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Introduction

The use of numerical integration techniques

is pervasive in several contexts of applied

science and engineering. Several approaches

to numerical integration allow for the intro-

duction of parallel algorithms. This sum-

mer I produced a highly parallel code for

approaching numerical integration using the

next-generation Beacon supercomputing re-

source at NICS.

Equations and approach

The trapezoidal rule was chosen to provide the foun-
dation for numerical integration for its inherent ease
of parallel implementation. The final codebase was
tested against known values, arising from specific
test cases [1], for bulk integrals associated to prob-
lems in the Boltzmann regime. Due to an inter-
dependency, the integration was split into two por-
tions, where values from the first were utilized in
the second. A grid refinement was then done to
verify the program and determine a "sweet-spot"
for overall error vs. grid complexity.
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In the above equations U is the average velocity
tensor while the tensor V represents discrete veloc-
ities.

Code Characteristics

• Code designed to run on Beacon: A next-generation Green 500 supercomputer based on the
Intel R�Xeon PhiTMcoprocessor architecture

• Step 1

– Hybrid OpenMP and MPI. 8 OMP threads mapped to the 8 cores of the Xeon Processor
– MPI distributes the problem among multiple processors
– Sums, reductions, and sharing performed with MPI calls Reduce, Allreduce, and Bcast

• Step 2

– Migrate code for use with Intel R�Many Integrated CoreTMarchitectures, specifically the
Intel R�Xeon PhiTMcoprocessor

• Pseudocode

– Initialize function, parameters, and mesh
– Assign density and moment integrations to MPI ranks; then sum, reduce, and broadcast
– Using the first stage results, compute, then reduce the temperature
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Verification

The graph at right represents the l2 norm of the error
between the known values for each of the quantities
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) and the values calculated from the parallel
quadrature. The initial mesh point distribution was
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) = (50,180,360) where each of the N values
represents the number of grid points in that direction.
The refinement was performed in all three directions

simultaneously by a factor of 2.


