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The use of numerical integration techniques e Code designed to run on Beacon: A next-generation Green 500 supercomputer based on the 1. R. G. Brook, A parallel, matrix-free newton
is pervasive in several contexts of applied Intel®Xeon Phi'™coprocessor architecture method for solving approximate boltzmann
science and engineering. Several approaches e Step 1 equations on unstructured topologies,” Ph.D.
to numerical integration allow for the intro- dissertation, University of Tennessee at Chat-
duction of parallel alg orit:;lms This sum- — Hybrid OpenMP and MPI. 8 OMP threads mapped to the 8 cores of the Xeon Processor tanooga, 2008.
mer | produced a highly parallel code for — MPI distributes the problem among multiple processors A k l d
approaching numerical integration using the — Sums, reductions, and sharing performed with MPI calls Reduce, Allreduce, and Bcast W Ck Il()dVV c %eN B —

: : ork was done at the National Institute for Com-
next-generation Beacon supercomputing re- o Step 2 putational Sciences utilizing their resources. Sup-

source at NICS.

ported in part by the University of Tenneessee
Knoxville, The Joint Institute for Computational
Sciences, Oak Ridge National Lab, and the National

e Pseudocode Science Foundation.

— Migrate code for use with Intel®Many Integrated Core®™architectures, specifically the
Intel®Xeon Phit™coprocessor

Equations a

The trapezoidal rule was chosen to provide the foun-
dation for numerical integration for its inherent ease
of parallel implementation. The final codebase was
tested against known values, arising from specific
test cases [1], for bulk integrals associated to prob- — Using the first stage results, compute, then reduce the temperature
lems in the Boltzmann regime. Due to an inter-

— Initialize function, parameters, and mesh

— Assign density and moment integrations to MPI ranks; then sum, reduce, and broadcast

dependency, the integration was split into two por- o o
tions, where values from the first were utilized in Verlﬁ(:atl()n
the second. A grid refinement was then done to
verity the program and determine a "sweet-spot" |, norm of the Error
for overall error vs. grid complexity. 0.06
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tensor while the tensor V represents discrete veloc-
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