
ComputationalNumerical Integration

forSphericalQuadratures

In a highly parallel fashion

Presenter: Huston Rogers
Mentors: Glenn Brook, Greg Peterson

Introduction

The use of numerical integration techniques

is pervasive in several contexts of applied

science and engineering. Several approaches

to numerical integration allow for the intro-

duction of parallel algorithms. This sum-

mer I produced a highly parallel code for

approaching numerical integration using the

next-generation Beacon supercomputing re-

source at NICS.

Equations and approach

The trapezoidal rule was chosen to provide the foun-
dation for numerical integration for its inherent ease
of parallel implementation. The final codebase was
tested against known values, arising from specific
test cases [1], for bulk integrals associated to prob-
lems in the Boltzmann regime. Due to an inter-
dependency, the integration was split into two por-
tions, where values from the first were utilized in
the second. A grid refinement was then done to
verify the program and determine a "sweet-spot"
for overall error vs. grid complexity.
RRR

S

f(⇢, ✓,�)⇢2sin(✓)dV = Density

RRR

S

f(⇢, ✓,�)V
i

⇢2sin(✓)dV = U
i

⇤Density

c2 = (V
x

� U
x

)2 + (V
y

� U
y

)2 + (V
z

� U
z

)2
RRR

S

f(⇢,✓,�)c2⇢2
sin(✓)dV

3⇤Density

= Temperature

Density ⇤ Temperature = Pressure

c3 = (V
x

� U
x

)3 + (V
y

� U
y

)3 + (V
z

� U
z

)3
RRR

S

,f(⇢,✓,�)c3⇢2
sin(✓)dV

2 = HeatF lux

dV = d⇢d✓d�

In the above equations U is the average velocity
tensor while the tensor V represents discrete veloc-
ities.

Code Characteristics

• Code designed to run on Beacon: A next-generation Green 500 supercomputer based on the
Intel R�Xeon PhiTMcoprocessor architecture

• Step 1

– Hybrid OpenMP and MPI. 8 OMP threads mapped to the 8 cores of the Xeon Processor
– MPI distributes the problem among multiple processors
– Sums, reductions, and sharing performed with MPI calls Reduce, Allreduce, and Bcast

• Step 2

– Migrate code for use with Intel R�Many Integrated CoreTMarchitectures, specifically the
Intel R�Xeon PhiTMcoprocessor

• Pseudocode

– Initialize function, parameters, and mesh
– Assign density and moment integrations to MPI ranks; then sum, reduce, and broadcast
– Using the first stage results, compute, then reduce the temperature

References

1. R. G. Brook, ”A parallel, matrix-free newton
method for solving approximate boltzmann
equations on unstructured topologies,” Ph.D.
dissertation, University of Tennessee at Chat-
tanooga, 2008.

Acknowledgements

Work was done at the National Institute for Com-
putational Sciences utilizing their resources. Sup-
ported in part by the University of Tenneessee
Knoxville, The Joint Institute for Computational
Sciences, Oak Ridge National Lab, and the National
Science Foundation.

Verification

The graph at right represents the l2 norm of the error
between the known values for each of the quantities

(U
⇢

,U
✓

,U
�

) and the values calculated from the parallel
quadrature. The initial mesh point distribution was

(N
⇢

,N
✓

,N
�

) = (50,180,360) where each of the N values
represents the number of grid points in that direction.
The refinement was performed in all three directions

simultaneously by a factor of 2.


