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Numerical Linear Algebra Libraries 
•  Generally the most important kernels for scientific computations 
•  Portable, scalable and optimized state-of-the-art software written and 

tested by experts or vendors  
•  Basic Algebraic Calculations : 

–  Basic Linear Algebra Subprograms (BLAS, ATLAS, GOTO, ESSL, MKL) 
•  Dense Matrices Libraries 

–  Linear Algebra Package ( LAPACK, ESSL) 
–  Scalable Linear Algebra Package (ScaLAPACK, PESSL) 

•  Sparse Direct Solvers 
–  www.nersc.gov/~xiaoye/SuperLU :  SuperLU 
–  www.enseeiht.fr/apo/MUMPS :  (MUMPS) 

•  Sparse Matrices Libraries 
–  Portable, Extensible, Toolkit for Scientific Computation (PETSc) 
–  Aztec, Trilinos 

•  ODE – Suite of Nonlinear and Differential/Algebraic equation Solvers 
(SUNDIALS, PVODE) – www.llnl.gov/CASC/sundials 
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Basic Linear Algebra Subprograms (BLAS) 

•  BLAS is a library of standardized basic linear algebra 
computational kernels created to perform efficiently on serial 
computers taking into account the memory hierarchy of modern 
processors. 

•  BLAS1 does vectors-vectors operations. 
•   Saxpy = y(i) = a* x(i) + y(i),  ddot=  x(i) *y(i) 

•  BLAS2 does matrices - vectors operations.  
•  MV : y = A x + b 

•  BLAS3 operates on pairs or triples of matrices.  
–  MM : C = αAB + βC,  Triangular Solve : X = αT-1X 

•  Level3 BLAS is created to take full advantage of the fast cache 
memory. Matrix computations are arranged to operate in block 
fashion. Data residing in cache are reused by small blocks of 
matrices.  
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Basic Linear Algebra Subroutine (BLAS) 

•  BLAS is a library of standardized basic linear algebra computational 
kernels created to perform efficiently on serial computers taking into 
account the memory hierarchy of modern processors. 

 
•  The Level 1 BLAS or BLAS1 operate mostly on vectors or pairs of 

vector. These routines perform O(n) operations, and return either a 
vector or a scalar. Examples are  

–  A saxpy  operation : y(i) = a* x(i) + y(i) 
–  A scaling operation : y (i) = a* x (i) 
–  A dot product :  
 

•  Examples : saxpy, scaling, and dot product  
–  SUBROUTINE SAXPY(N, ALPHA, X, INCX, Y, INCY) 
–  SUBROUTINE SSCAL(N, ALPHA, X, INCX) 
–  SUBROUTINE SDOT(N, X, INCX, Y, INCY) 

sdot x yT
i

n
=

=
∑
1
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BLAS2 

•  The ratio of floating-point operations to data movement is too low to 
achieve effective use of most vector or parallel machines, even scalar 
machines. Thus, Level2 BLAS was designed to optimize reuse of data in 
registers and reduction in memory access. 

 
•  The Level2 BLAS or BLAS2 operate mostly on a matrix (2D array) and 

a vector (or vectors),returning a matrix or a vector. If the array is n-by-
n, O(n^2) operations are performed. Examples are: 

–  Matrix-vector multiplication :  
–  A rank-one update :  
–  A triangular solve :               , where T is a triangular matrix 
 

•  Examples : matrix vector multiplication, rank-one update, and 
triangular solve 

–  SUBROUTINE SGEMV(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, 
INCY) 

–  SUBROUTINE GER(M, N, ALPHA, X, INCX, Y, INCY, A, LDA) 
–  SUBROUTINE TRSV(UPLO, TRANS, DIAG, N, A, LDA, X, INCX) 

y Ax y= +α β

A xy AT= +α
x T x= −1
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BLAS3 

•  In order to maximize the ratio of floating-point operations to memory 
references, Level3 BLAS is create to take full advantage of modern 
computer architecture.  Data residing in cache or local memory are 
reused by breaking up matrixes to smaller blocks. Matrix computations 
are arranged to operate in block fashion. 

 
•  The level3 BLAS or BLAS3 operate on pairs or triples of matrices, 

returning a matrix. Examples are: 
–  Matrix-matrix multiplication :  
–  Multiple triangular solve :                    , where T is a triangular 

matrix, and X is a rectangular matrix 
 

•  Examples : matrix matrix multiplication and multiple triangular solve 
–  SUBROUTINE SGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, 

LDB, BETA, C, LDC) 
–  SUBROUTINE STRSM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, 

LDA, B, LDB) 

C AB C= +α β
X T X= −α 1
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MM Multiplication 

•  Simple MM  - q = average number of flops per memory reference  ~ 2 

= + * 

C(i,j) C(i,j) A(i,1:n) 

B(1:n, j) 

•  Performance of MM can be improved by rearranging the order of 
multiplication indices in column fashion in Fortran (kji) or in row 
fashion in C.   

  

= * B A C i 

j 

i 

k j 

k 

k - j - i  ordering for FORTRAN 
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Block MM 

•  q = f/m = (2*n^3) / ((2*N + 2) * n^2)  ~  n / N , N=1 => q=n/2 
•   If N is equal to 1, the algorithm is ideal. However, N is bounded by the amount 

of fast cache memory. However, N can be taken independently to the size of 
matrix, n.  

•  The optimal value of N = sqrt (size of fast memory / 3 )  

= + * 
Cij Cij Aik 

Bkj 

Cij Cij Aik Bkj = + 
k

n

=
∑
1

* 



JICS 
Joint Institute for Computational 
Science 

7/14/13 Practical Scientific Parallel Computing 11 

ATLAS 

•  Automatically Tuned Linear Algebra Software 
•  It generates a set of optimized linear algebra routines on different 

computer architectures taking the advantages of their specific 
memory hierarchies and pipelined functional units. 

•  In version 3.0, it supports all level of BLAS kernels as well as some 
LAPACK routines. 

•  It also provides interfaces to standard C (need cblas.h) and  
fortran 77. 

•  Prebuilt ATLAS for various computer architectures are readily 
available on the web. 

•  Good for Linux Platform 
•  www.netlib.org/atlas 
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Gausssian Elimination 

Ax = b 
change  A into A = L U 

L 

U 
= A 

so   LUx = b 
first solve   Ly = b   by direct downward solve 

then solve Ux = y  by direct upward solve 
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Gaussian Elimination 

•  For each column i, zero out the element below the diagonal by 
adding multiples of row i to later rows 
   
   for i= 1 to n-1 
                    for j = i+1 to n 
    for k = i to n 
    A(j,k) = A(j,k) - (A(j,i) / A(i,i)) * A(i,k) 

 

0 

0 

0 

0 

0 

0 

….. 0 

After i=1 After i=2 After i=n-1 
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Gaussian Elimination (2) 

(i,i) (i,k) 

(j,i) (j,k) 

column i column k 

row i 

row j 
ACTIVE PART 

A(j,k)=A(j,k)-m*A(i,k) 

•  To improve the implementation, the constant  A(j,i) / A(i,i) is removed from the innermost 
loop. Zeros below the diagonal is ignored 
   
   for i = 1 to n-1 
                    for j = i+1 to n 
    m = A(j,i) / A(i,i) ----> m = A(j,i) 
    for k = i to n 
    A(j,k) = A(j,k) - m * A(i,k) 

 

m = A(j,i) / A(i,i)--->A(j,i) 
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LAPACK (LU) 

•  The inner loop  consists of BLAS1 and one BLAS 2 operations. 
   
  for i = 1 to n-1 
            for j = i+1 to n 
   A(j,I) = A(j,i) / A(i,i)   <------ BLAS1 ( to BLAS2) 
   for k = i+1 to n 
   A(j,k) = A(j,k) - A(j,i)* A(i,k)   <----BLAS2 ( to BLAS3) 

 

= 
(i,i) (i,k) 

(j,i) A
(j,

i) 

A(i,k) 

A(j,k)- 
A(j,i)*A(i,k) 
    (BLAS2) 

(i,i) 

j 

k i A(j,k) 
(update) 

- 

A
(j,

i) A(i,k) * A(j,k) 
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LAPACK GE Block Algorithm 

•  The block size of bk columns will depend on the machine 
architectures. It is generally small enough so that bk columns 
currently used for factorization fit in the fast memory of the 
machine, and bk is also large enough to make matrix matrix 
multiplication perform effectively.  

•  The principle is the same as in the ordinary GE algorithm above. 
Instead of working with one column, A(j,i) or one pivot entry, 
A(I,I), a block of columns and a square block of matrix are used. 
Hence, BLAS1 operations will become  BLAS2 operations, and  
BLAS2 operations will become BLAS3 operation  

 choose a block size bk 
 for ib = 1 , n , bk 
       1)  L U factorize the column block of bk 
       2)  compute the pivoting block of rows 
       3)  update the remaining block of the square matrix 
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LAPACK GE Block Algorithm 

A11 A21 A13 

A21 UU 

LL 
A23 

A31 A32 A33 

ib end 

ib 

end 

bk 

Completed part of U 

C
om

pl
et

ed
 p

ar
t o

f L
 

I) Choose bk 
II) for ib = 1 to n-1 step bk 

  Work the colored 
portion of A 
 1) LU factorize A22+A32 
     A32 <--( UU, LL, A32) 
 2) Update A23 : 
triangular solve 
  (A23) <-- LL \ A23 
 3) Update A33 
 A33 <-- (A33, A23, A32) 

III) Triangular solve for 
unknown 

 

n 

n 

A22 

A(end+1:n , end+1:n) 
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LAPACK GE Algorithm 

          Choose appropriate size for bk  
          for ib = 1 to n-1 step bk 

  point to the end of block of bk columns 
  end = min (ib+bk-1,n) 
  
  for I = ib to end  
        find and record k where 
   |A(k,i) | = max | A(j,i)| 
   if |A(k,i)| = 0, exit with a warning, A is singular 
   if I not equal to k, swap rows of i and k of A 
    A(i+1:n,i) = A(i+1:n,i) /A(i,i) 
     A(i+1:n,I+1:end) = A(i+1:n,i+1:end) - A(i+1:n,i)* A(i,i+1:end) 

 
  Let LL be the bk-by-bk lower triangular matrix whose subdiagonal entries are  
  stored in A(ib:end, ib:end), and with 1s on the diagonal. Do delayed update  
  of A(ib:end , end +1 : n) by solving n-end triangular system 
  A(ib:end,end+1:n) =  LL \ A(ib:end, end+1 : n) 

 
  Do delayed update of the rest of matrix using matrix-matrix multiplication 
  A(end+1:n,end+1:n) = A(end+1:n,end+1:n)-      

                                                                           A(end+1:n,ib:end)*A(ib:end,end+1:n) 



JICS 
Joint Institute for Computational 
Science 

7/14/13 Practical Scientific Parallel Computing 20 

Example (1) 

•  Solve the following system of linear equations 

2 0 -1 1 0 2 
4 1 -3 4 1 4 
0 -1 2 -1 -3 -1 

2 -1 0 0 0 0 

-2 0 2 -2 -3 0 
-2 0 -1 -3 5 0 

= 

18532
03222

32
832

34434
222

5431

5431

21

65432

654321

6431

−=+−−−

=−−+−

=−

=−−−+−

−=+++−+

−=++−

xxxx
xxxx

xx
xxxxx

xxxxxx
xxxx

x1 

x2 
x3 
x4 
x5 
x6 

-2 
-3 
8 
3 
0 

-18 
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Example (2) 

•  Choose the column block size bk = 2, so ib = 1, 3, and 5 
•  For b = 2, ib = 1, n = 6, end = 2 

1) For i = ib to end ( i = 1,2) 
i = 1  a)   A(i+1: n,I) = A( i+1: n, I) / A(i,i) => A(2:6, 1)=A(2:6, 1) / A(1,1)  

  A(i+1:n,i+1:end) = A(i+1:n, i+1:end) - A(i+1:n, I) * A(i, i+1:end) 
      b)  only update columns i+1 (2) to end (2) , so only column 2 
  A(2:6, 2:2) = A(2:6, 2:2) - A(2:6, 1) * A(1, 2:2) 

i = 2 a)  A(3:6, 1) = A(3:6, 1) / A(2, 2),  since A(2,2) = 1 => DONE 
   

4 
0 

2 
-2 
-2 

/ 2 =  

2 
0 

1 
-1 
-1 

1a) 

A(2:6,1) / A(1,1) = A(2:6,1) 

1b) 1 
-1 

-1 
0 
0 

2 
0 

1 
-1 
-1 

0 

- = 

1 
-1 

-1 
0 
0 

A(2:6, 2:2) - A(2:6, 1) * A(1, 2:2)= A(2:6,2) 
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Example (3) 

•  For bk = 2 , n = 6, end = 2, ib=1 
2) Do delayed update of A(ib:end, end+1:n) by solving n-end triangular system 

   A(1:2, 3:6) = LL \  A(1:2, 3:6) 

LL =  
1 0 
2 1 

UU=  2 0 
0 1 

1 0 
2 1 

? ? ? ? 
? ? ? ? 

-1 1 0 2 
-3 4 1 4 = 

LL * new A(1:2, 3:6) = A(1:2, 3:6) 

=>  ? ? ? ? 
? ? ? ? 

 A(1:2, 3:6) = -1 1 0 2 
-1 2 1 0 

= 
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Example (4) 

•  For bk = 2, ib = 1, n = 6, end = 2 
 2) Do delayed update of rest of matrix using matrix-matrix multiplication 
 A(end+1:n, end+1:n) = A(end+1:n, end+1:n) -A(end+1:n, ib:end)  *A(ib:end, end+1:n) 
             A(3:6, 3:6) = A(3:6, 3:6) -A(3:6, 1:2) * A(1:2, 3 : 6) 

 
0 

1 
-1 
-1 

-1 

-1 
0 
0 

-1 1 0 2 
-1 2 1 0 = 

1 1 -2 -1 
0 1 1 -2 

1 -1 -3 2 
-2 -2 -3 2 

2 0 -1 1 0 2 
4 1 -3 4 1 4 
0 -1 2 -1 -3 -1 

2 -1 0 0 0 0 

-2 0 2 -2 -3 0 
-2 0 -1 -3 -3 0 

2 0 -1 1 0 2 
2 1 -1 2 1 0 
0 -1 1 1 -2 -1 

1 -1 0 1 1 -2 

-1 0 1 -1 -3 2 
-1 0 -2 -2 -3 2 

2 -1 -3 -1 
0 0 0 0 

2 -2 -3 0 
-1 -3 -3 0 

- 
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Example (5) 

•  Choose the column block size bk = 2, so ib = 1, 3, and 5 
•  For bk = 2, ib = 3, n = 6, end = 4 

1) For I = ib to end ( I = 3,4) 
i= 3  a)   A(i+1: n, i) = A( i+1: n, i) / A(i,i) => A(4:6, 3)=A(4:6, 3) / A(3,3)  

     b)  only update columns i+1 (4) to end (4) , so only column 4 
  A(i+1:n,i+1:end) = A(i+1:n, i+1:end) - A(i+1:n, i) * A(i, i+1:end) 
   A(4:6, 4:4) = A(4:6, 4:4) - A(4:6, 3) * A(3, 4:4) 

i = 4 a)  A(5:6, 4) = A(5:6, 4) / A(4, 4),   A(4,4) = 1,  => DONE 
   

0 
1 

-2 

/ 1 =  
0 
1 

-2 

1a) 

A(4:6,3) / A(3,3) = A(4:6,3) 

1b) 1 

-1 
-2 

0 
1 

-2 

1 
- 

= 

1 
-2 

0 

-2 

0 

-2 

0 
/ 1 =  2a) A(5:6,4) = A(5:6,4)/A(4,4) 

A(4:6,4)-A(4:6,3) * A(3,4)=A(4:6,4) 
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Example (6) 

•  For bk = 2 , n = 6, end = 2, ib=3 
2) Do delayed update of A(ib:end, end+1:n) by solving n-end triangular 

system 
   A(3:4, 5:6) = LL \  A(3:4, 5:6) 

LL =  
1 0 
0 1 

UU=  1 1 
0 1 

1 0 
0 1 

? ? 
? ? 

= 

LL * new A(3:4, 5:6) = A(3:4, 5:6) 

=>  ? ? 
? ? 

 A(3:4, 5:6) = -2 -1 
1 -2 

= 

-2 -1 
1 -2 
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Example (7) 

•  For bk = 2, ib = 3, n = 6, end = 2 
 2) Do delayed update of rest of matrix using matrix-matrix multiplication 
 A(end+1:n, end+1:n) = A(end+1:n, end+1:n) -A(end+1:n, ib:end)*A(ib:end, end+1:n) 
   A(5:6, 5:6) = A(5:6, 5:6) -A(5:6, 3:4) * A(3:4, 5 : 6) 

 
-2 -1 
1 -2 

1 -2 
-2 0 

-3 2 
-3 2 

- * = 
1 -1 
1 0 

2 0 -1 1 0 2 
4 1 -3 4 1 4 
0 -1 2 -1 -3 -1 

2 -1 0 0 0 0 

-2 0 2 -2 -3 0 
-2 0 -1 -3 -3 0 

2 0 -1 1 0 2 
2 1 -1 2 1 0 
0 -1 1 1 -2 -1 

1 -1 0 1 1 -2 

-1 0 1 -1 -3 2 
-1 0 -2 -2 -3 2 

2 0 -1 1 0 2 
2 1 -1 2 1 0 
0 -1 1 1 -2 -1 

1 -1 0 1 1 -2 

-1 0 1 -2 1 -1 
-1 0 -2 0 1 0 
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Example (8) 

•  For bk = 2, ib = 5, n = 6, end = 6 
1) For i = ib to end ( i = 5,6) 

i= 1  a)   A(i+1: n,i) = A( i+1: n, i) / A(i,i) => A(6, 5)=A(6, 5) / A(5,5)  
     b)  only update columns i+1 (2) to end (2) , so only column 2 
  A(i+1:n, i+1:end) = A(i+1:n, i+1:end) - A(i+1:n, i) * A(i, i+1:end) 
  A(6, 6) = A(6, 6) - A(6, 5) * A(5, 6)= 1    => DONE 
   

2 0 -1 1 0 2 
4 1 -3 4 1 4 
0 -1 2 -1 -3 -1 

2 -1 0 0 0 0 

-2 0 2 -2 -3 0 
-2 0 -1 -3 -3 0 

2 0 -1 1 0 2 
2 1 -1 2 1 0 
0 -1 1 1 -2 -1 

1 -1 0 1 1 -2 

-1 0 1 -1 -3 2 
-1 0 -2 -2 -3 2 

2 0 -1 1 0 2 
2 1 -1 2 1 0 
0 -1 1 1 -2 -1 

1 -1 0 1 1 -2 

-1 0 1 -2 1 -1 
-1 0 -2 0 1 1 
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Example (9) 

= 

2 0 -1 1 0 2 
4 1 -3 4 1 4 
0 -1 2 -1 -3 -1 

2 -1 0 0 0 0 

-2 0 2 -2 -3 0 
-2 0 -1 -3 -3 0 

1 0 0 0 0 0 
2 1 0 0 0 0 
0 -1 1 0 0 0 

1 -1 0 1 0 0 

-1 0 1 -2 1 0 
-1 0 -2 0 1 1 

2 0 -1 1 0 2 
0 1 -1 2 1 0 
0 0 1 1 -2 -1 

0 0 0 1 1 -2 

0 0 0 0 1 -1 
0 0 0 0 0 1 

* 

A L U = * 

Solve Ax = b 
=> L U x = b 

=> L y = b , U x = y 

For  j =  1 to n 
y(j) = b(j) 
for j = 1 to n-1 
y(j) = y(j) / L(j,j) 
     for i = j+1 to n 
     y(i) = y(i) - y(j)*L(i,j) 
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Triangular Solve 
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LAPACK GE Solver 

•  Driver subroutine to compute the solution of a real system of linear 
equations, Ax=b 

•  SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO) 
–  N : The order of the matrix A 
–  NRHS : The number of right hand side, the number of columns of b 
–  A : matrix A, dimension (LDA, N), on entry, the NxN coefficient matrix A, on exit, 

the factors L and U from factorization 
–  LDA : The leading dimension of the array A 
–  IPIV : The pivot indices that define the permutation matrix P 
–  B : On entry, the right hand side of b, on exit, the solution x 
–  LDB : The leading dimension of the array b, 
–  INFO : output info, 0 = successful exit 

•  The DGESV subroutine calls the DGETRF subroutine which does 
the LU factorization and the DGETRS which solves the triangular 
systems. 
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Scalable Linear Algebra Package 
(ScaLAPACK) 

www.netlib.org/scalapack 
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Data Layout 

•  ScaLAPACK is an extension of the LAPACK subroutines to 
perform on distributed memory parallel computers or a network 
of workstations running PVM or/and MPI. 

•   Data layout of matrices on processors will strongly affect the 
performance of an algorithm. There are primarily four ways to 
partition a matrix 

•  Row-wise block or column-wise block partitioning 
•  Row-wise block cyclic or column block cyclic partitioning 
•  2D block block partitioning 
•  2D block cyclic partitioning 
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Data Distribution 

•  Column Blocked Layout:  
–  In this layout, a block of columns of matrix A is stored per processor 

as shown below. 
–  This layout has the same disadvantage of the row-wise stripe partition 

because as soon as the first few columns have completed the 
elimination, the processors storing those columns remain idle for the 
rest of the elimination process. 

•  Column Block Cyclic Layout : 
–  This layout tries to address the problem of load balancing by 

assigning blocks of columns of matrix A to processors in a cyclic 
fashion. However, this layout has the disadvantage that the 
factorization of A(ib:n, ib:end) will take place perhaps in just one 
processor. This would be a serial bottleneck 

Column block Layout Column Block Cyclic layout 
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2D Block Cyclic Layout 

•  The Row and Column (2D) Block Cyclic Layout will be a good 
compromise between the Block and Cyclic Layouts. It will alleviate 
the problem of load balancing and avoid the situation of a serial 
bottleneck. Two dimensional block structures allows efficient 
implementation of BLAS3 update of A(ib;end , end+1:n) 

2D Block Cyclic Layout 
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ScaLAPACK 
(www.netlib.org/scalapack) 

•  ScaLAPACK (version 1.7) is an extension of LAPACK using PVM or MPI 
on parallel computers.   

•  It chooses 2D block cyclic data distribution to optimize BLAS3 operations. 

•  It is composed of LAPACK, BLAS, PBLAS, and BLACS. 

•  The BLACS, Blasic Linear Algebra Communication Subprograms, are a 
message passing library designed for linear algebra. 

•  PBLAS is a set of parallel basic linear algebra subroutines similar to BLAS. 

•  There are four basic steps to call a ScaLAPACK routine. 
–  Initialize the process grid (BLACS) 

–  Distribute the matrix on the process grid (DESCINIT) 

–  Call ScaLAPACK driver routine  

–  Release the process grid (BLACS) 
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Solve a System of Equations 

•  General matrix factorization 
–  call PDGETRF( M, N, A, IA, JA, DESC_A, IPVT, INFO) 

•  General matrix solve 
–  call PDGETRS(TRANSA, N, NRHS, A, IA, JA, DESC_A, IPVT, B, 

IB, JB, ESC_B, INFO) 
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2D Block Cyclic Distribution 

•  Consider an 8 x 8 system 
of linear equations using a 
2D blocked cyclic data 
distribution 

•  Matrix A is first 
decomposed into 2x2 
blocks starting at its upper 
left corner, bk=2. 

•  These blocks are then 
uniformly distributed 
across a 2x2 processor 
grid, nprow = npcol =2. 

•  There are 4 processes in 
the 2D process grid, 
nbrow = nbcol = 2. 
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Data Distribution on Local Processors 
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•  The leading dimension of local 
process grid, LLD, are the same 
(in this case) and is equal to 4 

•  The number of rows of matrix A 
that a process own (in this case) 
is 4. 

•  The number of columns of 
matrix A  that a process own is 4. 

•  Process (0,0) is chosen as the 
process containing the first 
matrix entry in its local memory, 
thus, the process row over which 
the first row of matrix A is 
distributed, RSRC=0,  and 
process column over which the 
first column of matrix A is 
distributed, CSRC=0 



JICS 
Joint Institute for Computational 
Science 

7/14/13 Practical Scientific Parallel Computing 39 

ScaLAPACK GE Subroutine 

•  ScaLAPACK is composed of LAPACK, BLAS, PBLAS, and BLACS. 
•  The BLACS, Blasic Linear Algebra Communication Subprograms, are 

a message passing library designed for linear algebra. 
•  PBLAS is a set of parallel basic linear algebra subroutines similar to 

BLAS. 
•  There are four basic steps to call a ScaLAPACK routine. 

–  Initialize the process grid 
–  Distribute the matrix on the process grid 
–  Call ScaLAPACK driver routine 
–  Release the process grid 

•  BLACS routines are used to initialize the process grid 
•  A ScaLAPACK tools routine, DESCINIT, can be used to distribute the 

matrix layout (or Iinitializes the Descriptor) 
•  A ScaLAPACK routine is called to perform a specific task 
•  A BLACS routine is then used to release the process grid 
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ScaLAPACK GE Algorithm 

  For ib = 1 to n-1 step bk 
   end = min (ib + bk-1, n) 
   For I = ib to end 
   (1) Find pivot row k, column broadcast 
   (2) Swap rows k and I in block column, broadcast row k 
   (3) A(I+1:n, I) = A(I+1:n, I) / A(I, I) 
   (4) A(I+1:n, I+1:n) = A(I+1:n, I+1:n) - A(i+1:n, I)*A(I, I+1:end) 
   end for 
  (5) Broadcast all swap information right and left 
  (6) Apply all rows swaps to other columns 
  (7) Broadcast LL right 
  (8) A(ib:end, end+1:n) = LL \ A(ib:end, end+1:n) 
  (9) Broadcast A(ib:end, end+1:n) down 
  (10) Broadcast A(end+1:n, ib:end) right 
  (11) Eliminate A(end+1:n, end+1:n) 
  end for 
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Distributed GE  (1st sweep) 

ib = 1, bk=2, end = 2, n=8,  
•  Step (1) : pivot is assumed to be the immediate row 
•  Step (2) : i = 1, 2 , Processor 0 to Processor 2  

–  broadcast the pivot row to all processors in the column 
•  Step (3) : i = 1, 2 , Processor 0 and Processor 2  

–  A(2:8, 1) = A(2:8, 1) / A(1,1),  
•  Step (4) : i = 1, Processor 0 and Processor 2 

–  A(2:8, 2) = A(2:8, 2) - A(2:8, 1)*A(1,2)  
•  Step (5) : broadcast all swap information right and left 
•  Step (6) : apply all rows swaps to other columns 
•  Step (7) : Processor 0 to Processor 1 

–  Broadcast  LL right 
•  Step (8) : Processor 0 and Processor 1 

–  A(1:2, 3:8) = LL \ A(1:2, 3:8) 
•  Step (9) : Processor 0 to Processor 2 , Processor 1 to Processor 3 

–  Broadcast A(1:2, 3:8) down 
•  Step (10) : Processor 0 to Processor 1, Processor 2 to Processor 3 

–  Broadcast  A(3:8, 1:2) right 
•  Step (11) : Processor 0, Processor 1, Processor 2, and Processor 3 

–  A(3:8, 3:8) = A(3:8, 3:8) - A(3:8, 1:2) * A(1:2, 3:8) 
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Distributed GE (1st sweep) 

Step (1), (2), (3), (4) Step (7), (8) 

Step (9)  Step (10), (11) 
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Distributed GE (2nd sweep) 

ib = 3, bk=2, end = 4, n=8,  
•  Step (1) : pivot is assumed to be the immediate row 
•  Step (2) : i = 3, 4 , Processor 3 to Processor 1 

–  broadcast the pivot row to all processors in the column,  
•  Step (3) : i = 3, 4 , Processor 1 and Processor 3 

–  A(4:8, 1) = A(4:8, 1) / A(3,3),  
•  Step (4) : i = 3, Processor 1 and Processor 3 

–  A(4:8, 4) = A(4:8, 4) - A(4:8, 3)*A(3, 4)  
•  Step (5) : broadcast all swap information right and left 
•  Step (6) : apply all rows swaps to other columns 
•  Step (7) : Processor 3 to Processor 2 

–  Broadcast  LL right 
•  Step (8) : Processor 2 and Processor 3 

–  A(3:4, 5:8) = LL \ A(3:4, 5:8) 
•  Step (9) : Processor 2 to Processor 0 , Processor 3 to Processor 1 

–  Broadcast A(3:4, 5:8) down 
•  Step (10) : Processor 1 to Processor 0, Processor 3 to Processor 2 

–  Broadcast  A(5:8, 3:4) right 
•  Step (11) : Processor 0, Processor 1, Processor 2, and Processor 3 

–  A(5:8, 5:8) = A(5:8, 5:8) - A(5,8, 3:4) * A(3:4, 5:8) 
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Distributed GE (2nd sweep) 

Step (1), (2), (3), (4) Step (7), (8) 

Step (9)  Step (10), (11) 
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Distributed GE (3rd sweep) 

ib = 5, bk=2,  end = 6, n=8,  
•  Step (1) : pivot is assumed to be the immediate row 
•  Step (2) : i = 5, 6 , Processor 0 to Processor 2  

–  broadcast the pivot row to all processors in the column, broadcast from 
•  Step (3) : i = 5, 6 , Processor 0 and Processor 2  

–  A(6:8, 1) = A(6:8, 5) / A(5,5),  
•  Step (4) : i= 5, Processor 0 and Processor 2 

–  A(6:8, 6) = A(6:8, 6) - A(6:8, 5)*A(5,6)  
•  Step (5) : broadcast all swap information right and left 
•  Step (6) : apply all rows swaps to other columns 
•  Step (7) : Processor 0 to Processor 1 

–  Broadcast  LL right 
•  Step (8) : Processor 0 and Processor 1 

–  A(5:6, 7:8) = LL \ A(5:6, 7:8) 
•  Step (9) :  Processor 1 to Processor 3 

–  Broadcast A(5:6, 7:8) down 
•  Step (10) : Processor 2 to Processor 3 

–  Broadcast  A(7:8, 5:6) right 
•  Step (11) :  Processor 3 

–  A(7:8, 7:8) = A(7:8, 7:8) - A(7:8, 5:6) * A(5:6, 7:8) 
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Distributed GE (3rd sweep) 

Step (1), (2), (3), (4) Step (7), (8) 

Step (9)  Step (10), (11) 
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ScaLAPACK Linear Solver 

•  All global matrices must be distributed on the process grid prior  
•  CALL DESCINIT(DESCA, M, N, MB, NB, RSRC, CSRC, ICTXT, LLDA, INFO) 
•  CALL DESCINIT(DESCB, N, NRHS, NB, NBRHS, RSRC, CSRC, ICTXT, LLDB, INFO) 

Call the solver routine   
•  CALL PDGESV(N,NRHS,A,IA,JA,DESCA,IPIV,B,IB,JB,DESCB,INFO) 
•  CALL PDGETRF,  CALL PDGETRS 

Release the process grid 
•  CALL BLACS_GRIDEXIT(ICONTXT) 
•  CALL BLACS_EXIT(0) 

Data Distribution 

 Process grid initialization 
 CALL BLACS_PINFO(MYID, NPROCS) 

!  Initialize the process grid, obtain system default context 
 CALL BLACS_GET(-1,0,ICTXT) 

!  Map the available processes to a BLACS process grid 
 CALL BLACS_GRIDINIT(ICTXT,’Row-major’,NPROW,NPCOL) 

!  Query the process grid to identify each process’s coordinate, (MYROW, MYCOL) 
 CALL BLACS_GRIDINFO(ICTXT,NPROW,NPCOL,MYROW,MYCOL) 
  



JICS 
Joint Institute for Computational 
Science 

7/14/13 Practical Scientific Parallel Computing 48 

Setting Up ScaLAPACK Linear Solver 

•  A number of BLACS routines are needed to initialize the process grid. 
•  BLACS_PINFO(MYPNUM, NPROCS) 

–  Query the number of processes, NPROCS: the number of processes and process 
identifier, MYPNUM 

•  BLACS_SETUP(MYPNUM, NPROCS) 
–  Same as BLACS_PINFO, only needed for PVM BLACS 

•  BLACS_GET(ICONTXT, WHAT, VAL) 
–  Get default system context (system ID for library reference) 

•  BLACS_GRIDINIT(ICONTEXT, ORDER, NPROW, NPCOL) 
–  This routine assigns the available processes to a BLACS process grid 
–  This routine creates a simple NPROW x NPCOL process grid. This process grid 

will use the first NPROW * NPCOL processes, and assign them to the grid in a 
row- or column natural ordering depending the input value ORDER. 

•  BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL) 
–  Query the process grid to identify each process’s coordinates 
–  MYROW: the calling process’s row coordinate in the process grid 
–  MYCOL : the calling process’s column coordinate in the process grid 
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ScaLAPACK Linear Solver 

!  Initialize the process grid, query for the number of processes allocated 
 CALL BLACS_PINFO(MYID, NPROCS) 
 IF(NPROCS  .LT. 1) THEN 
  NPROCS=NPROCS_WANTED 
  CALL BLACS_SETUP(MYID, NPROCS) 
 END IF 

!  Initialize the process grid, obtain system default context 
 CALL BLACS_GET(-1,0,ICTXT) 

!  Map the available processes to a BLACS process grid 
 CALL BLACS_GRIDINIT(ICTXT,’Row’,NPROW,NPCOL) 

!  Query the process grid to identify each process’s coordinate, (MYROW, 
MYCOL) 
 CALL BLACS_GRIDINFO(ICTXT,NPROW,NPCOL,MYROW,MYCOL) 
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ScaLAPACK Linear Solver 

•  All global matrices must be distributed on the process grid prior to the invocation of a 
ScaLAPACK routine; typical initalization routines are 

•  CALL DESCINIT(DESCA, M, N, MB, NB, RSRC, CSRC, ICTXT, LLDA, INFO) 
•  CALL DESCINIT(DESCB, N, NRHS, NB, NBRHS, RSRC, CSRC, ICTXT, LLDB, INFO) 

Call the ScaLAPACK routine 
•  All ScaLAPACK routines assume that the data has been distributed on the process grid 

prior to the invocation of the routine, typically, solve the linear system AX=B 
•  CALL PDGESV(N,NRHS,A,IA,JA,DESCA,IPIV,B,IB,JB,DESCB,INFO) 

Release the process grid 
•  Free the resources associated with a particular context 
•  CALL BLACS_GRIDEXIT(ICONTXT) 
•  Exit BLACS 
•  CALL BLACS_EXIT(0) 

Data Distribution 



JICS 
Joint Institute for Computational 
Science 

7/14/13 Practical Scientific Parallel Computing 51 

ScaLAPACK Linear Solver 

•  All global matrices must be distributed on the process grid prior  
•  CALL DESCINIT(DESCA, M, N, MB, NB, RSRC, CSRC, ICTXT, LLDA, INFO) 
•  CALL DESCINIT(DESCB, N, NRHS, NB, NBRHS, RSRC, CSRC, ICTXT, LLDB, INFO) 

Call the solver routine   
•  CALL PDGESV(N,NRHS,A,IA,JA,DESCA,IPIV,B,IB,JB,DESCB,INFO) 
•  CALL PDGETRF,  CALL PDGETRS 

Release the process grid 
•  CALL BLACS_GRIDEXIT(ICONTXT) 
•  CALL BLACS_EXIT(0) 

Data Distribution 

 Process grid initialization 
 CALL BLACS_PINFO(MYID, NPROCS) 

!  Initialize the process grid, obtain system default context 
 CALL BLACS_GET(-1,0,ICTXT) 

!  Map the available processes to a BLACS process grid 
 CALL BLACS_GRIDINIT(ICTXT,’Row-major’,NPROW,NPCOL) 

!  Query the process grid to identify each process’s coordinate, (MYROW, MYCOL) 
 CALL BLACS_GRIDINFO(ICTXT,NPROW,NPCOL,MYROW,MYCOL) 
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Storage Schemes of Sparse Matrix 

•  There are a lot of different sparse matrix storage schemes. We will introduce a few  
common types which can be used for general sparse matrix. Sparse storage generally 
consists of several vectors which stores the nonzero values of the matrix and pointers 
of location of the nonzero values. Obviously, the most logical and efficient storage 
scheme for this block tridiagonal matrix will be the Diagonal Storage scheme.  The 
scheme stores the values of the matrix using individual vector array for each diagonal 
and a position pointer relative to the main-diagonal of the matrix. 
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aval(:,1)=(0,0,0,1,1,1) , apos(1)=-3 
aval(:,2)=(0,-4,0,-3,0,-2), apos(2)=-1  
aval(:,3)=(10,9,8,7,6,5), apos(3)=0 
aval(:,4)=(4,0,3,0,2,0), apos(4)=1 
aval(:,5)=(-1,-1,-1,0,0,0), apos(5)=3 
 
Matrix vector product: 
do I=1,N 
     do k=1,5 
     w(I) = w(I) + aval(I,k) * p(I-apos(k)) 
     enddo 
enddo 
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Coordinate Storage Scheme 

•  The Coordinate Storage scheme consists of three vector arrays, one stores 
the nonzero values, one stores the row locations of the nonzero entries, 
and the last one stores the the column locations of the nonzero entries. 
The order of storing the nonzero entries can be arbitrary, however, 
rowwise or columnwise storing orders are used for computing efficiency.  
As can be observed later, storage of one of the location pointer can be 
reduced. 
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Coordinate Storage Scheme: 
aval(I) = (10,4,-1,-4,9,-1,8,3,-1,1,-3,7,1,6,2,1,-2,5) 
irow(I) = (1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6) 
jcol(I) = (1,2,4,1,2,5,3,4,6,1,3,4,2,5,6,3,5,6) 

Matrix vector multiplication 
do i=1,N 
     w(irow(i))=w(irow(i)+aval(i)*p(icol(I)) 
end do 
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Compressed Row and Column Storage Schemes 
•  The Compressed Row Storage (CRS) scheme put the subsequent non-zeros of the 

matrix row in contiguous memory locations. Three vectors are used. One contains the 
values of the nonzero entries (aval), one stores the column number of each nonzero 
entries (icol), and the last one stores the pointers to the first entry of the ith row in 
aval and icol (jprow) 

•  The Compressed column Row Storage (CCS) scheme is identical to CRS scheme 
except the matrix nonzero entries are stored in columnwise fashion. 

•  Due the structural symmetry of the following example, the position indicators of the 
CRS and CCS are the same!    
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Compressed Row Storage: 
aval(I) = (10,4,-1,-4,9,-1,8,3,-1,1,-3,7,1,6,2,1,-2,5) 
icol(I) = (1,2,4,1,2,5,3,4,6,1,3,4,2,5,6,3,5,6) 
jprow(I) = (1,4,7,10,13,16,19) 

Compressed Column Storage: 
aval(I) = (10,-4,1,4,9,1,8,-3,1,-1,3,7,-1,6,-2,-1,2,5) 
jrow(I) = (1,2,4,1,2,5,3,4,6,1,3,4,2,5,6,3,5,6) 
ipcol(I) = (1,4,7,10,13,16,19)) 
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Matrix Vector Product for CRS and CCS 

•  Compressed Row Storage : w=A*p 

do I=1,NROW 
     w(I)=0 
     do j = jprow(I), jprow(I+1) -1   

 w(I) = w(I) + aval(j) * p(icol(j)) 
     end do 
end do 

•  Compressed Row Storage 

Do I=1,NROW 
     w(I)=0 
end do 
do I=1,NCOLUMN 
     do j = ipcol(I), ipcol(I+1) -1   

 w(jrow(j)) = w(jrow(j)) + aval(j) * p(I) 
     end do 
end do 
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Resultant Matrix 

1 

2 
2 

2 
2 

2 

2 
2 

2 
2 

1 

-1 -1 

-1 -1 

-1 -1 

-1 -1 
-1 -1 

-1 -1 

-1 -1 

-1 -1 

-1 -1 

T0 

T1 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

T9 

T10 

= 

100 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

A x b 

Solve A x = b 02

2

=
dx
td

FEM/FD 

P0 

P1 

P2 



JICS 
Joint Institute for Computational 
Science 

7/14/13 Practical Scientific Parallel Computing 58 

CG Algorithm 

i    = 0 
x(0) = 0 
r(0) = b - A*x(0) = b 
φ(0) = rT(0)r(0) 
while (f(i) > tolerance) and (i < maximum iteration) 
do 

 if (i = 0) then p(1) = r(0) 
 else p(i+1) = r(i) + φ(i)*p(i) / φ(i-1) 
 i    = i + 1 
 - matrix-vector multiplication  
 w(i) = A*p(i)   
 - vector dot product  
 α(i) = φ(i-1) / pT(i)*w(i)  
 x(i) = x(i-1) + α(i)*p(i) 
 r(i) = r(i-1) - α(i)*w(i) 
 - vector dot product  
 φ(i) = rT(i)*r(i)    

end while 
x = x(i) 
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CG in Parallel  
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Parallel Kennel - Inner Product 

•  Compute the inner product of two vectors, 
 

•  Blockwise distribution of the vectors is used. Each processor computes a portion of the 
value of the inner product. The result is obtained by summing the partial values together.  
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Parallel Kennel - Matrix  Vector Product 

•  Compute the product of a matrix, A, and a vector, x, y=y+Ax 

•  Matrix A can be distributed to processors with a block-striped partition scheme or a block 
cyclic scheme. Entire vector x will be needed for calculation of y in every processor. Vector 
x may be distributed or duplicated among processors. Each processor compute the value of 
a portion of the matrix vector product The resultant y vector is obtained by summing the 
partial values. 
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Parallel M-V Multiplication 
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Parallel M-V Multiplication 
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PINEAPL & Aztec 

•  Parallel Industrial NumErical Applications and Portable Libraries 
•  Coordinated efforts by NAG with a group of 8 institutions including British 

Aerospace, CERFACS,  Manchester University, Piaggio, Thomson LCR, 
Danish Hydraulic Institute, … 

•  Final version is incorporated as Chapter 11 (F11xxx) of NAG Math Library. 
•  Aztec is a ‘limited freeware’ from Sandia National Laboratory - http://

www.cs.sandia.gov/CRF/aztec1.html 
•  Krylov Subspace Solvers : 

–  Conjugate Gradient (CG) 
–  Generalised Minimal Residual (GMRES) 
–  Conjugate Gradient Square (CGS) 
–  Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) 

•  Preconditioners: 
–  Additive Schwarz 
–  Jacobi, SOR, SSOR 
–  Blocked ILU 
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Aztec Data Storage Schemes – Distributed Modified Sparse  
Row (DMSR) 
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Aztec Example 

 /*-------------- setup grid parameters -----------------*/ 
AZ_processor_info(proc_config); 
/*-------------------- setup data --------------------------*/ 
AZ_transform(proc_config, &external, ibindx_jacb, smata_jacb,  iupdate_locl, 

&update_index, &extern_index, &data_org,  nupdate, NULL, NULL, NULL, NULL, 
AZ_MSR_MATRIX); 

/* -------------------- setup options ----------------------*/ 
 AZ_defaults(options,params); 
options[AZ_solver] = AZ_cg; 
params[AZ_tol] = 0.0000000000001; 
/* -------------------- solve ---------------------------------*/ 
AZ_solve(fsysdq, b, options, params, NULL, ibindx_jacb, 
           NULL, NULL, NULL, smata_jacb, data_org, status, proc_config); 
 
CC_SP         = mpcc 
FC_SP         = mpxlf 
CLIBS_SP   = -lm -lxlf90 /sphome/klwong/Aztec/lib/libaztec.a 
CFLAGS_SP =  –O4 -qstrict -bmaxdata=256000000 
 
% poe exe -procs 3 -infolevel 3  ( llsubmit solve.cmd) 
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The Portable, Extensible, Toolkit for Scientific 
Computation (PETSc) 

Http://www.mcs.anl.gov/petsc/petsc.html 
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PETSc 
(www.mcs.anl.gov/petsc) 

•  PETSc is a suite of data structures and routines that provide the building 
blocks for the solution of large-scale application codes on parallel and serial 
computers 

•  PETSc includes an expanding set of parallel linear and nonlinear equation 
solvers with support routines for numerical solutions of partial differential 
equations on distributed memory machines, clusters of workstations, and non-
uniform memory access shared-memory machines. 

•  It uses the MPI standard for all message passing communication and build on 
efficient basic linear algebra kernels such as BLAS-type operations. It 
supports F77, C, C++, and Fortran 90. 

•  The PETSc distribution contains all source code, installation instructions, a 
users guide, and a collection of examples. 

•  PETSc  is developed and supported by Argonne National Laboratory. 
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Major Components of PETSc 

•  PETSC uses a set of hierarchical tools (mathematical objects) to 
construct a solution procedure in the  PDE problem solving 
environment 

–  Vectors (VEC) 
–  Index sets (IS) 
–  Distributed Arrays (DA)  
–  Matrices (MAT) 
–  Krylov Subspace Solvers (KSP) 
–  Preconditioners (PC) 
–  Linear system solvers (SLES) 
–  Non-linear system solvers (SNES) 
–  Time-stepping methods (TS) 
–  Graphics devices 
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Petsc Components 
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PETSc code User 
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The End 

•  The End! 


