
General Procedure

OOC Cholesky Factorization Overview
 To factorize a large dense SPD matrix in the Out-of-Core

approach of Chloesky Factorization.

 Combine two standard procedures together: right-looking
method and left-looking method.

 Store the problem matrix in host CPU memory (out-of-core)
 High amount of memory storage

 Perform heavy matrix calculation on device (in-core)
 High computational power
 GPU and MIC

Chop the matrix into panels
 The panel is transferred to core
 Size of panel is limited to core memory
 Different ways of determining each panel size can fine-tune

the performance

For each panel, compute left-looking updates:
 With every factorized block-columns on the left,

update dA <- dA - Atmp x Btmp by subroutine
Cpdsyrk_hhd

 Involve host-host-device data transfer
 Compute by calling dsyrk (diagonal part) and

dgemm (off-diagonal part)

Followed by right-looking updates:
For every block along the diagonal,
 call pdpotrf to obtain its lower triangular factor;
 call pdtrsm to update the submatrix under the block;
 call Cpdsyrk_hhd to update the trailing matrix with the

updated column

0

100

200

300

400

500

600

700

800

900

Right-looking Left-looking

Ti
m

e
 (

s)

proc_0 copy A

proc_0 copy B

proc_1 copy A

proc_1 copy B

 Right-looking Left-looking

copy A 25.4 96.5

copy B 2.5 22.9

Host-Host Data Transfer Time

Data Transfer Case Study
 Matrix Size = 518400
 Total time = 1366 s
 Data transfer time = 1050 s
 Data transfer amount (TB):

GPU on Keeneland

Free device memory

GPU Call CUBLAS library

cublasFree(…);

MIC Free the pointer in offload region

#pragma offload target(mic) in(ptr)

 free((void*)ptr);

Data transfer

GPU Call CUBLAS library

cublasSetMatrix(…);

cublasGetMatrix(…);

MIC Use a buffer to hold the data being copied

 Memory for buffer is allocated on both host and MIC

double *buffer=(double*)malloc(n*sizeof(double));

#pragma offload_transfer target(mic) \

 nocopy(buffer:length(n) alloc_if(1) free_if(0));

 Then transfer data in buffer to MIC

#pragma offload target(mic) in(buffer:…)

 Copy data from buffer to destination

Device calculation

GPU Call CUBLAS library

Cublas_Dgemm(…);

MIC Copy argument list to MIC, call MKL routine

#pragma offload target(mic) in(arg1,arg2,…)

 dgemm(arg1,arg2,…);

 Test case of matrix size 368640 on Beacon
Run across 64 compute nodes of Beacon, using 4 MICs per node
Performance = 47.10 GFLOPS/C
(peak performance of MIC = 1 TFLOPS)

Allocate device memory

GPU Call CUBLAS library

cublasAlloc(…);

MIC Allocate a memory block in offload region

 The address value is sent back to host

#pragma offload target(mic) out(ptr)

 ptr = (intptr_t) memalign(64, size);

 intptr_t type is used like a void pointer

Extend Support to MIC Architecture

Free device memory

GPU Call CUBLAS library

cublasFree(…);

MIC Free the pointer in offload region

#pragma offload target(mic) in(ptr)

 free((void*)ptr);

Data transfer

GPU Call CUBLAS library

cublasSetMatrix(…);

cublasGetMatrix(…);

MIC Use a buffer to hold the data being copied

 Memory for buffer is allocated on both host and MIC

double *buffer=(double*)malloc(n*sizeof(double));

#pragma offload_transfer target(mic) \

 nocopy(buffer:length(n) alloc_if(1) free_if(0));

 Then transfer data in buffer to MIC

#pragma offload target(mic) in(buffer:…)

 Copy data from buffer to destination

Device calculation

GPU Call CUBLAS library

Cublas_Dgemm(…);

MIC Copy argument list to MIC, call MKL routine

#pragma offload target(mic) in(arg1,arg2,…)

 dgemm(arg1,arg2,…);

Allocate device memory

GPU Call CUBLAS library

cublasAlloc(…);

MIC Allocate a memory block in offload region

 The address value is sent back to host

#pragma offload target(mic) out(ptr)

 ptr = (intptr_t) memalign(64, size);

 intptr_t type is used like a void pointer

Out-of-Core Cholesky Factorization Algorithm on GPU and
the Intel MIC Co-processors

Motivation: Radiosity Problem

Introduction

Parallel View3D Program

Implementation from GPU to MIC

 MIC implementation: Assign one MIC card to each core; Use
implicit offload model (offload with shared virtual memory)

Performance Comparison

 Case: L-shape with number of surfaces = 20000

 Processor grid: 6x6, NB=64

 Parallel generation of the view
factor matrix F based on Host-
Device architecture.

 The Device for Keeneland and

Beacon are GPU and MIC
respectively.

GPU MIC

Allocation of data in Device
cudaMalloc(&DEV_CUDA_srf,size);

cudaMalloc(&DEV_ans,size);

DEV_MIC_srf=

_Offload_shared_malloc(size);

DEV_ans=

_Offload_shared_malloc(size);

Unobstructed calculation in MIC
cudaComp(DEV_CUDA_srf,

 DEV_ans,…);

_Cilk_spawn _Cilk_offload_to

(rank%num_devices)

MIC_Comp(…);

Obstructed calculation in Host at the same time
View3D(srf,possibleObstr,…); View3D(srf,possibleObstr,…);

Synchronize
cudaThreadSychronize();

cudaMemcpy(HOST_ans,DEV_ans,…);

_Cilk_sync;

 Stepthen-Boltzmann’s equation
indicates the relation between
the object temperature and
emitted radiation which can
presented by view factor matrix
F. It can transform to radiosity
matrix G.

Structure of radiosity matrix G:
an SPD matrix

Determine possible obstruction Calculation of unobstructed cases

Keeneland Beacon Keeneland Beacon

1.795 secs 2.149 secs 6.507 secs 111.09 secs

GPU on Keeneland

Best performance case:
 Matrix size N = 72912
 Processor grid 3x3
 NB=128
Total time: 71.79 secs
Performance: 191 GFLOPS/C

 0

10

20

30

40

50

60

70

80

Total Calc Copy Right copy Left copy

Ti
m

e
 (

s)

Ben Chan, Nina Qian (Chinese University of Hong Kong)
Mentors: Ed D’Azevedo (ORNL), Shiquan Su (UTK), Kwai Wong (UTK)

