
General Procedure

OOC Cholesky Factorization Overview
 To factorize a large dense SPD matrix in the Out-of-Core

approach of Chloesky Factorization.

 Combine two standard procedures together: right-looking
method and left-looking method.

 Store the problem matrix in host CPU memory (out-of-core)
 High amount of memory storage

 Perform heavy matrix calculation on device (in-core)
 High computational power
 GPU and MIC

Chop the matrix into panels
 The panel is transferred to core
 Size of panel is limited to core memory
 Different ways of determining each panel size can fine-tune

the performance

For each panel, compute left-looking updates:
 With every factorized block-columns on the left,

update dA <- dA - Atmp x Btmp by subroutine
Cpdsyrk_hhd

 Involve host-host-device data transfer
 Compute by calling dsyrk (diagonal part) and

dgemm (off-diagonal part)

Followed by right-looking updates:
For every block along the diagonal,
 call pdpotrf to obtain its lower triangular factor;
 call pdtrsm to update the submatrix under the block;
 call Cpdsyrk_hhd to update the trailing matrix with the

updated column

0

100

200

300

400

500

600

700

800

900

Right-looking Left-looking

Ti
m

e
 (

s)

proc_0 copy A

proc_0 copy B

proc_1 copy A

proc_1 copy B

 Right-looking Left-looking

copy A 25.4 96.5

copy B 2.5 22.9

Host-Host Data Transfer Time

Data Transfer Case Study
 Matrix Size = 518400
 Total time = 1366 s
 Data transfer time = 1050 s
 Data transfer amount (TB):

GPU on Keeneland

Free device memory

GPU  Call CUBLAS library

cublasFree(…);

MIC  Free the pointer in offload region

#pragma offload target(mic) in(ptr)

 free((void*)ptr);

Data transfer

GPU  Call CUBLAS library

cublasSetMatrix(…);

cublasGetMatrix(…);

MIC  Use a buffer to hold the data being copied

 Memory for buffer is allocated on both host and MIC

double *buffer=(double*)malloc(n*sizeof(double));

#pragma offload_transfer target(mic) \

 nocopy(buffer:length(n) alloc_if(1) free_if(0));

 Then transfer data in buffer to MIC

#pragma offload target(mic) in(buffer:…)

 Copy data from buffer to destination

Device calculation

GPU Call CUBLAS library

Cublas_Dgemm(…);

MIC Copy argument list to MIC, call MKL routine

#pragma offload target(mic) in(arg1,arg2,…)

 dgemm(arg1,arg2,…);

 Test case of matrix size 368640 on Beacon
Run across 64 compute nodes of Beacon, using 4 MICs per node
Performance = 47.10 GFLOPS/C
(peak performance of MIC = 1 TFLOPS)

Allocate device memory

GPU  Call CUBLAS library

cublasAlloc(…);

MIC  Allocate a memory block in offload region

 The address value is sent back to host

#pragma offload target(mic) out(ptr)

 ptr = (intptr_t) memalign(64, size);

 intptr_t type is used like a void pointer

Extend Support to MIC Architecture

Free device memory

GPU  Call CUBLAS library

cublasFree(…);

MIC  Free the pointer in offload region

#pragma offload target(mic) in(ptr)

 free((void*)ptr);

Data transfer

GPU  Call CUBLAS library

cublasSetMatrix(…);

cublasGetMatrix(…);

MIC  Use a buffer to hold the data being copied

 Memory for buffer is allocated on both host and MIC

double *buffer=(double*)malloc(n*sizeof(double));

#pragma offload_transfer target(mic) \

 nocopy(buffer:length(n) alloc_if(1) free_if(0));

 Then transfer data in buffer to MIC

#pragma offload target(mic) in(buffer:…)

 Copy data from buffer to destination

Device calculation

GPU Call CUBLAS library

Cublas_Dgemm(…);

MIC Copy argument list to MIC, call MKL routine

#pragma offload target(mic) in(arg1,arg2,…)

 dgemm(arg1,arg2,…);

Allocate device memory

GPU  Call CUBLAS library

cublasAlloc(…);

MIC  Allocate a memory block in offload region

 The address value is sent back to host

#pragma offload target(mic) out(ptr)

 ptr = (intptr_t) memalign(64, size);

 intptr_t type is used like a void pointer

Out-of-Core Cholesky Factorization Algorithm on GPU and
the Intel MIC Co-processors

Motivation: Radiosity Problem

Introduction

Parallel View3D Program

Implementation from GPU to MIC

 MIC implementation: Assign one MIC card to each core; Use
implicit offload model (offload with shared virtual memory)

Performance Comparison

 Case: L-shape with number of surfaces = 20000

 Processor grid: 6x6, NB=64

 Parallel generation of the view
factor matrix F based on Host-
Device architecture.

 The Device for Keeneland and

Beacon are GPU and MIC
respectively.

GPU MIC

Allocation of data in Device
cudaMalloc(&DEV_CUDA_srf,size);

cudaMalloc(&DEV_ans,size);

DEV_MIC_srf=

_Offload_shared_malloc(size);

DEV_ans=

_Offload_shared_malloc(size);

Unobstructed calculation in MIC
cudaComp(DEV_CUDA_srf,

 DEV_ans,…);

_Cilk_spawn _Cilk_offload_to

(rank%num_devices)

MIC_Comp(…);

Obstructed calculation in Host at the same time
View3D(srf,possibleObstr,…); View3D(srf,possibleObstr,…);

Synchronize
cudaThreadSychronize();

cudaMemcpy(HOST_ans,DEV_ans,…);

_Cilk_sync;

 Stepthen-Boltzmann’s equation
indicates the relation between
the object temperature and
emitted radiation which can
presented by view factor matrix
F. It can transform to radiosity
matrix G.

Structure of radiosity matrix G:
an SPD matrix

Determine possible obstruction Calculation of unobstructed cases

Keeneland Beacon Keeneland Beacon

1.795 secs 2.149 secs 6.507 secs 111.09 secs

GPU on Keeneland

Best performance case:
 Matrix size N = 72912
 Processor grid 3x3
 NB=128
Total time: 71.79 secs
Performance: 191 GFLOPS/C

 0

10

20

30

40

50

60

70

80

Total Calc Copy Right copy Left copy

Ti
m

e
 (

s)

Ben Chan, Nina Qian (Chinese University of Hong Kong)
Mentors: Ed D’Azevedo (ORNL), Shiquan Su (UTK), Kwai Wong (UTK)

