

Motivation: Radiosity Problem

Introduction

Stepthen-Boltzmann's equation indicates the relation between the object temperature and emitted radiation which can presented by view factor matrix F. It can transform to radiosity matrix G.

Parallel View3D Program

- Parallel generation of the view factor matrix F based on Host-Device architecture.
- The Device for Keeneland and Beacon are GPU and MIC respectively.

Implementation from GPU to MIC

> MIC implementation: Assign one MIC card to each core; Use implicit offload model (offload with shared virtual memory)

GPU	MIC	
Allocation of	data in Device	
<pre>cudaMalloc(&DEV_CUDA_srf,size) cudaMalloc(&DEV_ans,size);</pre>	;DEV_MIC_srf= Offload_shared_ma DEV_ans= Offload_shared_ma	
Unobstructed calculation in MIC		
<pre>cudaComp(DEV_CUDA_srf, DEV_ans,);</pre>	_Cilk_spawn_Cilk_ (rank%num_devices) MIC_Comp();	
Obstructed calculation in Host at the same time		
<pre>View3D(srf,possibleObstr,);</pre>	View3D(srf,possibl	
Synchronize		
<pre>cudaThreadSychronize(); cudaMemcpy(HOST_ans,DEV_ans,)</pre>	_Cilk_sync; ;	
Performance Comparison		
 Case: L-shape with number of Processor grid: 6x6, NB=64 	surfaces = 20000	
Determine possible obstruction	Calculation of unobst	

Determine possible obstruction		Calculation of unops	
Keeneland	Beacon	Keeneland	Be
1.795 secs	2.149 secs	6.507 secs	11

Out-of-Core Cholesky Factorization Algorithm on GPU and the Intel MIC Co-processors

Ben Chan, Nina Qian (Chinese University of Hong Kong) Mentors: Ed D'Azevedo (ORNL), Shiquan Su (UTK), Kwai Wong (UTK)

zation Overview	
crix in the Out-of-Core n. s together: right-looking CPU memory (out-of-core) ge on device (in-core)	 Best performance case Matrix size N = 729 Processor grid 3x3 NB=128 Total time: 71.79 secs Performance: 191 GFL
cedure	Extend Su
hels to core o core memory nining each panel size can fine-tune compute left-looking updates: actorized block-columns on the left, <i>dA - Atmp x Btmp</i> by subroutine hd host-device data transfer calling dsyrk (diagonal part) and liagonal part) updates: conal, so lower triangular factor; e submatrix under the block; odate the trailing matrix with the	Allocate device memoryGPU> Call CUBLAS library cublasAlloc();MIC> Allocate a memory > The address value #pragma offload ptr = (intp > intptr_t type is useFree device memoryGPU> Call CUBLAS library cublasFree ();MIC> Free the pointer in #pragma offload free ((void*Data transferGPU> Call CUBLAS library cublasFree ();MIC> Free the pointer in #pragma offload free ((void*Data transferGPU> Call CUBLAS library cublasSetMatrix cublasGetMatrixMIC> Use a buffer to hold > Memory for buffer double *buffer=
Host-Host Data Transfer Time	<pre>#pragma offload nocopy(buffer > Then transfer data #pragma offload > Copy data from bu Device calculation GPU Call CUBLAS library Cublas_Dgemm() MIC Copy argument list to #pragma offload dgemm(arg1,</pre>
	Run across 64 comp

Left-looking

upport to MIC Architecture

ory

block in offload region is sent back to host

- target(mic) out(ptr)
- tr t) memalign(64, size);

ed like a void pointer

offload region target(mic) in(ptr))ptr);

(...); (...);

d the data being copied is allocated on both host and MIC

(double*)malloc(n*sizeof(double)); transfer target(mic) \ :length(n) alloc_if(1) free_if(0)); in buffer to MIC target(mic) in(buffer:...) Iffer to destination

MIC, call **MKL** routine target(mic) in(arg1,arg2,...) arg2,...);

ize 368640 on **Beacon** ute nodes of Beacon, using 4 MICs per node Performance = 47.10 GFLOPS/C (peak performance of MIC = 1 TFLOPS)