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§  Graphics Processing Unit 
Ø Designed to rapidly manipulate and alter memory 

in such a way so as to accelerate the building of 
images in a frame buffer intended for output to a 
display.  

Ø The term was popularized by NVIDIA in 1999.  
Ø GeForce 256: The World’s first GPU.  

 

History: 
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§  GPU = Graphics Processing Unit 
Ø Chip in computer video cards, PlayStation 3, 

XBOX etc.. 
Ø Two major vendors: NVIDIA and AMD 

 

GPU: 

Reference:	  h.p://en.wikipedia.org/wiki/Nvidia_Tesla	  
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§  Desktop GPUs 
Ø GeForce series for CPU 

§  Mobile GPUs 
Ø GeForce series for Mobile 

§  Workstation/HPC GPUs 
§  Quadro NVS, Tesla, Kepler 

 

NVIDIA GPUs: 
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§  Supports CUDA and OpenCL  
§  Fermi(Tesla version) 

Ø Upto 512 cores 
Ø Upto 6GB memory 
Ø Upto 665 GFLOPS – Double precision 
Ø Caches included: L1 per multiprocessor, L2 

shared 
§  Kepler in 2012 
§  Maxwell in 2014 
 
 

NVIDIA GPUs: 
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§  Desktop GPUs 
Ø Radeon series 

§  Mobile GPUs 
Ø Mobility Radeon 

§  Workstation GPUs 
Ø FirePro, FireStream 

§  Supports OpenCL (no CUDA) 

 

AMD GPUs: 
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§  Modern GPUs are very efficient at 

Ø Manipulating computer graphics, and their highly parallel 
structure makes them more effective than general-purpose 
CPUs for algorithms where processing of large block of data 
is done in parallel.  

§  GPUs are massively multithreaded manycore chips. 
Ø NVIDIA tesla products have upto 512 cores.  
Ø Over 665 GFLOPS sustained performance (double precision 

floating point) 
Ø 6GB of Memory 
Ø Memory bandwidth upto 177 GBytes/sec. 

§  Users across science and engineering disciplines are 
achieving very good speedups on GPUs.  

 

GPU continue: 



Pnmath	  

§  Large amount of nodes. 
Ø Distributed memory 
Ø Multicore processors (e.g. 12 cores per node Kraken) 

§  Fast interconnect. 
§  Programming models 

Ø MPI 
Ø Hybrid (Pthreads, OpenMP with MPI) 

Typical Supercomputer: 
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§  Accelerated HPC floating workloads using 
GPUs.  
Ø Peak FP performance 10x vs CPU.  
Ø Memory bandwidth 20x vs CPU. 
Ø Parallelism, of the order of 500 cores, thousands of 

threads.  

§  GPUs are accelerators. 
Ø Has its own fast memory. 
Ø Separate card connected to CPU node Via PCI-E bus.  

Accelerated Supercomputer: 
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§  Intel  
Ø Intel MIC(Many Integrated 

Core) 
Ø ~ 50 X86 vector cores 
Ø OpenMP, OpenCL, Intel 

parallel building blocks 
etc... 

Ø First commercial 
product(Knights corner) in 
2012. 

§  Other(FPGA and DSP 
based system etc…) 

 
 

Other accelerators: 

Reference:	  h.p://intel.com	  
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§  SIMD(Single Program, Multiple Data) are best. 
§  Operations need to be sufficient size to 

overcome overhead.  
§  Think millions of operations.  
§  Data transfer could be bottleneck (between CPU 

memory and GPU memory) 

  
 

*Not* for all applications: 
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§  GPU is specialized for compute-intensive, 
highly parallel computation-exactly what 
graphics rendering is about.  

§  GPU devotes more transistors to data 
processing rather than data caching and flow 
control.  

 
 

How it is different from CPU: 

 Chapter 1. Introduction 
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The reason behind the discrepancy in floating-point capability between the CPU and 
the GPU is that the GPU is specialized for compute-intensive, highly parallel 
computation – exactly what graphics rendering is about – and therefore designed 
such that more transistors are devoted to data processing rather than data caching 
and flow control, as schematically illustrated by Figure 1-2. 

 

 

Figure 1-2. The GPU Devotes More Transistors to Data 
Processing 

 

More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations – the same program is executed on many 
data elements in parallel – with high arithmetic intensity – the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA™: a General-Purpose Parallel 
Computing Architecture 
In November 2006, NVIDIA introduced CUDA™, a general purpose parallel 
computing architecture – with a new parallel programming model and instruction 
set architecture – that leverages the parallel compute engine in NVIDIA GPUs to 
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§  High level block diagram of NVIDIA GPU chip. 
 

GPU architecture : 

Reference:	  h.p://nvidia.com	  
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§  Multilevel levels of memory hierarchy 

GPU memory model: 

Reference:	  h.p://nvidia.com	  
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§  Thread: is a ready for execution/running instance of a 
kernel. Each thread has its own instruction address 
counter and register state.  

§  Warp: is a group of 32 parallel threads.  
§  Block: is a groups of Warps. A block is executed on one 

multiprocessor. Every block has its own shared memory 
and registers in the multiprocessor.  

§  Grid: is a group of Blocks.  
§  Host: is the CPU in CUDA applications.  
§  Device: is the GPU in CUDA applications.  

Terminology: 
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§  GPU has much more aggressive memory  
    subsystem. 

GPU memory model: 

Reference:	  h.p://nvidia.com	  
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How to use GPUs  
 
§  Use existing GPU software 
§  Use available libraries for GPUs  
§  Program GPU with directives 
§  Program native GPU code 
 
 

GPU programming: 
EFFO

RT	  
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§  NAMD, GROMACS, GPU-HMMER, TeraChem 
§  Pros 

Ø No implementation headaches for end users.  
§  Cons 

Ø Existing applications do not cover all science areas.  
Ø Often include limited number of algorithms/models.  
Ø For many applications the GPU version is still 

immature.  
 

Use existing GPU software: 
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§  GPU accelerator is called device, CPU is 
host.  

§  GPU code (kernel) is launched and executed 
on the device by several threads.  

§  Threads grouped into thread blocks.  
§  Program code is written from single thread's 

point of view.  
Ø Each thread can diverge and execute a unique 

code path (can cause performance issues ) 

 

GPU programming model: 
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§  Threads: 
Ø 3D IDs, unique in block 

§  Blocks: 
Ø 3D IDs, unique in grid  

§  Dimensions are set at 
kernel launch.  

§  Built-in variables for 
device code:  
Ø threadIdx, blockIdx 
Ø blockDim, gridDim 

 

Thread Hierarchy : Thread Hierarchy

Grid

Block (1,1)

Block (1,0)Block (0,0)

Block (0,1)

Thread (0,1) Thread (1,1) Thread (2,1) Thread (3,1)

Thread (0,0) Thread (1,0) Thread (2,0) Thread (3,0)

Block (1,0)• Threads:
– 3D IDs, unique in block

• Blocks:
– 3D* IDs, unique in grid

• Dimensions are set at 
kernel launch

• Built-in variables for device 
code:
– threadIdx, blockIdx

– blockDim, gridDim

* Since CUDA4
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§  Compute Unified Device Architecture 
§  CUDA is a C/C++ language extension for 

GPU programming.  
Ø PGI has developed similar FORTRAN 2003 

extension.  
§  Two APIs: Runtime and Driver 
 

Introduction to CUDA: 
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CUDA software stack: 

© 2008 NVIDIA Corporation.

CUDA Software Development

NVIDIA  C  Compiler

NVIDIA Assembly
for Computing (PTX)

CPU Host Code

Integrated CPU + GPU
C Source Code

CUDA Optimized Libraries:
math.h, FFT, BLAS, …

CUDA
Driver 

Profiler Standard C Compiler

GPU CPU

Reference:	  h.p://nvidia.com	  



Pnmath	  
§  Qualifiers 

Ø global, device, 
shared, local, 
constant… 

§  Built-in variables 
Ø  threadIdx, blockIdx 

§  Intrinsics 
Ø __syncthreads,   

§  Runtime API 
Ø Memory, device 

execution 
management.  

§  Kernel launch 
 

Introduction to CUDA C: 
__device__ float array[128]; 
__global__ void kern(float *data)
{ 
__shared__ float buffer[32}; 
 .... 
 buffer[threadIdx.x] = data[i];   
 .... 
 __syncthreads;  
 ....  
} 
float *d_data; 
cudaMalloc((void **))&d_data, 
bytes); 
kern<<<1024, 128>>>(d_data);   
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Vector add CPU: 
void add(int *a, int *b, int *c) 
{  

 int i;  
 for (i=0; i<N; i++)  
 {  
    c[i] = a[i] + b[i];  
 }       

}  
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//include header files 
#include <cuda.h> 
#include <cutil.h> 
//include kernels 
#include "vector_add_kernel.cu"  
static const int N = 100000; 

int main( int argc, char** argv) { 

int a[N], b[N], c[N]; 

int *dev_a, *dev_b, *dev_c; 

//Memory allocation on device 
cudaMalloc(&dev_a, N*sizeof(int); 

cudaMalloc(&dev_b, N*sizeof(int); 

cudaMalloc(&dev_c, N*sizeof(int); 

//Memory copy host to device 
cudaMemcpy(dev_a, a, N*sizeof(int), cudaMemcpuKind:cudaMemcpuHostToDevice); 

cudaMemcpy(dev_b, b, N*sizeof(int), cudaMemcpuKind:cudaMemcpuHostToDevice); 

//Call Kernel (in next slide) 
//Copy result from GPU to CPU 
cudaMemcpy(c,dev_c, N*sizeof(int), cudaMemcpuKind:cudaMemcpuDeviceToHost); 

//Free memory 
cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c); 

 

 
 

 

 

 

 

 

 

 

 

 

}  

   

CUDA memory management: 



Pnmath	  Vector launch kernel: 

add<<<1,1>>>(dev_a, dev_b, dev_c);//serial 

 

add<<<N,1>>>(dev_a, dev_b, dev_c);//parallel 
//Only the first parameter interest us right 
now. The first parameter ask Cuda to execute 
the function on N parallel blocks. 
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////vector_add_kernel.cu serial 
static const int N=100000; 

__global__ void add(int *a, int *b, int* c)  

{  
 for(int i=0;i<N;i++){ 

 c[i] = a[i] + b[i]; 

 }  
}  

Vector add kernel function: 
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////vector_add_kernel.cu parallel 
__global__ void add(int *a, int *b, int* c)  

{  
  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]  

}  

Vector add kernel function: 
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§  Modified C function call syntax:  
  kernel<<<dim3 dG, dim3 dB>>>(...)  
§  Execution Configuration (“<<< >>>”)  
§  dG - dimension and size of grid in blocks Two-dimensional: 

x and y 
Blocks launched in the grid: dG.x * dG.y  

§  dB - dimension and size of blocks in threads: Three-
dimensional: x, y, and z 
Threads per block: dB.x * dB.y * dB.z  

§  Unspecified dim3 fields initialize to 1  

Launching Kernels: 
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§  Compilation tools are a part of CUDA SDK.  
§  nvcc compiler translates code written in CUDA 

into PTX.  
§  nvcc separates the code for host and device. 

Ø Host code is compiled with regular C/C++ compiler.  

§  More information: 
http://www.nics.tennessee.edu/~ksharkey/
tutorials/ 

Compiling CUDA code: 
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§  More information: 

http://www.nics.tennessee.edu/~ksharkey/tutorials/ 

 

Compiling CUDA code: 
On Keeneland: 
 
>module load PE-intel 
>module load cuda/4.1 
 
> nvcc –ccbin $CC –o gpu.out 
gpucode.cu 
 
 

On Nautilus: 
 
>module load PE-gnu 
>module load cuda/4.0RC2 
 
> nvcc –ccbin $CC –o 
gpu.out gpucode.cu 
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§  More information: 

https://wiki-rdav.nics.tennessee.edu/index.php/
Using_the_Nvidia_GPUs_on_Nautilus    

     AND 
     http://keeneland.gatech.edu/support/quick-start#runningjobs 

 

Running CUDA code: 
On Keeneland: 
 
> qsub –I -l nodes=1:ppn=1:gpus=3,walltime=00:30:00 
> ./gpu.out 
 
 On Nautilus: 
 
> qsub –I –l ncpus=1,gpus=1,walltime=00:30:00 
> ./gpu.out 
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§  CUDA with MultiGPU 
§  CUDA + OpenMP 
§  CUDA + MPI 
§  CUDA + OpenMP + MPI 
 
 

Hybrid: 
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§  MAGMA 
§  CUBLAS 
§  CULA  
§  CUFFT 
§  CUSPARSE 
§  THRUST 
§  Optix 
 

 

CUDA libraries: 

§  Easy to use in your 
programs.  

§  Algorithms in libraries 
are usually efficient.  
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§  Debuggers:  
Ø Allinea DDT 
Ø CUDA-GDB 
Ø Totalview 
Ø Cuda-memcheck 

§  Profilers: 
Ø Tau 
Ø NVIDIA visual profiler 

 

CUDA debuggers and profilers: 
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§  NVIDIA: CUDA 
§  Use compiler to 

build kernels 
§  C language 

extensions(nvcc) 
Ø Also a low-level 

driver-only API 

 

CUDA and OpenCL: 

§  Open-free standard. 
§  Builds kernel at 

runtime.  
§  API only, no new 

compiler-API calls to 
execute kernel 
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§  Two main products 
Ø PGI accelerators 
Ø HMPP (CAPS enterprise) 

§  Normal C or Fortran code with directives to 
guide compiler in creating a GPU version.  

§  Backend supporting CUDA, OpenCL and 
even normal CPUs.  

Directive based GPU code: 
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§  Pros 
Ø Same code base as CPU version 
Ø Less time consuming 
Ø Portability is better due to different backends.  

§  Cons 
Ø Generated code may not be as fast as hand-

tuned CUDA.  

Directive based GPU code: 
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§  Describes a collection of compiler directives to 

specify loops and regions of code in standard 
C,C++ and Fortran.  

§  Allow programmer to create high-level host+ 
accelerators programs without the need to 
explicitly initialize the device, manage data or 
program transfers. 

§  Backed by PGI, CAPS, Cray and NVIDIA 
§  Part of OpenMP 4.0 ?  
§  More information: 

http://www.openacc-standard.org/ 

OpenACC: 
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§  Aim to compile CUDA programs so that they can 
be run on architectures other than NIVIDA GPUs  

§  It is a modular dynamic compilation framework 
for heterogeneous system, providing various 
backend targets for CUDA programs and 
analysis modules for the PTX virtual instruction 
set. 

§  Proliferation of Heterogeneous computing.  
§  Ocelot currently allows CUDA programs to be 

executed on NVIDIA GPUs, AMD GPUs, and 
x86-CPUs at full speed without recompilation.   

 
 

Ocelot: 
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§  It combines the speed of CUDA and the graphics of the 

GPU with the user friendliness.  
§  Provides GPU library for C, C++, Fortran, Python and 

MATLAB.  
§  Provides GPU counterparts to CPU data types, such as 

real and complex double, single,uint32, int32, logical, 
etc. Any variable residing in the host (CPU) memory can 
be cast to Jacket's GPU data types. 

§  It’s memory management system allocates and manages 
memory for these variables on the GPU automatically, 
behind-the-scenes. Any functions called on GPU data 
will execute on the GPU automatically without any extra 
programming.  

§  For more information: http://www.accelereyes.com/ 

Jacket: 
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CPU: 
X = double( magic( 3 ) ); 
Y = ones( 3, 'double' ); 
A = X * Y 
  
GPU: 
addpath <jacket_root>/engine 
X = gdouble( magic( 3 ) ); 
Y = gones( 3, 'double' ); 
A = X * Y 
 	  

Jacket example: 
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§  pyCUDA, pyOpenCL 
§  MATLAB with CUDA toolbox 
§  CUDA FORTRAN 
§  ROpenCL, RCUDA 
§  Haskell, Perl etc… 

Programming languages and 
GPGPU: 
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§  http://developer.nvidia.com/category/zone/cuda-zone 
§  http://gpgpu.org/ 
§  http://developer.nvidia.com/about-parallel-forall 
§  http://www.gputechconf.com/page/home.html# 
§  http://software.intel.com/en-us/articles/vcsource-tools-opencl-sdk/ 
§  http://developer.amd.com/pages/default.aspx 
§  http://developer.download.nvidia.com/compute/DevZone/docs/html/

CUDALibraries/doc/CUBLAS_Library.pdf 
§  http://www.vpac.org/files/GPU-Slides/04.debugging_profiling_tools.pdf 
§  http://keeneland.gatech.edu/software/cuda 
§  http://developer.nvidia.com/nvidia-visual-profiler 

Resources: 
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§  Get the data on the GPU(and keep it there! If 
possible) 
Ø PCIe x16 v2.0 bus: 8GiB/s in a single direction 
Ø GPUs: ~180 GiB/s 

§  Give the GPU enough work to do 
§  Reuse and locate data to avoid global memory 

bottlenecks 
§  Corollary: Avoid malloc/free 
 

Rules for fast GPU codes: 
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§  Accelerated supercomputers emerging.  
§  GPUs offer tremendous potential to accelerate 

scientific applications.  
§  Newer generations GPUs getting easier to 

program. 
§  Challenges still remain in using them efficiently. 
§  Still a few cliffs: 

Ø HOST-GPU transfer 
Ø Careful memory access 
Ø Lots of parallelism 
Ø Thread divergence 

 

Summary: 
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§  Challenges remain 

Ø Applicability: Can you solve your algorithm efficiently using 
a GPU ?  

Ø Programmability: Effort of code writing that uses a GPU 
efficiently.  

Ø Portability: Incompatibilities between vendors 
Ø Availability: Are you able gain access to large scale 

system ?  
Ø Scalability: Can you scale the GPU software efficiently to 

several nodes ?  
 

Accelerated Supercomputer: 
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§  https://nimrodteam.org/meetings/team_mtg_8_10/nimrod_gpu.pdf 
§  http://people.maths.ox.ac.uk/~gilesm/hpc/NVIDIA/

NVIDIA_CUDA_Tutorial_No_NDA_Apr08.pdf 
§  http://www.nvidia.com/docs/IO/105880/DS-Tesla-M-Class-Aug11.pdf 
§  http://www.nics.tennessee.edu/~ksharkey/tutorials/ 
§  http://en.wikipedia.org/wiki/Graphics_processing_unit 
§  http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2012-02-20/08-

opencl.pdf 
§  http://developer.amd.com/gpu_assets/

OpenCL_Parallel_Computing_for_CPUs_and_GPUs_201003.pdf 
§  http://gamelab.epitech.eu/blogtech/?p=28 
§  Introduction GPU computing by Sebastian von alfthan 
§  Supercomputing for the Masses: Killer-Apps, Parallel Mappings, Scalability 

and Application Lifespan by Rob Farber 
§  The PTX GPU Assembly Simulator and Interpreter By N.M. Stiffler, Zheming 

Jin, Ibrahim Savran 

References: 
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§  In this tutorial session, we covered 
Ø GPU architecture 
Ø GPU programming model 
Ø CUDA C 
Ø CUDA tools 
Ø OpenCL in brief 
Ø Other useful GPU tools 
Ø References 

 

Summary/Wrapping up: 
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Thank You !!! 


