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Device architecture. With potential
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Without potential \ Chop the matrix into panels
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Calculate (BM'C ) E For each panel, compute left-looking updates: fpragma offload target (mic) out (ptr)
o , . . .
Imblementation from GPU to MIC ki eeneland) B —] N\ > With every factorized block-columns on the left, ptr = (intptr t) memalign (64, size);
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#pragma offload target (mic) in (ptr)
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