Programming and Scripting
Tutorial

Programming Languages

* A programming language is designed to
communicate a series of instructions to a
machine

* Split into two components, Syntax and
Symantics

— Syntax — a set of rules defining the combinations
of symbols

— Symantics — provides the rule for interpreting the
syntax

Language Types

There are four categories of programming languages:
— Dynamic
* Data types are inferred and determined during runtime
— Static
» All Data types must be explicitly defined during declaration

— Functional

* Emphasizes the application of function as the main form of
computation

— Object Oriented

* Focuses on the use of “objects” as containers for data values and
associated procedures call methods

Dynamic Vs. Static

Python C
datal = 100.53; double datal = 100.53;
legal illegal/not valid

datal = “hahaha”; datal = “hahaha”

Static

Fortran 77,90

FORTRAN 03 C
C++
. C#
Object Java Functional
Oriented
Haskell
Clojure
Python
Bash
Csh
Matlab

Dynamic

Compiled Languages

e C, C++ and Fortran are all compiled
programming languages

e Each source code file is compiled to a binary
object file
— Ex. gcc —c myfunction.c

* These object files can then be “linked”
together to form an executable

— Ex. gccfilel.o file2.0 -0 myprog

Scripting Languages

Scripting languages do not require a compiler
Are instead interpreted during runtime

Sometimes much slower than compiled

programming languages do to runtime
overheac

Example Languages

— Any shell language (bash,csh,zsh,tcsh,fish)
— Python, Perl, Ruby, Java Script

Compiling

* A compiler converts ASCII based source code into
an executable binary file

* Compiling is a two step process

— Compile step converts source code to binary object
files

— Linker step “links” these objects together to form the
executable

 EX.

— Compile: gec —c hello.c => hello.o
— Link: gcc hello.o —o hello =>

Compilers cont...

* There are many compilers with the most
common being the GNU family of compilers

— gcc, g++, gfortran

* Other compilers are developed and in some
cases optimized for particular systems and
architectures

— Intel, PGI, and Cray

Fortran

8

Developed in 50’s as a replacement to
Assembly Language by IBM with the
first FORTRAN compiler built in 1957

FORTRAN stands for Formula
Translating system

Originally programs were written in
punch cards and inserted one at a time
into the machine. NO MONITORS!

Fortran is now an Object-Oriented
language

Still in use on systems and programs
for FEM, CFD and other computational
fields

e

o
=
L
L
=3
s
==

FLEd

A A AR R AR
ﬁlltlll!l‘!ll'.'.!

A

FORTRAN Example

PROGRAM ComputeMeans

e TET BT * Begins by defining the name

of the program
REAL ::X=1.0,Y=2.0,Z2=3.0

REAL :: ArithMean, GeoMean, HarmMean e |IMPLICIT NONE — all data
WRITE(*,*) 'Data items: ', X, Y, Z types must be explicitly
GURITEL 5 declared

ArithMean=(X+Y+2)/3.0 ° REAL_ﬂoat—'ng point data
GeoMean =(X*Y *Z)**(1.0/3.0)

HarmMean =3.0/(1.0/X + 1.0/Y + 1.0/2) type

WRITE(*,*) 'Arithmetic mean ="', ArithMean ° WRITE(*;*) Prints to screen

WRITE(*,*) 'Geometric mean ="', GeoMean
WRITE(*,*) 'Harmonic Mean =', HarmMean

e Perform arithmetic
functions

* END PROGRAM

END PROGRAM ComputeMeans

Crash Course in C

C is a statically typed and functional programming language
developed by Bell Labs in the early 70’s.

Runtime execution ALWAYS begins at the start of a main
function.

int main(int argc, char** argv)

{

return(0);

}

Every function in C and C++ has a series of inputs following the
function name and a data type to return.

H#include <stdio.h>

int main()
{ [> | am alive! Beware

printf("l am alive! Beware.\n");
return O;

First line contains a pre-processor directive telling the compiler to

include standard I/O functions

e Define the main function with a return type of int (No arguments
required)

e Call function printf to print character string enclosed

* Return a value of 0 to the operating system to indicate success

Variables

* Variables are declared with a type.

e I|nitialization can occur at the point of declaration or the value
can be stored at a later point in the code

int main()

{

int x =3; // Variable x declared and initialized
inty; // Variabley is defined
y =2;// The value 2 is stored in variable y

double a,b,c,d; // Multiple variables can be declared simultaneously
return O;

}

* All variables can be modified using several operators
i *I) +)/) =) == >I <

Basic C Data Types

char 2 Bytes Integer type interpreted as a character data
set

int 2 Bytes Integer type value

float 4 Bytes Single precision floating point value

double 8 Bytes Double precision floating point value

bool 1 Byte Boolean. Defined as 1 (true) or O (false)

void N/A Empty return or input data type

pointer 4-8 Bytes (system A reference that records the location of an

dependent object or function in memory

A Function is a group of statements
that can be executed when called

from the program.

Reduces the need to repeat a series
of statements multiple times in a

program

Must be declared before main

function

Function structure

Return type
Function name
Input variables
Code to execute

Functions

// function example
#include <stdio.h>

int addition (int a, int b)
{

intr;

r=a+b;

return (r);

}

int main ()
{

int z;

z = addition (5,3);
printf(“The result is %d”,z);
return O;

}

Pointers

All variables are stored in memory and have a location where that memory starts

Pointers are used in C based languages as variables that “point” to that memory
location.

When a variable is declared, a section of memory associated with that variable is
set aside. This is called allocating memory and is dependent on the data type and if
present the size of an array or struct.

— Ex. Int x =2; only utilizes 2 bytes of memory
— Ex. Int x[4]; is allocated 8 bytes of consecutive memory
A pointer variable can be assigned a memory address from an existing variable
— Ex. int *x=&y;
* * denotes variable x is a pointer, pointing to an integer value
* & denotes returning the memory address of variable y
* If we were to output the value of x it would look like -> 0x7fff9c5089d4
Pointers can be used to conveniently pass data to functions

Pointers cont...

X 0x21C2 i OxI53A |e— Yy Ox3FB1
Ox153A 10 Ox153A
&X 0x21C2 &i Ox153A |« &y Ox3FB1
X Ox153A S 10 y Ox153A
X 10 Yy 10
variable Memory address (hex)

Value of variable

Ex 2: llustration of & and * Operators with Pointers

C Input and Output

Under stdio.h
printf(“string”);

— Prints to std out
scanf("%d", &number);

— Reads from std in and assigns value to number
FILE *fp = fopen(“filename”,”rw”);

— Opens file name “filename” with read and write properties
fscanf(fp,”%d”,&number);

— Reads file fp and stores first variable in number
fprintf(fp,”string”);

— Prints string value to file fp

C1/0 cont...

Standard in/out

#include <stdio.h>
int main()

{
char input[80];

scanf(“%s”, input);
printf(“%s”,input);

return O;

File1/0

#include <stdio.h>

int main()

{

char input[80];
FILE * fin,fout;

” n)I).
)

fin = fopen(“infile”,”r
fout = fopen(“outfile”,”w”);

fscanf(fin,”%s”,input);
fprintf(fout,”%s”,input);

fclose(fin); fclose(fout);

return O;

Control Structures

For Loops
for(int i=0; i<6; i++)
{

X=X+1i;

X=7?

While Loops
while(x <= 4)

{

X=X+1;

If statements

if(x ==10)
{

do something
} else if (x == 2)
{

do something
} else {

do something
}

Exercise - 1

e Using printf and scanf, read in data from the
terminal and print it back to the screen

Exercise - 1

e Using printf and scanf, read in data from the
terminal and print it back to the screen

#include <stdio.h>

int main()

{
char® str;
scanf(“%s”,str);
printf(“%s”,str);

Exercise 2

e Perform Exercise 1 with a file instead

Exercise 2

e Perform Exercise 1 with a file instead

H#include <stdio.h>
int main()

{

int x;

FILE * filel,file2;
filel = fopen(“filename”,”r”);

fscanf(filel,“%d”,x);
file2 = fopen(“filename”,”w”);
fprintf(file2, “%d”,x);

fclose(filel);
fclose(file2);

Exercise - 3

* Write a function that will calculate the
arithmetic mean of two input variables and
print to the screen

Exercise - 3

double calcmean(double x, double y)
{ return (x+y)/2;
5
int main()
{
double x,y,z;
X=2; y=4,
calcmean(x,y);

return(0);

Exercise 4

* Write 4 different functions and have each
function call the proceeding function

#include <stdio.h>
int function1(int x)

{
return function2(x) + 1;
%
int function2(int x)
{
return function3(x) + 1;
Iz
int function3(int x)
{
return function4(x) + 1;
2
int function4(int x)
{
return 21;
i
int main()
{

Exercise 4

printf(“%d”, function1(2));

return O;

C++

C++ is structurally the same as C and meant as an
improvement to C (hence the ++)

All functions used in C are also implemented in C
++

Main difference is use of object oriented
programming, the STL and template
programming.

This will covering the basics of the STL and high
level overview of Object Oriented programming

STD Namespace

Namespaces allow classes, objects and functions to be grouped under one
name

All C++ functions, classes and STL containers are grouped under the STD
namespace

In order to call them they must be prepended with std::
— Ex. std::cout std::list

For beginners adding using namespace std; to the beginning of the source
code of the main function allows one to access this functionality without
having to include std::

It is preferred to use std:: to prevent other functions of the same name
from being accidentally used by the compiler

Input/Output

Input and output is handled differently than C

#include <iostream> brings in all the functionality
for std I/O in c++

— Provides cout & cin amongst others

File /O depends on <fstream>

Insertion operators “<<“ and “>>" are used to
transfer the stream objects

Examples
— std::cout << “Hello”;
— infile >> string1;

Hello World

#include <iostream>

int main(int argc, char** argv)

{
std::cout << "Hey buddy" << std::endl; | > Hey buddy

return O;

* <jostream> includes functions cout and endl|
e String “Hey buddy” is inserted to std::cout
e std::endl acts as a carriage return

#include <iostream>

#include <fstream> .

#include <string> FI Ie I/O
int main(int argc, char** argv)

{
std::string readtxt;

std::ifstream infile("input.txt");

infile >> readtxt;

infile.close();

std::cout << "The first item of the file reads " << readtxt << std::endl;
std::ofstream outfile("output.txt");

outfile << readtxt;

outfile.close();
return O;

Exercise - 1

e Using std::cout and std::cin read in data from
the terminal and print it back to the screen

Add in proper header files
Create input string

Read in data

Print out data

=

Exercise - 1

#include <iostream>
#include <string>
int main()

{
std::string inputstr;
std:: cin >> inputstr;

std::cout << inputstr;

return O;

Exercise 2

* Perform Exercise 1 with a file instead using
fstream

Create ifstream object and open file
Read contents of file to a string
Close File

Create ofstream object and open file
Print string to file

Close File

I D D =

Exercise 2

#include <fstream>
#finclude <string>
int main()
{
std::ifstream infile(“inputfile”);
std::string instr;
infile >> instr;
infile.close();

std::ofstream outfile(“outputfile”);
outfile << instr;

outfile.close();

Follow Up

For further practice take a look at:
projecteuler.net

C and C++ programming tutorials
— cplusplus.com
— cprogramming.com

GNU Make

What is Make?

— Make is a utility that allows for automatic builds of
executable programs and links external libraries

— Can rebuild things for you automatically: timestamp

* |ts behavior is dependent on rules defined by the user

e Executing the make command begins by searching the
current directory for a file name “Makefile” or
“makefile” and reads that file.

e Different makefiles can be specified with a —f option

Make Rules

A simple makefile consists of “rules” with the following shape:

target ... : prerequisites ...
recipe

 Target — usually a name of a file generated by the rule, or the name
of an action to carry out

— Can be executable or object name

* Prerequisites — a file or action that the target is dependent upon.
— Can be another target

* Recipe — A series of commands to execute for completion of the
target

Variables

e Makefiles can also make use of variables

— Variables can be a list of files
e SOURCES = main.c functionl. function2.c

— Can be an executable command
* CC=g++

— Options to pass to a compiler
e CFLAGS = -g —Wall 03

 Variables are referenced using a S sign
— “S(CC) —c S(SOURCES)”
— Equivalent to “g++ -c main.c functionl.c function2.c”

Executing a Makefile

* A makefile will execute the first target of a
makefile

— S make (first target)

* Other targets can be executed by specifying
the specific target name

— S make clean

Exercise 1

Compile Exercise 1 with a makefile:
makefile

myexe: exercisel.o

gcc exercisel.o —o myexe

exercisel.o: exercisel.c

gcc —c exercisel.c

Clean Target

Try typing make again. What is the result?

If we want to recompile everything, we must
remove all object files and the executable.

Clean Target:

clean:
rm —rf *.0 myexe

Improving Our Makefile

Wouldn’t it be nice if we could easily change compilers? Lets use a
variable.

Add: “cc= gcc” to the beginning of the makefile
Replace: “gcc” later on with S(cc)

Makefile
cc=gcc

myexe: exercisel.o
gcc exercisel.o —o myexe

exercisel.o: exercisel.c
S(cc) —c exercisel.c

Adding FLAGS

* Adding a flags variable Makefile
allows you to quickly A

. CFLAGS= -Wall
change the compiler
Options. myexe: exercisel.o
. S(cc) exercisel.o —o myexe
e After the cc variable on
the top add ad hew exercisel.o: exercisel.c
variable ”CFLAGS — S(cc) —c S(CFLAGS) exercisel.c
Wall”
e Add “S(CFLAGS)” to the
compile line

— “$(cc) —c $(CFLAGS)
exercisel.c”

Source Code Management

Use list of sources instead
— “SOURCES=exercisel.c”

Create a list of object files from the source list
— “OBJECTS= S(SOURCES:.cpp=.0)"

Add target to convert source code into a
target file

— “%.0: %.c”

— “S(cc) —c S(CFLAGS) S<“

“S<“ references all prerequisites

New Makefile

cc=gcc
CFLAGS=-Wall

SOURCES=exercisel.c
OBJECTS=S(SOURCES:.c=.0)

%.0: %.C
$(cc) —c $(CFLAGS) $<

myexe: S(OBJECTS)
S(cc) S(OBJECTS) —o myexe

Makefile Template

Assign Compilers
CC=g++

cc=gcc
ftn=gfortran

Executable Name
EXECUTABLE=

List of Sources
SOURCES=

Compiler Flags
CFLAGS=

FFLAGS=

Make Targets
all: S(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
#$(CC) $(OBJECTS) -0 $@
#S(cc) S(OBJECTS) -0 S@
#S(ftn) S(OBJECTS) -0 S@

$(OBJECTS):

#$(CC) -c $(CFLAGS) $
(INCLUDE_FLAGS) $(SOURCES)

#S(cc) -c S(CFLAGS) $
(INCLUDE_FLAGS) $(SOURCES)

#$(ftn) -c $(FFLAGS) $
(INCLUDE_FLAGS) $(SOURCES)

clean:
rm -rf S(OBJECTS) S(EXECUTABLE)

Further Reading for GNU Make

http://www.gnu.org/software/make/manual/

make.html

Bash Tutorial

e Bash stands for Bourne Again Shell and can be found on almost any
Linux/Unix based computer system.
* Scripting language as well command line interface

Basic commands

cd Change directory

s Lists the contents of a directory

mkdir Makes a directory

sed Stream edit. Used to edit ascii text

grep Searches files or input for a pattern match

| Pipes output of a command directly into another

man Returns the manual page of a given command
pwd Print working directory

chmod Change file mode bits

env Print out Linux environment

time Will time an executed command/program

touch Change file timestamps

finger Returns information on the user

id Return the information on a specified user
alias Alias a command to another value

tar Tape archive extraction

echo Displays a line of text

exit Exits the login/terminal session

pkill Kills a plocess

ps Process status

ssh Used to log into remote machines
su/sudo Substitute user/ execute with root permissions
who List all currently logged in users

awk Pattern scanning and processing language

Bash Scripting

* Simple text file begun with #!/bin/bash

— Tells the OS the script will be interpreted by the bash shell located
under the /bin directory

e All following bash commands can be executed as if on the
command line

EX.
#!1/bin/bash
mkdir bashtest
cd bashtest

touch bashexample

Executing Bash Scripts

* Not inherently executable. Only a text file.
* Must use “chmod u+x”

Bash Scripts can handle arguments.
Ex. myls

#!1/bin/bash

Is —la S1

execute: “./myls exercisel.c”

* S1 represents first arguments following the script executin. $2, S3
etc.. would follow

— S@ will pass in all arguments following

Bash Loops

* Forloop While Loop
#/bin/bash #!/bin/bash
foriin S(lIs); do count=1
echo item: Si while [Scount -le 9]
done do

echo "Scount"
sleep 1
((count++))

done

Python

* Python is a high-level (typically) scripting
language

* Object Oriented

* Uses white-space indentation to delimit coding
blocks like {}

EX.
foriin range(5):
print |

H
print "Enter two integers and | will tell you"
print "the relations they satisfy"

numberl = raw_input("Please enter the first integer: ")
numberl = int(hnumberl)

number2 = raw_input("Please enter the second integer:")
number2 = int(humber2)

if numberl == number2:
print "%d is equal to %d" % (numberl, number2)

if numberl != number2:
print "%d is not equal to %d" % (numberl, number2)

if numberl < number2:
print "%d is less than %d" % (numberl, number2)

if numberl > number2:
print "%d is greater than %d" % (numberl, number2)

if numberl <= number2:
print "%d is less than or equal to %d" % (numberl, number2)

if numberl >= number2:
print "%d is greater than or equal to %d" % (numberl, number2)

dummy=raw_input()

print "Simple for loop using a range variable"
print
for x in range(10):

print "Burp!"

print
print "Counting by 5s"
for xin range(0,10,5):
print str(x) + " Errruppppp!"

print
print "The White Knight (from Alice in Wonderland) counts backwards:"
for x in range (10, O, -1):

print str(x) + " Feed your head"

print
print "Breaking up is hard to do. Well, actually, it's pretty easy when you're a string."
word = raw_input("Enter a word: ")
for letter in word:
print letter

Git

What is Version Control?

— Version control allows one to stores multiple copies of
a file and simultaneously track their history

— Able to capture snapshot of the system which one can
revert back to

— Git allows for the data to be stored in a repository,
either locally or remotely

— Allows for branching T

/" Remote
_ repo

‘ S
AN

A

Explore

eatures

Enterprise Blog

Go to Github

* Go to github.com and
create an account

Sign in

 Write down user name
on paper passed around

Clone our first directory

 Make a directory to house the training git repository
— “mkdir gitrepo”

 Change to the new directory and then clone the repo
. llcd"
— “git clone https://github.com/jics-csure/training.git”

Git Commands
e git add

e gitrm

* git status

e gitmv

e git push

* git merge

All these commands can be found with “git —help”

Resources

FORTRAN - http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/intro.html
C —cprogramming.com

C++ - cplusplus.com
Bash

Python

Git

