Out-of-Core Cholesky Factorization Algorithm on GPU and
the Intel MIC Co-processors Jl:s

Ben Chan, Nina Qian (Chinese University of Hong Kong) Joint Institute for
Mentors: Ed D’Azevedo (ORNL), Shiquan Su (UTK), Kwai Wong (UTK) Computational Sciences AZEERd

Sciences

OOC Cholesky Factorization Overview GPU on Keeneland

Introduction . \ > zo facto:qizefaclslrge Eler;se SPP mgtrix in the Out-of-Core “
» Stepthen-Boltzmann’s equation GoAR, AR, AR, pproach o oesky Factorization. Best performance case: o

indicates the relation between T » Combine two standard procedures together: right-looking > Matrix size N = 72912 -

the object temperature and G= " | method and left-looking method. > Processor grid 3x3 %5" ‘

emitted radiation which can _A]-Fm AR, ﬁ_%% > Store the problem matrix in host CPU memory (out-of-core) » NB=128 E:Z

presented by view factor matrix \ “ r / O High amount of memory storage Total time: 71.79 secs o

-1t c.an transtorm to radiosity SUAVEAVIES ©1f (EILIOEITS (Eisiys (6 » Perform heavy matrix calculation on device (in-core) Performance: 191 GFLOPS/C 19 -

matrix G, on °FB matrb [0 High computational power D toml e Copy Rightcopy Leftcopy
Parallel View3D Program roreE————— 0 GPU and MIC

. General Procedure Extend Support to MIC Architecture
factor matrix F based on Host-

» Parallel generation of the view l

Device architecture. With potential
obstruction

> The Device for Keeneland and
Beacon are GPU and MIC

Without potential \ Chop the matrix into panels
obstruction » The panel is transferred to core
» Size of panel is limited to core memory
» Different ways of determining each panel size can fine-tune
the performance

Allocate device memory

lloc
GPU |» Call CUBLAS library
cublasAlloc(...);

MIC | > Allocate a memory block in offload region

respectively » The address value is sent back to host
Calculate (BM'C) E For each panel, compute left-looking updates: fpragma offload target (mic) out (ptr)
o , . . .
Imblementation from GPU to MIC ki eeneland) B —] N\ > With every factorized block-columns on the left, ptr = (intptr t) memalign (64, size);
P update dA <- dA - Atmp x Btmp by subroutine » intptr_t type is used like a void pointer
» MIC implementation: Assign one MIC card to each core; Use Cpdsyrk hhd Free device memory
implicit offload model (offload with shared virtual memory) \ > Involve host-host-device data transfer GPU |> call cuBLAs library
» Compute by calling dsyrk (diagonal part) and

cublasFree (...) ;

GPU MIC
Allocation of data in Device |

dgemm (off-diagonal part
9 (5 part) MIC | > Free the pointer in offload region

#pragma offload target (mic) in (ptr)

cudaMalloc (&DEV_CUDA srf,size);DEV _MIC srf= v ‘ \ free ((void*)ptr) ;
cudaMalloc (&DEV ans, size); Offload shared malloc (size);))
N DEV ans= - Followed by right-looking updates: Data transfer
Offload shared malloc (size) ; For every block along the diagonal, GPU |» Call CUBLAS library
- L. B » call pdpotrf to obtain its lower triangular factor; cublasSetMatrix (..);
Unobstructed calculation in MIC _ ’ ,

| (. cilk Cilk offload t » call pdtrsm to update the submatrix under the block; cublasGetMatrix(..);

cudaComp (DEV CUDA srf, 1 spawn 1 o oa o " .
DEV ans,) ; Trankanum devices) — » call Codsyrk hhd to update the trailing matrix with the MIC |> Use a buffer to hold the data being copied
B MIC Comp (i) . updated column » Memory for buffer is allocated on both host and MIC

double *buffer=(double*)malloc(n*sizeof (double));
#pragma offload transfer target (mic) \

GPU on Keeneland nocopy (buffer:length(n) alloc if(l) free if(0));

> Then transfer data in buffer to MIC

Obstructed calculation in Host at the same time
View3D(srf,possibleObstr, ..); View3D (srf,possibleObstr, ..);

Synchronize

: . - . , #foragma offload target (mic) in (buffer:..)

CudaThreadsyCnTontze); _C1lk sync; Host-Host Data Transfer Time ;DC 2 e ?j o
cudaMemcpy (HOST ans,DEV ans,..); 500 Opy data from butter to destination

Data Transfer Case Study 800 Device calculation

. » Matrix Size = 518400 Il CUBLAS |i

Performance Comparison , 700 1 mproc_0.copy A GPU | Call CUBLAS library

» Total time = 1366 s 600 m proc_0 copy B CublaS_Dgemm (...) 7
» Case: L-shape with number of surfaces = 20000 > Data transfer time =1050s proc_1 copy A MIC | Copy argument list to MIC, call MKL routine
> Processor grld 6x6. NB=64 » Data transfer amount (TB): §4oo W proc_1 copy B #pragma offload target (mic) in(argl,arg2,..)

* V4
Determine possible obstruction Calculation of unobstructed cases LRSI faemmlargt, axgs, -l
e COpyg 225:54 gg'g 200 > Test case of matrix size 368640 on Beacon
Keeneland Beacon Keeneland Beacon =obY | | 100 1 Run across 64 compute nodes of Beacon, using 4 MICs per node
1.795 secs 2.149 secs 6.507 secs 111.09 secs 0 - — . Performance = 47.10 GFLOPS/C
ight-looking ert-looking

(peak performance of MIC =1 TFLOPS)

