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The Basic Problem.
Spherical Quadrature

Spherical Quadratures are more
natural to use with the Boltzmann
Integrals
Create grid of pieces of a sphere
Built around cartesian and
spherical integration relationship:∫

dVcart =
∫
ρ2sin(θ)dVsphere

where dVcart = dxdydz
and dVsphere = dρdθdφ
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Numerical quadrature implementation

Using the trapezoidal rule the Boltzmann integrals are
computed; known values, from verified experiment, can be used
to check the accuracy of the program.
For the chosen verified experimental values,the Maxwellian
distribution function, in the Boltzmann integrals, is known.
Due to inter-dependancy the integration was separated into two
portions; values from the first were utilized in the second.
Then we can integrate, using a parallel implementation of the
chosen quadrature, to get back the original bulk values
Grid Refinement can then be used to improve upon the accuracy
of the program and to measure convergence of the numerical
quadrature method∫∫∫

S
fρ2sin(θ)dV = Density

∫∫∫
S

fc2ρ2sin(θ)dV

3∗Density = Temperature∫∫∫
S

fViρ
2sin(θ)dV

Density = Ui c2 = (Vx − Ux)
2 + (Vy − Uy )

2 + (Vz − Uz)
2

dV = dρdθdφ
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Code Characteristics

Code designed to run on Beacon: A next-generation
Green 500 supercomputer based on the Intel R©Xeon
PhiTMcoprocessor architecture
Step 1 : Parallelize on the Xeon host processors

8 OpenMP threads, mapped to each of the 8 cores of the
Xeon Processor
MPI used to distribute processes to multiple processors
micmpiexec used with -np flag to specify number of
processors
MPI_Bcast, MPI_Reduce, and MPI_Allreduce used as
necessary to sum needed values and pass them around

Step 2: Migrate code for use with Intel R©Many Integrated
CoreTMarchitectures
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Pseudocode

Initialize distribution function, parameters and the
underlying mesh
Assign density and moment integration tasks to MPI ranks,
via the mesh decomposition, and begin computations
Sum and reduce density and moment integral
computations, share results among MPI ranks.
Utilize first stage results to compute the temperature
integral on each MPI rank; reduce and sum the result from
all ranks.
Finalize and End



D
ra

ft

Motivation Verification

Pseudocode

Initialize distribution function, parameters and the
underlying mesh
Assign density and moment integration tasks to MPI ranks,
via the mesh decomposition, and begin computations
Sum and reduce density and moment integral
computations, share results among MPI ranks.
Utilize first stage results to compute the temperature
integral on each MPI rank; reduce and sum the result from
all ranks.
Finalize and End



D
ra

ft

Motivation Verification

Pseudocode

Initialize distribution function, parameters and the
underlying mesh
Assign density and moment integration tasks to MPI ranks,
via the mesh decomposition, and begin computations
Sum and reduce density and moment integral
computations, share results among MPI ranks.
Utilize first stage results to compute the temperature
integral on each MPI rank; reduce and sum the result from
all ranks.
Finalize and End



D
ra

ft

Motivation Verification

Pseudocode

Initialize distribution function, parameters and the
underlying mesh
Assign density and moment integration tasks to MPI ranks,
via the mesh decomposition, and begin computations
Sum and reduce density and moment integral
computations, share results among MPI ranks.
Utilize first stage results to compute the temperature
integral on each MPI rank; reduce and sum the result from
all ranks.
Finalize and End



D
ra

ft

Motivation Verification

Pseudocode

Initialize distribution function, parameters and the
underlying mesh
Assign density and moment integration tasks to MPI ranks,
via the mesh decomposition, and begin computations
Sum and reduce density and moment integral
computations, share results among MPI ranks.
Utilize first stage results to compute the temperature
integral on each MPI rank; reduce and sum the result from
all ranks.
Finalize and End



D
ra

ft

Motivation Verification

Defining Error

The next step of this project was determining an
appropriate method for evaluating error.
The error in each of the three recordable values (ρ, θ, φ)
was recorded
The evaluated error was taken to be the absolute
maximum of the error of the three values
The evaluated error was then analyzed against computer
time and relative fineness of grid
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Experimental Approach

We began with an initial grid, then refined in all three
directions simultaneously by a factor of 2
Identified a number of gridpoints, beyond which there was
a non-significant decrease in error
Using this as an upper bound, began refinement in each
direction, attempting to find a "sweet spot" for overall error
with the lowest grid complexity
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Accuracy vs. Fineness of Grid

Verification through determination of appropriate grid
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Accuracy vs. Time of Computation

Verification through determination of appropriate grid
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Relative MPI Speedup

The test-case sphere
had a radius of 10
In the best case, the
number of gridpoints
was (ρ, θ, φ) :
(100,720,2880)
The ideal speed up is
for every time the
number of MPI
processes double, the
time taken for the
computation should
halve.

The data shows the point where number of communications
made between processes affects time for computation
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Further Goals and Applications

Utilize offload statements to effectively use the Many
Integrated Core Architecture of Beacon in the computation
Further optimize to reduce amount of resources or number
of communications required
Apply code to other style problems that require a spherical
quadrature
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