
General Procedure 

OOC Cholesky Factorization Overview 
 To factorize a large dense SPD matrix in the Out-of-Core 

approach of Chloesky Factorization. 
 

 Combine two standard procedures together: right-looking 
method and left-looking method. 
 

 Store the problem matrix in host CPU memory ( out-of-core ) 
 High amount of memory storage 

 

 Perform heavy matrix calculation on device ( in-core ) 
 High computational power 
 GPU and MIC 

Chop the matrix into panels 
 The panel is transferred to core 
 Size of panel is limited to core memory 
 Different ways of determining each panel size can fine-tune 

the performance 

For each panel, compute left-looking updates: 
 With every factorized block-columns on the left, 

update dA <- dA - Atmp x Btmp by subroutine 
Cpdsyrk_hhd 

 Involve host-host-device data transfer 
 Compute by calling dsyrk (diagonal part) and 

dgemm (off-diagonal part) 

Followed by right-looking updates: 
For every block along the diagonal, 
 call pdpotrf to obtain its lower triangular factor; 
 call pdtrsm to update the submatrix under the block; 
 call Cpdsyrk_hhd to update the trailing matrix with the 

updated column 
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proc_0 copy A

proc_0 copy B

proc_1 copy A

proc_1 copy B

  Right-looking Left-looking 

copy A 25.4 96.5 

copy B 2.5 22.9 

Host-Host Data Transfer Time 

Data Transfer Case Study 
 Matrix Size = 518400 
 Total time = 1366 s 
 Data transfer time = 1050 s 
 Data transfer amount (TB): 

GPU on Keeneland 

Free device memory 

GPU  Call CUBLAS library 

cublasFree(…); 

MIC  Free the pointer in offload region 

#pragma offload target(mic) in(ptr) 

    free((void*)ptr); 

Data transfer 

GPU  Call CUBLAS library 

cublasSetMatrix(…); 

cublasGetMatrix(…); 

MIC  Use a buffer to hold the data being copied 

 Memory for buffer is allocated on both host and MIC 

double *buffer=(double*)malloc(n*sizeof(double)); 

#pragma offload_transfer target(mic) \ 

  nocopy(buffer:length(n) alloc_if(1) free_if(0)); 

 Then transfer data in buffer to MIC 

#pragma offload target(mic) in(buffer:…) 

 Copy data from buffer to destination 

Device calculation 

GPU Call CUBLAS library 

Cublas_Dgemm(…); 

MIC Copy argument list to MIC, call MKL routine 

#pragma offload target(mic) in(arg1,arg2,…) 

    dgemm(arg1,arg2,…); 

 Test case of matrix size 368640 on Beacon 
Run across 64 compute nodes of Beacon, using 4 MICs per node 
Performance = 47.10 GFLOPS/C 
( peak performance of MIC = 1 TFLOPS ) 

Allocate device memory 

GPU  Call CUBLAS library 

cublasAlloc(…); 

MIC  Allocate a memory block in offload region 

 The address value is sent back to host 

#pragma offload target(mic) out(ptr) 

    ptr = (intptr_t) memalign(64, size); 

 intptr_t type is used like a void pointer 

Extend Support to MIC Architecture 

Free device memory 

GPU  Call CUBLAS library 

cublasFree(…); 

MIC  Free the pointer in offload region 

#pragma offload target(mic) in(ptr) 

    free((void*)ptr); 

Data transfer 

GPU  Call CUBLAS library 

cublasSetMatrix(…); 

cublasGetMatrix(…); 

MIC  Use a buffer to hold the data being copied 

 Memory for buffer is allocated on both host and MIC 

double *buffer=(double*)malloc(n*sizeof(double)); 

#pragma offload_transfer target(mic) \ 

  nocopy(buffer:length(n) alloc_if(1) free_if(0)); 

 Then transfer data in buffer to MIC 

#pragma offload target(mic) in(buffer:…) 

 Copy data from buffer to destination 

Device calculation 

GPU Call CUBLAS library 

Cublas_Dgemm(…); 

MIC Copy argument list to MIC, call MKL routine 

#pragma offload target(mic) in(arg1,arg2,…) 

    dgemm(arg1,arg2,…); 

Allocate device memory 

GPU  Call CUBLAS library 

cublasAlloc(…); 

MIC  Allocate a memory block in offload region 

 The address value is sent back to host 

#pragma offload target(mic) out(ptr) 

    ptr = (intptr_t) memalign(64, size); 

 intptr_t type is used like a void pointer 

Out-of-Core Cholesky Factorization Algorithm on GPU and 
the Intel MIC Co-processors 

Motivation: Radiosity Problem 

Introduction 
 

 

 

 

 

 

      
Parallel View3D Program 

 

 

 

 

 
 

Implementation from GPU to MIC 

 MIC implementation: Assign one MIC card to each core; Use 
implicit offload model (offload with shared virtual memory) 

 

 

 

 

 

 

 
 

 

 

 

 
 

Performance Comparison 

 Case: L-shape with number of surfaces = 20000 

 Processor grid: 6x6, NB=64 
 

 

 Parallel generation of the view 
factor matrix F based on Host-
Device architecture.  

 
 The Device for Keeneland and 

Beacon are GPU and MIC 
respectively. 

 

GPU MIC 

Allocation of data in Device 
cudaMalloc(&DEV_CUDA_srf,size); 

cudaMalloc(&DEV_ans,size); 

DEV_MIC_srf= 

_Offload_shared_malloc(size); 

DEV_ans= 

_Offload_shared_malloc(size); 

Unobstructed calculation in MIC 
cudaComp(DEV_CUDA_srf,  

         DEV_ans,…); 

_Cilk_spawn _Cilk_offload_to 

(rank%num_devices) 

MIC_Comp(…); 

Obstructed calculation in Host at the same time 
View3D(srf,possibleObstr,…); View3D(srf,possibleObstr,…); 

Synchronize 
cudaThreadSychronize(); 

cudaMemcpy(HOST_ans,DEV_ans,…); 

_Cilk_sync; 

 Stepthen-Boltzmann’s equation 
indicates the relation between 
the object temperature and 
emitted radiation which can 
presented by view factor matrix 
F. It can transform to radiosity 
matrix G. 

Structure of radiosity matrix G:  
an SPD matrix 

Determine possible obstruction Calculation of unobstructed cases 

Keeneland Beacon Keeneland Beacon 

1.795 secs 2.149 secs 6.507 secs 111.09 secs 

GPU on Keeneland 
 

 
Best performance case: 
 Matrix size N = 72912 
 Processor grid 3x3 
 NB=128 
Total time: 71.79 secs 
Performance: 191 GFLOPS/C 
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