡   | 
N22 is defined as the set of points outside of the 
specified space-time: 
​𝑁↓22 =  |​(𝑖,  𝑗) ⁠𝑑(𝑖,  𝑗)  >𝑑  𝑎𝑛𝑑  𝑡(𝑖,  𝑗)  >𝑡   | 
In order to generate these numbers, events must 
be compared to each other to determine their 
relationship. When events are related, they 
create a cluster within the dimensions of the 
space-time area. Events within this cluster have 
a certain probability that they were performed by 
the same person. Since this probability 
deprecates over time (needs reference), it is 
therefore understood that a wider time 
specification means that it is less likely that the 
events are related by the person that performed 
them. 

Traditionally, when comparing elements in a 
pairwise manner, a 2-D grid is constructed 
which shows the relationships for each possible 
pair. While this is fine for smaller datasets, the 
space requirement for larger datasets far 
exceeds not only the allowable space for a 
program (usually 2GB), but also most standard 
RAM sizes. Therefore, a new storage method is 
required for these relations. 
Additionally, the algorithmic complexity for 
finding these pairwise relations is 𝑶(​𝒏(𝒏−𝟏)/𝟐 ), and 
increases exponentially for the number of 
elements in the relation set; this means that a 
new relation function is required to reduce the 
calculation complexity for sets of higher 
numbers. 

First, the size issue was handled. The original 
storage method was an 𝑛×𝑛 grid. There are two 
things known about storing relations in this 
way: 
•  The elements along the diagonal of the grid 

represent the relations between any event 
and itself 

•  The grid is mirrored about this same 
diagonal 

With this knowledge, we can simplify the grid 
into a single array in the following manner: 

​𝑨↓𝒙𝒚 : 1 2 3 4 

1 Related Related Distance Time 

2 1. Related Related Distance Time 

3 2. Distance 4. Distance Related Unrelated 

4 3. Time 5. Time 6. Unrelated Related 

​𝑩↓𝒛 : 1. Related 2. Distance 3. Time 4. Distance 5. Time 6. Unrelated 

The elements are related between the two structures 
in the following manner: 
•  ​𝐴↓𝑥𝑦 = ​𝐵↓𝑧   𝑤ℎ𝑒𝑟𝑒  𝑧=(∑𝑗=0↑𝑚𝑖𝑛(𝑥,𝑦)▒𝑛−𝑗−1 )+𝑚𝑎𝑥(𝑥,𝑦)−𝑚𝑖𝑛(𝑥,𝑦) 
 

However, this is still not enough reduction for a 
sparse matrix. The structure can be further  reduced 
into a Compressed Row Storage format. 

The Compressed Row Storage object (Q) is 
constructed in the following manner: 
•  ​𝑄↓𝑎 = ​​𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛↓𝑥𝑦  ⁠𝑥,  𝑦  𝑎𝑟𝑒  𝑒𝑣𝑒𝑛𝑡𝑠  𝑖𝑛  𝑡ℎ𝑒  𝑠𝑦𝑠𝑡𝑒𝑚  𝑤ℎ𝑖𝑐ℎ  𝑎𝑟𝑒  𝑛𝑜𝑡  𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑  
•  ​𝑄↓𝑏 = ​𝑦⁠𝑣=∑𝑗=0↑𝑚𝑖𝑛(𝑥,𝑦)▒𝑛−𝑗−1 ,  (𝑥,𝑦)=(𝑣,𝑧−𝑣)  
•  ​𝑄↓𝑐 = ​​𝑣𝑎𝑙↓𝑝  ⁠{█■𝑝=0,    𝑣𝑎𝑙=0⁠𝑝>0,     ​𝑣𝑎𝑙↓𝑝 − ​𝑣𝑎𝑙↓𝑝−1 =𝑎𝑚𝑜𝑢𝑛𝑡  𝑜𝑓  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑖𝑛  𝑐𝑜𝑙𝑢𝑚𝑛  𝑝    

 
Once this structure has been created in memory, 
it becomes easier to find relations of elements 
using the relation: 
•  ​𝐴↓𝑥𝑦 ={█■𝑥=𝑦,    𝑟𝑒𝑙𝑎𝑡𝑒𝑑⁠█■𝑥  ≠𝑦,   ​𝑄↓𝑎 [𝑘]    𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡   ​𝑄↓𝑐 [​min ⁠(𝑥,  𝑦) ]≤𝑘< ​𝑄↓𝑐 [​min ⁠(𝑥,𝑦) 

+1],   ⁠​𝑄↓𝑏 [𝑘]= ​max ⁠(𝑥,𝑦) −min​(𝑥,𝑦)    

 
Given this storage of the pairwise relations 
between each element, finding relations for any 
size set becomes a recurrent relation: 
•  𝑓(​𝑖↓1 ,   ​𝑖↓2 ,  ⋯,   ​𝑖↓𝑟 )={█■𝑟=2,    𝑡𝑎𝑏𝑙𝑒  𝑙𝑜𝑜𝑘𝑢𝑝⁠2<𝑟≤𝑛,    𝑓(​𝑖↓1 ,   ​𝑖↓2 ,  ⋯,   ​𝑖↓𝑟−1 )⋀↑▒⋀𝑗=1↑𝑟

−1▒𝑓(​𝑖↓𝑗 ,   ​𝑖↓𝑟 )      
 

Preliminary testing was done on 5, 15,000, and 
150,000 event datasets. Each event was 
composed of an x and y coordinate, and a 
timestamp. The distance was measured as the 
Euclidean distance between two points, and the 
time as the difference in time between the two 
given events. Results were generated in serial 
code. 

𝑡(𝑖,  𝑗)  ≤𝑡    𝑡(𝑖,  𝑗)>𝑡    

𝑑(𝑖,  𝑗)  ≤𝑑  ​𝑁↓11  ​𝑁↓12  

𝑑(𝑖,  𝑗)>𝑑  ​𝑁↓21  ​𝑁↓22  
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The 5-event dataset was written purposely to find 
relations in time, distance, and a combination of 
the two. The other datasets, however, were 
written to find relations between completely 
random events. While the 5-event set gave 
expected results, the 15,000- and 150,000-event 
sets quickly showed that a parallel solution is 
required for large datasets. Future work will be to 
finish implementing the program on Kraken, and 
to run analysis of the 15,000- and 150,000-event 
sets with relation sets of 3 or more events. 

Knox, G. (1964). The detection of space-time 
interactions. Applied Statistics 13:25-29. 


