
JICS
Joint Institute for Computational
Science

Linear Algebra Library

Kwai Lam Wong
kwong@utk.edu

Joint Institute for Computational Sciences

University of Tennessee, Knoxville
http://www.jics..utk.edu

Tutorial Workshop

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 2

Contents

•  BLAS
•  LAPACK
•  SCALAPACK
•  Aztec
•  PETSc
•  SuperLU, MUMPS
•  Finite Element example
•  References

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 3

Numerical Linear Algebra Libraries
•  Generally the most important kernels for scientific computations
•  Portable, scalable and optimized state-of-the-art software written and

tested by experts or vendors
•  Basic Algebraic Calculations :

–  Basic Linear Algebra Subprograms (BLAS, ATLAS, GOTO, ESSL, MKL)
•  Dense Matrices Libraries

–  Linear Algebra Package (LAPACK, ESSL)
–  Scalable Linear Algebra Package (ScaLAPACK, PESSL)

•  Sparse Direct Solvers
–  www.nersc.gov/~xiaoye/SuperLU : SuperLU
–  www.enseeiht.fr/apo/MUMPS : (MUMPS)

•  Sparse Matrices Libraries
–  Portable, Extensible, Toolkit for Scientific Computation (PETSc)
–  Aztec, Trilinos

•  ODE – Suite of Nonlinear and Differential/Algebraic equation Solvers
(SUNDIALS, PVODE) – www.llnl.gov/CASC/sundials

JICS
Joint Institute for Computational
Science

Basic Linear Algebra Subprograms
(BLAS)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 5

Basic Linear Algebra Subprograms (BLAS)

•  BLAS is a library of standardized basic linear algebra
computational kernels created to perform efficiently on serial
computers taking into account the memory hierarchy of modern
processors.

•  BLAS1 does vectors-vectors operations.
•  Saxpy = y(i) = a* x(i) + y(i), ddot=  x(i) *y(i)

•  BLAS2 does matrices - vectors operations.
•  MV : y = A x + b

•  BLAS3 operates on pairs or triples of matrices.
–  MM : C = αAB + βC, Triangular Solve : X = αT-1X

•  Level3 BLAS is created to take full advantage of the fast cache
memory. Matrix computations are arranged to operate in block
fashion. Data residing in cache are reused by small blocks of
matrices.

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 6

Basic Linear Algebra Subroutine (BLAS)

•  BLAS is a library of standardized basic linear algebra computational
kernels created to perform efficiently on serial computers taking into
account the memory hierarchy of modern processors.

•  The Level 1 BLAS or BLAS1 operate mostly on vectors or pairs of

vector. These routines perform O(n) operations, and return either a
vector or a scalar. Examples are

–  A saxpy operation : y(i) = a* x(i) + y(i)
–  A scaling operation : y (i) = a* x (i)
–  A dot product :

•  Examples : saxpy, scaling, and dot product
–  SUBROUTINE SAXPY(N, ALPHA, X, INCX, Y, INCY)
–  SUBROUTINE SSCAL(N, ALPHA, X, INCX)
–  SUBROUTINE SDOT(N, X, INCX, Y, INCY)

sdot x yT
i

n
=

=
∑
1

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 7

BLAS2

•  The ratio of floating-point operations to data movement is too low to
achieve effective use of most vector or parallel machines, even scalar
machines. Thus, Level2 BLAS was designed to optimize reuse of data in
registers and reduction in memory access.

•  The Level2 BLAS or BLAS2 operate mostly on a matrix (2D array) and

a vector (or vectors),returning a matrix or a vector. If the array is n-by-
n, O(n^2) operations are performed. Examples are:

–  Matrix-vector multiplication :
–  A rank-one update :
–  A triangular solve : , where T is a triangular matrix

•  Examples : matrix vector multiplication, rank-one update, and
triangular solve

–  SUBROUTINE SGEMV(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y,
INCY)

–  SUBROUTINE GER(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
–  SUBROUTINE TRSV(UPLO, TRANS, DIAG, N, A, LDA, X, INCX)

y Ax y= +α β

A xy AT= +α
x T x= −1

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 8

BLAS3

•  In order to maximize the ratio of floating-point operations to memory
references, Level3 BLAS is create to take full advantage of modern
computer architecture. Data residing in cache or local memory are
reused by breaking up matrixes to smaller blocks. Matrix computations
are arranged to operate in block fashion.

•  The level3 BLAS or BLAS3 operate on pairs or triples of matrices,

returning a matrix. Examples are:
–  Matrix-matrix multiplication :
–  Multiple triangular solve : , where T is a triangular

matrix, and X is a rectangular matrix

•  Examples : matrix matrix multiplication and multiple triangular solve
–  SUBROUTINE SGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B,

LDB, BETA, C, LDC)
–  SUBROUTINE STRSM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A,

LDA, B, LDB)

C AB C= +α β
X T X= −α 1

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 9

MM Multiplication

•  Simple MM - q = average number of flops per memory reference ~ 2

= + *

C(i,j) C(i,j) A(i,1:n)

B(1:n, j)

•  Performance of MM can be improved by rearranging the order of
multiplication indices in column fashion in Fortran (kji) or in row
fashion in C.

= * B A C i

j

i

k j

k

k - j - i ordering for FORTRAN

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 10

Block MM

•  q = f/m = (2*n^3) / ((2*N + 2) * n^2) ~ n / N , N=1 => q=n/2
•  If N is equal to 1, the algorithm is ideal. However, N is bounded by the amount

of fast cache memory. However, N can be taken independently to the size of
matrix, n.

•  The optimal value of N = sqrt (size of fast memory / 3)

= + *
Cij Cij Aik

Bkj

Cij Cij Aik Bkj = +
k

n

=
∑
1

*

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 11

ATLAS

•  Automatically Tuned Linear Algebra Software
•  It generates a set of optimized linear algebra routines on different

computer architectures taking the advantages of their specific
memory hierarchies and pipelined functional units.

•  In version 3.0, it supports all level of BLAS kernels as well as some
LAPACK routines.

•  It also provides interfaces to standard C (need cblas.h) and
fortran 77.

•  Prebuilt ATLAS for various computer architectures are readily
available on the web.

•  Good for Linux Platform
•  www.netlib.org/atlas

JICS
Joint Institute for Computational
Science

Linear Algebra Package
(LAPACK)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 13

Gausssian Elimination

Ax = b
change A into A = L U

L

U
= A

so LUx = b
first solve Ly = b by direct downward solve

then solve Ux = y by direct upward solve

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 14

Gaussian Elimination

•  For each column i, zero out the element below the diagonal by
adding multiples of row i to later rows

 for i= 1 to n-1
 for j = i+1 to n
 for k = i to n
 A(j,k) = A(j,k) - (A(j,i) / A(i,i)) * A(i,k)

0

0

0

0

0

0

….. 0

After i=1 After i=2 After i=n-1

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 15

Gaussian Elimination (2)

(i,i) (i,k)

(j,i) (j,k)

column i column k

row i

row j
ACTIVE PART

A(j,k)=A(j,k)-m*A(i,k)

•  To improve the implementation, the constant A(j,i) / A(i,i) is removed from the innermost
loop. Zeros below the diagonal is ignored

 for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i) / A(i,i) ----> m = A(j,i)
 for k = i to n
 A(j,k) = A(j,k) - m * A(i,k)

m = A(j,i) / A(i,i)--->A(j,i)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 16

LAPACK (LU)

•  The inner loop consists of BLAS1 and one BLAS 2 operations.

 for i = 1 to n-1
 for j = i+1 to n
 A(j,I) = A(j,i) / A(i,i) <------ BLAS1 (to BLAS2)
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i)* A(i,k) <----BLAS2 (to BLAS3)

=
(i,i) (i,k)

(j,i) A
(j,

i)

A(i,k)

A(j,k)-
A(j,i)*A(i,k)
 (BLAS2)

(i,i)

j

k i A(j,k)
(update)

-

A
(j,

i) A(i,k) * A(j,k)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 17

LAPACK GE Block Algorithm

•  The block size of bk columns will depend on the machine
architectures. It is generally small enough so that bk columns
currently used for factorization fit in the fast memory of the
machine, and bk is also large enough to make matrix matrix
multiplication perform effectively.

•  The principle is the same as in the ordinary GE algorithm above.
Instead of working with one column, A(j,i) or one pivot entry,
A(I,I), a block of columns and a square block of matrix are used.
Hence, BLAS1 operations will become BLAS2 operations, and
BLAS2 operations will become BLAS3 operation

 choose a block size bk
 for ib = 1 , n , bk
 1) L U factorize the column block of bk
 2) compute the pivoting block of rows
 3) update the remaining block of the square matrix

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 18

LAPACK GE Block Algorithm

A11 A21 A13

A21 UU

LL
A23

A31 A32 A33

ib end

ib

end

bk

Completed part of U

C
om

pl
et

ed
 p

ar
t o

f L

I) Choose bk
II) for ib = 1 to n-1 step bk

 Work the colored
portion of A
 1) LU factorize A22+A32
 A32 <--(UU, LL, A32)
 2) Update A23 :
triangular solve
 (A23) <-- LL \ A23
 3) Update A33
 A33 <-- (A33, A23, A32)

III) Triangular solve for
unknown

n

n

A22

A(end+1:n , end+1:n)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 19

LAPACK GE Algorithm

 Choose appropriate size for bk
 for ib = 1 to n-1 step bk

 point to the end of block of bk columns
 end = min (ib+bk-1,n)

 for I = ib to end
 find and record k where
 |A(k,i) | = max | A(j,i)|
 if |A(k,i)| = 0, exit with a warning, A is singular
 if I not equal to k, swap rows of i and k of A
 A(i+1:n,i) = A(i+1:n,i) /A(i,i)
 A(i+1:n,I+1:end) = A(i+1:n,i+1:end) - A(i+1:n,i)* A(i,i+1:end)

 Let LL be the bk-by-bk lower triangular matrix whose subdiagonal entries are
 stored in A(ib:end, ib:end), and with 1s on the diagonal. Do delayed update
 of A(ib:end , end +1 : n) by solving n-end triangular system
 A(ib:end,end+1:n) = LL \ A(ib:end, end+1 : n)

 Do delayed update of the rest of matrix using matrix-matrix multiplication
 A(end+1:n,end+1:n) = A(end+1:n,end+1:n)-

 A(end+1:n,ib:end)*A(ib:end,end+1:n)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 20

Example (1)

•  Solve the following system of linear equations

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 5 0

=

18532
03222

32
832

34434
222

5431

5431

21

65432

654321

6431

−=+−−−

=−−+−

=−

=−−−+−

−=+++−+

−=++−

xxxx
xxxx

xx
xxxxx

xxxxxx
xxxx

x1

x2
x3
x4
x5
x6

-2
-3
8
3
0

-18

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 21

Example (2)

•  Choose the column block size bk = 2, so ib = 1, 3, and 5
•  For b = 2, ib = 1, n = 6, end = 2

1) For i = ib to end (i = 1,2)
i = 1 a) A(i+1: n,I) = A(i+1: n, I) / A(i,i) => A(2:6, 1)=A(2:6, 1) / A(1,1)

 A(i+1:n,i+1:end) = A(i+1:n, i+1:end) - A(i+1:n, I) * A(i, i+1:end)
 b) only update columns i+1 (2) to end (2) , so only column 2
 A(2:6, 2:2) = A(2:6, 2:2) - A(2:6, 1) * A(1, 2:2)

i = 2 a) A(3:6, 1) = A(3:6, 1) / A(2, 2), since A(2,2) = 1 => DONE

4
0

2
-2
-2

/ 2 =

2
0

1
-1
-1

1a)

A(2:6,1) / A(1,1) = A(2:6,1)

1b) 1
-1

-1
0
0

2
0

1
-1
-1

0

- =

1
-1

-1
0
0

A(2:6, 2:2) - A(2:6, 1) * A(1, 2:2)= A(2:6,2)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 22

Example (3)

•  For bk = 2 , n = 6, end = 2, ib=1
2) Do delayed update of A(ib:end, end+1:n) by solving n-end triangular system

 A(1:2, 3:6) = LL \ A(1:2, 3:6)

LL =
1 0
2 1

UU= 2 0
0 1

1 0
2 1

? ? ? ?
? ? ? ?

-1 1 0 2
-3 4 1 4 =

LL * new A(1:2, 3:6) = A(1:2, 3:6)

=> ? ? ? ?
? ? ? ?

 A(1:2, 3:6) = -1 1 0 2
-1 2 1 0

=

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 23

Example (4)

•  For bk = 2, ib = 1, n = 6, end = 2
 2) Do delayed update of rest of matrix using matrix-matrix multiplication
 A(end+1:n, end+1:n) = A(end+1:n, end+1:n) -A(end+1:n, ib:end) *A(ib:end, end+1:n)
 A(3:6, 3:6) = A(3:6, 3:6) -A(3:6, 1:2) * A(1:2, 3 : 6)

0

1
-1
-1

-1

-1
0
0

-1 1 0 2
-1 2 1 0 =

1 1 -2 -1
0 1 1 -2

1 -1 -3 2
-2 -2 -3 2

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 -3 0

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -1 -3 2
-1 0 -2 -2 -3 2

2 -1 -3 -1
0 0 0 0

2 -2 -3 0
-1 -3 -3 0

-

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 24

Example (5)

•  Choose the column block size bk = 2, so ib = 1, 3, and 5
•  For bk = 2, ib = 3, n = 6, end = 4

1) For I = ib to end (I = 3,4)
i= 3 a) A(i+1: n, i) = A(i+1: n, i) / A(i,i) => A(4:6, 3)=A(4:6, 3) / A(3,3)

 b) only update columns i+1 (4) to end (4) , so only column 4
 A(i+1:n,i+1:end) = A(i+1:n, i+1:end) - A(i+1:n, i) * A(i, i+1:end)
 A(4:6, 4:4) = A(4:6, 4:4) - A(4:6, 3) * A(3, 4:4)

i = 4 a) A(5:6, 4) = A(5:6, 4) / A(4, 4), A(4,4) = 1, => DONE

0
1

-2

/ 1 =
0
1

-2

1a)

A(4:6,3) / A(3,3) = A(4:6,3)

1b) 1

-1
-2

0
1

-2

1
-

=

1
-2

0

-2

0

-2

0
/ 1 = 2a) A(5:6,4) = A(5:6,4)/A(4,4)

A(4:6,4)-A(4:6,3) * A(3,4)=A(4:6,4)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 25

Example (6)

•  For bk = 2 , n = 6, end = 2, ib=3
2) Do delayed update of A(ib:end, end+1:n) by solving n-end triangular

system
 A(3:4, 5:6) = LL \ A(3:4, 5:6)

LL =
1 0
0 1

UU= 1 1
0 1

1 0
0 1

? ?
? ?

=

LL * new A(3:4, 5:6) = A(3:4, 5:6)

=> ? ?
? ?

 A(3:4, 5:6) = -2 -1
1 -2

=

-2 -1
1 -2

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 26

Example (7)

•  For bk = 2, ib = 3, n = 6, end = 2
 2) Do delayed update of rest of matrix using matrix-matrix multiplication
 A(end+1:n, end+1:n) = A(end+1:n, end+1:n) -A(end+1:n, ib:end)*A(ib:end, end+1:n)
 A(5:6, 5:6) = A(5:6, 5:6) -A(5:6, 3:4) * A(3:4, 5 : 6)

-2 -1
1 -2

1 -2
-2 0

-3 2
-3 2

- * =
1 -1
1 0

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 -3 0

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -1 -3 2
-1 0 -2 -2 -3 2

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -2 1 -1
-1 0 -2 0 1 0

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 27

Example (8)

•  For bk = 2, ib = 5, n = 6, end = 6
1) For i = ib to end (i = 5,6)

i= 1 a) A(i+1: n,i) = A(i+1: n, i) / A(i,i) => A(6, 5)=A(6, 5) / A(5,5)
 b) only update columns i+1 (2) to end (2) , so only column 2
 A(i+1:n, i+1:end) = A(i+1:n, i+1:end) - A(i+1:n, i) * A(i, i+1:end)
 A(6, 6) = A(6, 6) - A(6, 5) * A(5, 6)= 1 => DONE

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 -3 0

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -1 -3 2
-1 0 -2 -2 -3 2

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -2 1 -1
-1 0 -2 0 1 1

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 28

Example (9)

=

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 -3 0

1 0 0 0 0 0
2 1 0 0 0 0
0 -1 1 0 0 0

1 -1 0 1 0 0

-1 0 1 -2 1 0
-1 0 -2 0 1 1

2 0 -1 1 0 2
0 1 -1 2 1 0
0 0 1 1 -2 -1

0 0 0 1 1 -2

0 0 0 0 1 -1
0 0 0 0 0 1

*

A L U = *

Solve Ax = b
=> L U x = b

=> L y = b , U x = y

For j = 1 to n
y(j) = b(j)
for j = 1 to n-1
y(j) = y(j) / L(j,j)
 for i = j+1 to n
 y(i) = y(i) - y(j)*L(i,j)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 29

Triangular Solve

-2
-3
8
3
0
-18

-2
-3
8
3
0
-18

-2
1
8
5
-2
-20

-2
1
8
5
-2
-20

-2
1
9
6
-2
-20

-2
1
9
6
-2

-20

-2
1
9
6

-11
-2

-2
1
9
6

-11
-2

-2

1
9
6
1

-2

-2
1
9
6
1

-2

-2
1
9
6
1

 -3

-2
1
9
6
1

 -3

b 1) y 2) y 3) y 4) y 5) y 6) y 7) y 8) y 9) y 10) y 11) y

1
-1
0
2
-2
-3

2
-1
0
2
-2
-3

2
-1
0
2
-2
-3

 2
-1
0
2
-2
-3

 2
-1
0
2
-2
-3

 2
-1
0
2
-2
-3

4
3
2
2

-2
-3

2

4
3
2

-2
-3

4

1
6
0
-2
-3

4
1
6
0
-2

-3

-2
1
9
6
1
-3

-2
1
9
6
1

-3

x 11) x 10) x 9) x 8) x 7) x 6) x 5) x 4) x 3) x 2) x 1) x

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 30

LAPACK GE Solver

•  Driver subroutine to compute the solution of a real system of linear
equations, Ax=b

•  SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
–  N : The order of the matrix A
–  NRHS : The number of right hand side, the number of columns of b
–  A : matrix A, dimension (LDA, N), on entry, the NxN coefficient matrix A, on exit,

the factors L and U from factorization
–  LDA : The leading dimension of the array A
–  IPIV : The pivot indices that define the permutation matrix P
–  B : On entry, the right hand side of b, on exit, the solution x
–  LDB : The leading dimension of the array b,
–  INFO : output info, 0 = successful exit

•  The DGESV subroutine calls the DGETRF subroutine which does
the LU factorization and the DGETRS which solves the triangular
systems.

JICS
Joint Institute for Computational
Science

Scalable Linear Algebra Package
(ScaLAPACK)

www.netlib.org/scalapack

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 32

Data Layout

•  ScaLAPACK is an extension of the LAPACK subroutines to
perform on distributed memory parallel computers or a network
of workstations running PVM or/and MPI.

•  Data layout of matrices on processors will strongly affect the
performance of an algorithm. There are primarily four ways to
partition a matrix

•  Row-wise block or column-wise block partitioning
•  Row-wise block cyclic or column block cyclic partitioning
•  2D block block partitioning
•  2D block cyclic partitioning

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 33

Data Distribution

•  Column Blocked Layout:
–  In this layout, a block of columns of matrix A is stored per processor

as shown below.
–  This layout has the same disadvantage of the row-wise stripe partition

because as soon as the first few columns have completed the
elimination, the processors storing those columns remain idle for the
rest of the elimination process.

•  Column Block Cyclic Layout :
–  This layout tries to address the problem of load balancing by

assigning blocks of columns of matrix A to processors in a cyclic
fashion. However, this layout has the disadvantage that the
factorization of A(ib:n, ib:end) will take place perhaps in just one
processor. This would be a serial bottleneck

Column block Layout Column Block Cyclic layout

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 34

2D Block Cyclic Layout

•  The Row and Column (2D) Block Cyclic Layout will be a good
compromise between the Block and Cyclic Layouts. It will alleviate
the problem of load balancing and avoid the situation of a serial
bottleneck. Two dimensional block structures allows efficient
implementation of BLAS3 update of A(ib;end , end+1:n)

2D Block Cyclic Layout

0 0 0

0 0 0

0 0 0

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

3 3 3

3 3 3

3 3 3

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 35

ScaLAPACK
(www.netlib.org/scalapack)

•  ScaLAPACK (version 1.7) is an extension of LAPACK using PVM or MPI
on parallel computers.

•  It chooses 2D block cyclic data distribution to optimize BLAS3 operations.

•  It is composed of LAPACK, BLAS, PBLAS, and BLACS.

•  The BLACS, Blasic Linear Algebra Communication Subprograms, are a
message passing library designed for linear algebra.

•  PBLAS is a set of parallel basic linear algebra subroutines similar to BLAS.

•  There are four basic steps to call a ScaLAPACK routine.
–  Initialize the process grid (BLACS)

–  Distribute the matrix on the process grid (DESCINIT)

–  Call ScaLAPACK driver routine

–  Release the process grid (BLACS)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 36

Solve a System of Equations

•  General matrix factorization
–  call PDGETRF(M, N, A, IA, JA, DESC_A, IPVT, INFO)

•  General matrix solve
–  call PDGETRS(TRANSA, N, NRHS, A, IA, JA, DESC_A, IPVT, B,

IB, JB, ESC_B, INFO)

1
1

18532
03222

32
832

34434
222

8

7

5431

5431

21

65432

654321

6431

=

=

−=+−−−

=−−+−

=−

=−−−+−

−=+++−+

−=++−

x
x

xxxx
xxxx

xx
xxxxx

xxxxxx
xxxx

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 37

2D Block Cyclic Distribution

•  Consider an 8 x 8 system
of linear equations using a
2D blocked cyclic data
distribution

•  Matrix A is first
decomposed into 2x2
blocks starting at its upper
left corner, bk=2.

•  These blocks are then
uniformly distributed
across a 2x2 processor
grid, nprow = npcol =2.

•  There are 4 processes in
the 2D process grid,
nbrow = nbcol = 2.

A(1,1)
2

A(1,2)
0

A(1,3)
-1

A(1,4)
1

A(1,5)
0

A(1,6)
2

A(2,1)
4

A(2,2)
1

A(2,3)
-3

A(2,4)
4

A(2,5)
1

A(2,6)
4

A(3,1)
0

A(3,2)
-1

A(3,3)
2

A(3,4)
-1

A(3,5)
-3

A(3,6)
-1

A(4,1)
2

A(4,2
)
-1

A(4,3
)
0

A(4,4
)
0

A(4,5)
0

A(4,6
)
0

A(5,1)
-2

A(5,2
)
0

A(5,3)
2

A(5,4
)
-2

A(5,5
)
-3

A(5,6
)
0

A(6,1)
-2

A(6,2
)
0

A(6,3
)
-1

A(6,4)
-3

A(6,5)
5

A(6,6
)
0

A(1,7)
0

A(1,8)
0

A(2,7)
0

A(2,8)
0

A(3,7)
0

A(3,8)
0

A(4,7)
0

A(4,8
)
0

A(5,7)
0

A5,8)
0

A6,7)
0

A6,8)
0

A(7,7)
1

A(7,8)
0

A(8,7)
0

A(8,8
)
1

A(7,1)
0

A(7,2)
0

A(7,3)
0

A(7,4)
0

A(7,5)
0

A(7,6)
0

A(8,1)
0

A(8,2
)
0

A(8,3
)
0

A(8,4
)
0

A(8,5)
0

A8,6)
0

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 38

Data Distribution on Local Processors

A(1,1)
2

A(1,2)
0

A(1,5)
0

A(2,1)
4

A(2,2)
1

A(2,5)
1

A(5,1)
-2

A(5,2)
0

A(5,5)
-3

A(1,3)
-1

A(1,4)
1

A(1,7)
0

A(2,3)
-3

A(2,4)
4

A(2,7)
0

A(5,3)
2

A(5,4)
-2

A(5,7)
0

A(3,1)
0

A(3,2)
-1

A(3,5)
-3

A(4,1)
2

A(4,2)
-1

A(4,5)
0

A(7,1)
0

A(7,2)
0

A(7,5)
0

A(3,3)
2

A(3,4)
-1

A(3,7)
0

A(4,3)
0

A(4,4)
0

A(4,7)
0

A(7,3)
0

A(7,4)
0

A(7,7)
1

Process grid (0,0) Process grid (0,1)

Process grid (1,0) Process grid (1,1)

A(16)
2

A(2,6)
4

A(5,6)
0

A(6,1)
-2

A(6,3)
0

A(6,5)
5

A(6,6)
-3

A(1,8)
0

A(2,8)
0

A(5,8)
0

A(6,3)
-1

A(6,4)
3

A(6,7)
0

A(5,8)
0

A(3,6)
-1

A(4,6)
0

A(7,6)
0

A(8,1)
0

A(8,2)
0

A(8,5)
0

A(8,6)
0

A(3,8)
0

A(4,8)
0

A(7,8)
0

A(8,3)
0

A(8,4)
0

A(8,7)
0

A(8,8)
1

•  The leading dimension of local
process grid, LLD, are the same
(in this case) and is equal to 4

•  The number of rows of matrix A
that a process own (in this case)
is 4.

•  The number of columns of
matrix A that a process own is 4.

•  Process (0,0) is chosen as the
process containing the first
matrix entry in its local memory,
thus, the process row over which
the first row of matrix A is
distributed, RSRC=0, and
process column over which the
first column of matrix A is
distributed, CSRC=0

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 39

ScaLAPACK GE Subroutine

•  ScaLAPACK is composed of LAPACK, BLAS, PBLAS, and BLACS.
•  The BLACS, Blasic Linear Algebra Communication Subprograms, are

a message passing library designed for linear algebra.
•  PBLAS is a set of parallel basic linear algebra subroutines similar to

BLAS.
•  There are four basic steps to call a ScaLAPACK routine.

–  Initialize the process grid
–  Distribute the matrix on the process grid
–  Call ScaLAPACK driver routine
–  Release the process grid

•  BLACS routines are used to initialize the process grid
•  A ScaLAPACK tools routine, DESCINIT, can be used to distribute the

matrix layout (or Iinitializes the Descriptor)
•  A ScaLAPACK routine is called to perform a specific task
•  A BLACS routine is then used to release the process grid

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 40

ScaLAPACK GE Algorithm

 For ib = 1 to n-1 step bk
 end = min (ib + bk-1, n)
 For I = ib to end
 (1) Find pivot row k, column broadcast
 (2) Swap rows k and I in block column, broadcast row k
 (3) A(I+1:n, I) = A(I+1:n, I) / A(I, I)
 (4) A(I+1:n, I+1:n) = A(I+1:n, I+1:n) - A(i+1:n, I)*A(I, I+1:end)
 end for
 (5) Broadcast all swap information right and left
 (6) Apply all rows swaps to other columns
 (7) Broadcast LL right
 (8) A(ib:end, end+1:n) = LL \ A(ib:end, end+1:n)
 (9) Broadcast A(ib:end, end+1:n) down
 (10) Broadcast A(end+1:n, ib:end) right
 (11) Eliminate A(end+1:n, end+1:n)
 end for

A
ll

pr
oc

es
so

rs
 p

er
fo

rm
 si

m
ul

ta
ne

ou
sl

y

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 41

Distributed GE (1st sweep)

ib = 1, bk=2, end = 2, n=8,
•  Step (1) : pivot is assumed to be the immediate row
•  Step (2) : i = 1, 2 , Processor 0 to Processor 2

–  broadcast the pivot row to all processors in the column
•  Step (3) : i = 1, 2 , Processor 0 and Processor 2

–  A(2:8, 1) = A(2:8, 1) / A(1,1),
•  Step (4) : i = 1, Processor 0 and Processor 2

–  A(2:8, 2) = A(2:8, 2) - A(2:8, 1)*A(1,2)
•  Step (5) : broadcast all swap information right and left
•  Step (6) : apply all rows swaps to other columns
•  Step (7) : Processor 0 to Processor 1

–  Broadcast LL right
•  Step (8) : Processor 0 and Processor 1

–  A(1:2, 3:8) = LL \ A(1:2, 3:8)
•  Step (9) : Processor 0 to Processor 2 , Processor 1 to Processor 3

–  Broadcast A(1:2, 3:8) down
•  Step (10) : Processor 0 to Processor 1, Processor 2 to Processor 3

–  Broadcast A(3:8, 1:2) right
•  Step (11) : Processor 0, Processor 1, Processor 2, and Processor 3

–  A(3:8, 3:8) = A(3:8, 3:8) - A(3:8, 1:2) * A(1:2, 3:8)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 42

Distributed GE (1st sweep)

Step (1), (2), (3), (4) Step (7), (8)

Step (9) Step (10), (11)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 43

Distributed GE (2nd sweep)

ib = 3, bk=2, end = 4, n=8,
•  Step (1) : pivot is assumed to be the immediate row
•  Step (2) : i = 3, 4 , Processor 3 to Processor 1

–  broadcast the pivot row to all processors in the column,
•  Step (3) : i = 3, 4 , Processor 1 and Processor 3

–  A(4:8, 1) = A(4:8, 1) / A(3,3),
•  Step (4) : i = 3, Processor 1 and Processor 3

–  A(4:8, 4) = A(4:8, 4) - A(4:8, 3)*A(3, 4)
•  Step (5) : broadcast all swap information right and left
•  Step (6) : apply all rows swaps to other columns
•  Step (7) : Processor 3 to Processor 2

–  Broadcast LL right
•  Step (8) : Processor 2 and Processor 3

–  A(3:4, 5:8) = LL \ A(3:4, 5:8)
•  Step (9) : Processor 2 to Processor 0 , Processor 3 to Processor 1

–  Broadcast A(3:4, 5:8) down
•  Step (10) : Processor 1 to Processor 0, Processor 3 to Processor 2

–  Broadcast A(5:8, 3:4) right
•  Step (11) : Processor 0, Processor 1, Processor 2, and Processor 3

–  A(5:8, 5:8) = A(5:8, 5:8) - A(5,8, 3:4) * A(3:4, 5:8)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 44

Distributed GE (2nd sweep)

Step (1), (2), (3), (4) Step (7), (8)

Step (9) Step (10), (11)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 45

Distributed GE (3rd sweep)

ib = 5, bk=2, end = 6, n=8,
•  Step (1) : pivot is assumed to be the immediate row
•  Step (2) : i = 5, 6 , Processor 0 to Processor 2

–  broadcast the pivot row to all processors in the column, broadcast from
•  Step (3) : i = 5, 6 , Processor 0 and Processor 2

–  A(6:8, 1) = A(6:8, 5) / A(5,5),
•  Step (4) : i= 5, Processor 0 and Processor 2

–  A(6:8, 6) = A(6:8, 6) - A(6:8, 5)*A(5,6)
•  Step (5) : broadcast all swap information right and left
•  Step (6) : apply all rows swaps to other columns
•  Step (7) : Processor 0 to Processor 1

–  Broadcast LL right
•  Step (8) : Processor 0 and Processor 1

–  A(5:6, 7:8) = LL \ A(5:6, 7:8)
•  Step (9) : Processor 1 to Processor 3

–  Broadcast A(5:6, 7:8) down
•  Step (10) : Processor 2 to Processor 3

–  Broadcast A(7:8, 5:6) right
•  Step (11) : Processor 3

–  A(7:8, 7:8) = A(7:8, 7:8) - A(7:8, 5:6) * A(5:6, 7:8)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 46

Distributed GE (3rd sweep)

Step (1), (2), (3), (4) Step (7), (8)

Step (9) Step (10), (11)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 47

ScaLAPACK Linear Solver

•  All global matrices must be distributed on the process grid prior
•  CALL DESCINIT(DESCA, M, N, MB, NB, RSRC, CSRC, ICTXT, LLDA, INFO)
•  CALL DESCINIT(DESCB, N, NRHS, NB, NBRHS, RSRC, CSRC, ICTXT, LLDB, INFO)

Call the solver routine
•  CALL PDGESV(N,NRHS,A,IA,JA,DESCA,IPIV,B,IB,JB,DESCB,INFO)
•  CALL PDGETRF, CALL PDGETRS

Release the process grid
•  CALL BLACS_GRIDEXIT(ICONTXT)
•  CALL BLACS_EXIT(0)

Data Distribution

 Process grid initialization
 CALL BLACS_PINFO(MYID, NPROCS)

! Initialize the process grid, obtain system default context
 CALL BLACS_GET(-1,0,ICTXT)

! Map the available processes to a BLACS process grid
 CALL BLACS_GRIDINIT(ICTXT,’Row-major’,NPROW,NPCOL)

! Query the process grid to identify each process’s coordinate, (MYROW, MYCOL)
 CALL BLACS_GRIDINFO(ICTXT,NPROW,NPCOL,MYROW,MYCOL)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 48

Setting Up ScaLAPACK Linear Solver

•  A number of BLACS routines are needed to initialize the process grid.
•  BLACS_PINFO(MYPNUM, NPROCS)

–  Query the number of processes, NPROCS: the number of processes and process
identifier, MYPNUM

•  BLACS_SETUP(MYPNUM, NPROCS)
–  Same as BLACS_PINFO, only needed for PVM BLACS

•  BLACS_GET(ICONTXT, WHAT, VAL)
–  Get default system context (system ID for library reference)

•  BLACS_GRIDINIT(ICONTEXT, ORDER, NPROW, NPCOL)
–  This routine assigns the available processes to a BLACS process grid
–  This routine creates a simple NPROW x NPCOL process grid. This process grid

will use the first NPROW * NPCOL processes, and assign them to the grid in a
row- or column natural ordering depending the input value ORDER.

•  BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
–  Query the process grid to identify each process’s coordinates
–  MYROW: the calling process’s row coordinate in the process grid
–  MYCOL : the calling process’s column coordinate in the process grid

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 49

ScaLAPACK Linear Solver

! Initialize the process grid, query for the number of processes allocated
 CALL BLACS_PINFO(MYID, NPROCS)
 IF(NPROCS .LT. 1) THEN
 NPROCS=NPROCS_WANTED
 CALL BLACS_SETUP(MYID, NPROCS)
 END IF

! Initialize the process grid, obtain system default context
 CALL BLACS_GET(-1,0,ICTXT)

! Map the available processes to a BLACS process grid
 CALL BLACS_GRIDINIT(ICTXT,’Row’,NPROW,NPCOL)

! Query the process grid to identify each process’s coordinate, (MYROW,
MYCOL)
 CALL BLACS_GRIDINFO(ICTXT,NPROW,NPCOL,MYROW,MYCOL)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 50

ScaLAPACK Linear Solver

•  All global matrices must be distributed on the process grid prior to the invocation of a
ScaLAPACK routine; typical initalization routines are

•  CALL DESCINIT(DESCA, M, N, MB, NB, RSRC, CSRC, ICTXT, LLDA, INFO)
•  CALL DESCINIT(DESCB, N, NRHS, NB, NBRHS, RSRC, CSRC, ICTXT, LLDB, INFO)

Call the ScaLAPACK routine
•  All ScaLAPACK routines assume that the data has been distributed on the process grid

prior to the invocation of the routine, typically, solve the linear system AX=B
•  CALL PDGESV(N,NRHS,A,IA,JA,DESCA,IPIV,B,IB,JB,DESCB,INFO)

Release the process grid
•  Free the resources associated with a particular context
•  CALL BLACS_GRIDEXIT(ICONTXT)
•  Exit BLACS
•  CALL BLACS_EXIT(0)

Data Distribution

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 51

ScaLAPACK Linear Solver

•  All global matrices must be distributed on the process grid prior
•  CALL DESCINIT(DESCA, M, N, MB, NB, RSRC, CSRC, ICTXT, LLDA, INFO)
•  CALL DESCINIT(DESCB, N, NRHS, NB, NBRHS, RSRC, CSRC, ICTXT, LLDB, INFO)

Call the solver routine
•  CALL PDGESV(N,NRHS,A,IA,JA,DESCA,IPIV,B,IB,JB,DESCB,INFO)
•  CALL PDGETRF, CALL PDGETRS

Release the process grid
•  CALL BLACS_GRIDEXIT(ICONTXT)
•  CALL BLACS_EXIT(0)

Data Distribution

 Process grid initialization
 CALL BLACS_PINFO(MYID, NPROCS)

! Initialize the process grid, obtain system default context
 CALL BLACS_GET(-1,0,ICTXT)

! Map the available processes to a BLACS process grid
 CALL BLACS_GRIDINIT(ICTXT,’Row-major’,NPROW,NPCOL)

! Query the process grid to identify each process’s coordinate, (MYROW, MYCOL)
 CALL BLACS_GRIDINFO(ICTXT,NPROW,NPCOL,MYROW,MYCOL)

JICS
Joint Institute for Computational
Science

Libraries for Sparse Matrices

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 53

Storage Schemes of Sparse Matrix

•  There are a lot of different sparse matrix storage schemes. We will introduce a few
common types which can be used for general sparse matrix. Sparse storage generally
consists of several vectors which stores the nonzero values of the matrix and pointers
of location of the nonzero values. Obviously, the most logical and efficient storage
scheme for this block tridiagonal matrix will be the Diagonal Storage scheme. The
scheme stores the values of the matrix using individual vector array for each diagonal
and a position pointer relative to the main-diagonal of the matrix.

10

9

8

7

6

5

4

3

0

0
2

-4

0

-3

0

-2

-1
-1

-1

1

1

1

aval(:,1)=(0,0,0,1,1,1) , apos(1)=-3
aval(:,2)=(0,-4,0,-3,0,-2), apos(2)=-1
aval(:,3)=(10,9,8,7,6,5), apos(3)=0
aval(:,4)=(4,0,3,0,2,0), apos(4)=1
aval(:,5)=(-1,-1,-1,0,0,0), apos(5)=3

Matrix vector product:
do I=1,N
 do k=1,5
 w(I) = w(I) + aval(I,k) * p(I-apos(k))
 enddo
enddo

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 54

Coordinate Storage Scheme

•  The Coordinate Storage scheme consists of three vector arrays, one stores
the nonzero values, one stores the row locations of the nonzero entries,
and the last one stores the the column locations of the nonzero entries.
The order of storing the nonzero entries can be arbitrary, however,
rowwise or columnwise storing orders are used for computing efficiency.
As can be observed later, storage of one of the location pointer can be
reduced.

10

9

8

7

6

5

4

3

0

0
2

-4

0

-3

0

-2

-1
-1

-1

1

1

1

Coordinate Storage Scheme:
aval(I) = (10,4,-1,-4,9,-1,8,3,-1,1,-3,7,1,6,2,1,-2,5)
irow(I) = (1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6)
jcol(I) = (1,2,4,1,2,5,3,4,6,1,3,4,2,5,6,3,5,6)

Matrix vector multiplication
do i=1,N
 w(irow(i))=w(irow(i)+aval(i)*p(icol(I))
end do

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 55

Compressed Row and Column Storage Schemes
•  The Compressed Row Storage (CRS) scheme put the subsequent non-zeros of the

matrix row in contiguous memory locations. Three vectors are used. One contains the
values of the nonzero entries (aval), one stores the column number of each nonzero
entries (icol), and the last one stores the pointers to the first entry of the ith row in
aval and icol (jprow)

•  The Compressed column Row Storage (CCS) scheme is identical to CRS scheme
except the matrix nonzero entries are stored in columnwise fashion.

•  Due the structural symmetry of the following example, the position indicators of the
CRS and CCS are the same!

10

9

8

7

6

5

4

3

0

0
2

-4

0

-3

0

-2

-1
-1

-1

1

1

1

Compressed Row Storage:
aval(I) = (10,4,-1,-4,9,-1,8,3,-1,1,-3,7,1,6,2,1,-2,5)
icol(I) = (1,2,4,1,2,5,3,4,6,1,3,4,2,5,6,3,5,6)
jprow(I) = (1,4,7,10,13,16,19)

Compressed Column Storage:
aval(I) = (10,-4,1,4,9,1,8,-3,1,-1,3,7,-1,6,-2,-1,2,5)
jrow(I) = (1,2,4,1,2,5,3,4,6,1,3,4,2,5,6,3,5,6)
ipcol(I) = (1,4,7,10,13,16,19))

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 56

Matrix Vector Product for CRS and CCS

•  Compressed Row Storage : w=A*p

do I=1,NROW
 w(I)=0
 do j = jprow(I), jprow(I+1) -1

 w(I) = w(I) + aval(j) * p(icol(j))
 end do
end do

•  Compressed Row Storage

Do I=1,NROW
 w(I)=0
end do
do I=1,NCOLUMN
 do j = ipcol(I), ipcol(I+1) -1

 w(jrow(j)) = w(jrow(j)) + aval(j) * p(I)
 end do
end do

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 57

Resultant Matrix

1

2
2

2
2

2

2
2

2
2

1

-1 -1

-1 -1

-1 -1

-1 -1
-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

T0

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

=

100

0

0

0

0

0

0

0

0

0
0

A x b

Solve A x = b 02

2

=
dx
td

FEM/FD

P0

P1

P2

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 58

CG Algorithm

i = 0
x(0) = 0
r(0) = b - A*x(0) = b
φ(0) = rT(0)r(0)
while (f(i) > tolerance) and (i < maximum iteration)
do

 if (i = 0) then p(1) = r(0)
 else p(i+1) = r(i) + φ(i)*p(i) / φ(i-1)
 i = i + 1
 - matrix-vector multiplication
 w(i) = A*p(i)
 - vector dot product
 α(i) = φ(i-1) / pT(i)*w(i)
 x(i) = x(i-1) + α(i)*p(i)
 r(i) = r(i-1) - α(i)*w(i)
 - vector dot product
 φ(i) = rT(i)*r(i)

end while
x = x(i)

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 59

CG in Parallel

100C 0C
0 1 2 3 4 5 6 7 8 9 10

Processor 0 Processor 2

Processor 1

k
T
kk

k
T
kk

kk

rr
wp

Apw

=

=

=

φ

β
k

T
kk

k
T
kk

kk

rr
wp

Apw

=

=

=

φ

β

k
T
kk

k
T
kk

kk

rr
wp

Apw

=

=

=

φ

β

1
2

2

2

-1 -1
-1 -1

-1 -1

2
2

2

-1 -1
-1 -1

-1 -1

2
2

2

-1 -1
-1 -1

-1 -1
1

A
A

A

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 60

Parallel Kennel - Inner Product

•  Compute the inner product of two vectors,

•  Blockwise distribution of the vectors is used. Each processor computes a portion of the
value of the inner product. The result is obtained by summing the partial values together.

sdot x yT
i

n
=

=
∑
1

0 + + +
x

y

0 1 2 3 4

0

1

2

3

4

0 + 1 2 3 4

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 61

Parallel Kennel - Matrix Vector Product

•  Compute the product of a matrix, A, and a vector, x, y=y+Ax

•  Matrix A can be distributed to processors with a block-striped partition scheme or a block
cyclic scheme. Entire vector x will be needed for calculation of y in every processor. Vector
x may be distributed or duplicated among processors. Each processor compute the value of
a portion of the matrix vector product The resultant y vector is obtained by summing the
partial values.

x

+

A y y

0
1
2
3
4

all processors

all processors

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 62

Parallel M-V Multiplication

Processor 0

Processor 1

=

=

?

?

?

?

?

?

?

?

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 63

Parallel M-V Multiplication

Processor 0

Processor 1

=

=

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 64

PINEAPL & Aztec

•  Parallel Industrial NumErical Applications and Portable Libraries
•  Coordinated efforts by NAG with a group of 8 institutions including British

Aerospace, CERFACS, Manchester University, Piaggio, Thomson LCR,
Danish Hydraulic Institute, …

•  Final version is incorporated as Chapter 11 (F11xxx) of NAG Math Library.
•  Aztec is a ‘limited freeware’ from Sandia National Laboratory - http://

www.cs.sandia.gov/CRF/aztec1.html
•  Krylov Subspace Solvers :

–  Conjugate Gradient (CG)
–  Generalised Minimal Residual (GMRES)
–  Conjugate Gradient Square (CGS)
–  Bi-Conjugate Gradient Stabilized (Bi-CGSTAB)

•  Preconditioners:
–  Additive Schwarz
–  Jacobi, SOR, SSOR
–  Blocked ILU

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 65

Aztec Data Storage Schemes – Distributed Modified Sparse
Row (DMSR)

11 12 0 0 15

21 22 0 0 25

 0 0 33 0 35

 0 0 0 44 0

51 52 53 0 55

processor 1

processor 0

I:
BINDX(I):

GSM(I):

 0 1 2 3 4 5 6 7
 4 5 5 8 4 0 1 2
33 44 55 0 35 51 52 53

 0 1 2 3 4 5 6
 3 5 7 1 4 0 4
11 22 0 12 15 21 25

processor 1

processor 0

I:
BINDX(I):

GSM(I):

Prcoess 0 –
nupdate = 3
Iupdate(i)= {2, 3, 4}

Process 1 –
nupdate = 2
Iupdate(i)= { 0, 1}

ibindx(0) = nupdate + 1
ibindx(i+1) – ibindx(i) = number of nonzero non-diagonal entries in rows, i = 0,..,nupdate-1
ibindx(i) = column indices of iupdate(i), i=nupdate+1

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 66

Aztec Example

 /*-------------- setup grid parameters -----------------*/
AZ_processor_info(proc_config);
/*-------------------- setup data --------------------------*/
AZ_transform(proc_config, &external, ibindx_jacb, smata_jacb, iupdate_locl,

&update_index, &extern_index, &data_org, nupdate, NULL, NULL, NULL, NULL,
AZ_MSR_MATRIX);

/* -------------------- setup options ----------------------*/
 AZ_defaults(options,params);
options[AZ_solver] = AZ_cg;
params[AZ_tol] = 0.0000000000001;
/* -------------------- solve ---------------------------------*/
AZ_solve(fsysdq, b, options, params, NULL, ibindx_jacb,
 NULL, NULL, NULL, smata_jacb, data_org, status, proc_config);

CC_SP = mpcc
FC_SP = mpxlf
CLIBS_SP = -lm -lxlf90 /sphome/klwong/Aztec/lib/libaztec.a
CFLAGS_SP = –O4 -qstrict -bmaxdata=256000000

% poe exe -procs 3 -infolevel 3 (llsubmit solve.cmd)

JICS
Joint Institute for Computational
Science

The Portable, Extensible, Toolkit for Scientific
Computation (PETSc)

Http://www.mcs.anl.gov/petsc/petsc.html

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 68

PETSc
(www.mcs.anl.gov/petsc)

•  PETSc is a suite of data structures and routines that provide the building
blocks for the solution of large-scale application codes on parallel and serial
computers

•  PETSc includes an expanding set of parallel linear and nonlinear equation
solvers with support routines for numerical solutions of partial differential
equations on distributed memory machines, clusters of workstations, and non-
uniform memory access shared-memory machines.

•  It uses the MPI standard for all message passing communication and build on
efficient basic linear algebra kernels such as BLAS-type operations. It
supports F77, C, C++, and Fortran 90.

•  The PETSc distribution contains all source code, installation instructions, a
users guide, and a collection of examples.

•  PETSc is developed and supported by Argonne National Laboratory.

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 69

Major Components of PETSc

•  PETSC uses a set of hierarchical tools (mathematical objects) to
construct a solution procedure in the PDE problem solving
environment

–  Vectors (VEC)
–  Index sets (IS)
–  Distributed Arrays (DA)
–  Matrices (MAT)
–  Krylov Subspace Solvers (KSP)
–  Preconditioners (PC)
–  Linear system solvers (SLES)
–  Non-linear system solvers (SNES)
–  Time-stepping methods (TS)
–  Graphics devices

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 70

Petsc Components

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 71

PETSc code User
code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

User Code/PETSc Library Interactions

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 72

References - Books

•  BOOKS (in noparticular order):
•  MATRIX Computations, G. Golub & C. Van Loan, 2nd Edition, John

Hopkins University Press, 1989/93
•  Introduction to Parallel Computing, Design and Analysis of Algorithms,

by Kumar, Grama, Gupta and Karypis, Benjamin/Cummings Publ. Co.,
1994

•  Numerical Analysis, 3rd Edition, by R, Burden and J.D. Faires, PWS
Publishers, 1985

•  Numerical Recipes in C/FORTRAN; The Art of Scientific Computing,
2nd Edition, by Press Teukolsky, Vetterling and Flannery, Cambridge
University Press, 1992/94

•  A Scientist's and Engineer's Guide to Workstations and
Supercomputers; Coping with Unix, RISC, vectors and programming, by
R. Landau and P. Fink, Jr., John Wiley 1993

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 73

References - WWW URLs

•  MAUI's Performance Tuning for the RS6000 Architecture http://
www.mhpcc.edu/training/workshop/html/speed/

•  performance_optimization.html http://www.mhpcc.edu/training/
workshop/html/performance/ and http://www.mhpcc.edu/doc/perf.html

•  HPF Educational Materials http://www.npac.syr.edu/projects/cpsedu/
hpfe/

•  Field simulations - grid techniques www.npac.syr.edu/projects/cpsedu/
hpfe/module7/index.html

•  Particle Applications - Pipeline Computing www.npac.syr.edu/projects/
cpsedu/hpfe/module5/index.html

•  Numerical Methods, Computational Physics, University of Carleton,
Ottwa, Canada http://www.physics.carleton.ca/courses

•  Boston University Origin 2000 Site http://scv.bu.edu/SCV/Origin2000/
•  MPI document - http://www-unix.mcs.anl.gov/mpi/

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 74

Reference - WWW URLs

•  CS325: High Performance Scientific Computing http://
comped1.cas.vanderbilt.edu/cs325/cs325.html

•  Computational Science Education Projecthttp://
compsci.cas.vanderbilt.edu/csep.html http://csep1.phy.ornl.gov/ode/
ode.html http://csep1.phy.ornl.gov/pde/pde.html

•  Mathematical Optimization, from the CSEP
•  e-book http://csep1.phy.ornl.gov/mo/mo.html
•  Designing and Building Parallel Programs, by Ian Foster http://

www.mcs.anl.gov:80/dbpp/web-tours/
•  Massively Parallel SCF Chemistry Calculationshttp://www.mcs.anl.gov/

home/minkoff/CHEM/wagner.html
•  High Performance Computing Projects at Liverpool University http://

www.liv.ac.uk/HPC/HPCpage.html
•  Aztec Document - http://www.cs.sandia.gov/CRF/aztec1.html
•  PETSc document - http://www.mcs.anl.gov/petsc

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 75

References - WWW URLs

•  System Performance Tuning, by Mike Loukides, 336pages (How can I
get my computer to do more work without buying more hardware?)
http://www.ora.com/gnn/bus/ora/item/spt.html

•  Sun Performance and Tuning: SPARC and Solaris, by Adrian
Cockcroft, 280pages www.sun.com/smi/ssoftpress/books/Cockcroft/
Cockcroft.html

•  The National High Performance Computing and Communications
Software Exchange (NHSE) http://www.netlib.org/nhse/sw_catalog/
ppt.html

•  The Parallel Tools Consortium: http://www.llnl.gov/ptools/ptools.html
•  Templates for the Solution of Linear Systems: Building Blocks for

Iterative Methods; 10 authors; SIAM http://www.netlib.org/linalg/
html_templates/Templates.html

•  Parallel Numerical Algerbra by Jim Demmel at UC Berkeley http://
www.cs.berkeley.edu/~demmel/cs267_Spr99/

•  Parallel Numerical Algorithms by Mike Heath at UIUC http://
www.cse.uiuc.edu/cse412/index.html

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 76

References - WWW URLs

•  General NetLib material: http://www.netlib.org
•  ScaLAPACK http://www.netlib.org/scalapack/index.html
•  LAPACK -- Linear Algebra PACKage http://www.netlib.org/lapack/
•  LINPACK http://www.netlib.org/linpack/
•  blas http://www.netlib.org/blas/
•  BLACS http://www.netlib.org/blacs/Blacs.html
•  ATLAS http://www.netlib.org/atlas/atlas.html
•  A Parallel Primer http://ibm.tc.cornell.edu/ibm/pps/doc/primer
•  Numerical Methods on Parallel Computers by Lyle Long http://

cac.psu.edu/~lnl/597d/
•  The EPCC Training and Education Centre at the Unversity of

Edinburgh http://www.epcc.ed.ac.uk/epcc-tec/courses
•  Internet Parallel Computing Archive at the University of Kent at

Canterbury http://unix.hensa.ac.uk/parallel/index.html
•  JICS Lecture Notes in Parallel Computing http://

www-jics.cs.utk.edu/PCUE

JICS
Joint Institute for Computational
Science

7/14/13 Practical Scientific Parallel Computing 77

The End

•  The End!

