Introduction to GPGPU
Programming

Pragnesh Patel
pragnesh@utk.edu
Remote Data Analysis and Visualization Center
National Institute for Computational Sciences
University of Tennessee

RIDIA/

Outline:

= Motivation

= History

= GPU architecture

» GPU programming model
= CUDAC

= CUDA tools

= OpenCL in brief

= QOther useful GPU tools
= Summary

= References

Motivatio

Theoretical Theoretical GB/s
GFLOP/s
1750 700 GeforceGT X580
GeForceGTX 580 GeForceGTX 480

50 = NVIDIA GPU Single Precision » 180

==+=VIDIA GPU Double Predision GeForce GTX 480 ==CPU

==ge=itel CPU Single Precision 160

e ntel CPU Douible Precision “=GPU GeForceGTX280
1250 140
1000 120

GeForceGTX 280
100

GeForced800GTX

750
80
Tesla C2050
GeForce 8800 GeForce 7800 GTX
500 60
m eForce 800 GT Westmere
250 GeForce 7800 GTX Westmere

GeFarce X 5900
GeForce6800 Ultra TesiaCi060 loomfield 10
GeForceFx 5800

("]

GTX
Woodcres
Harpertown

' 0 “wortrwaed

Harpertown T T T T T 1
Dec-09 2003 2004 2005 2006 2007 2008 2009 2010

0- :
Sep 0170 Jun-04 Oct05 Mar07 Jul08

History:

» Graphics Processing Unit

» Designed to rapidly manipulate and alter memory
in such a way so as to accelerate the building of
images in a frame buffer intended for output to a
display.

» The term was popularized by NVIDIA in 1999.
» GeForce 256: The World'’s first GPU.

» GPU = Graphics Processing Unit

» Chip in computer video cards, PlayStation 3,
XBOX etc..

» Two major vendors: NVIDIA and AMD

Reference: http://en.wikipedia.org/wiki/Nvidia_Tesla

NVIDIA GPL

= Desktop GPUs
» GeForce series for CPU

= Mobile GPUs

» GeForce series for Mobile

= \Workstation/HPC GPUs
= Quadro NVS, Tesla, Kepler

Supports CUDA and OpenCL

Fermi(Tesla version)

» Upto 512 cores

» Upto 6GB memory

» Upto 665 GFLOPS — Double precision

» Caches included: L1 per multiprocessor, L2
shared

Kepler in 2012
Maxwell in 2014

AMD GPUs:

= Desktop GPUs
» Radeon series

= Mobile GPUs
» Mobility Radeon

= \Workstation GPUs
» FirePro, FireStream

» Supports OpenCL (no CUDA)

GPU continue:

—e—"g?

* Modern GPUs are very efficient at

» Manipulating computer graphics, and their highly parallel
structure makes them more effective than general-purpose
CPUs for algorithms where processing of large block of data
IS done in parallel.

» GPUs are massively multithreaded manycore chips.

» NVIDIA tesla products have upto 512 cores.

» Over 665 GFLOPS sustained performance (double <X
floating point) NVIDIA.

» 6GB of Memory
» Memory bandwidth upto 177 GBytes/sec.

= Users across science and engineering disciplines are
achieving very good speedups on GPUs.

Typical Supe

» |Large amount of nodes.
» Distributed memory
» Multicore processors (e.g. 12 cores per node Kraken)

= Fast interconnect.
* Programming models

> MPI
» Hybrid (Pthreads, OpenMP with MPI)

Accelerated

= Accelerated HPC floating workloads using
GPUs.

» Peak FP performance 10x vs CPU.
» Memory bandwidth 20x vs CPU.

» Parallelism, of the order of 500 cores, thousands of
threads.

= GPUs are accelerators.

» Has its own fast memory.
» Separate card connected to CPU node Via PCI-E bus.

Other accelerators:

= |ntel

» Intel MIC(Many Integrated

Core)

» ~ 50 X86 vector cores

» OpenMP, OpenCL, Intel
parallel building blocks

etc...

» First commercial
product(Knights corner) in

2012.

» Other(FPGA and DSP
based system eftc...)

Reference: http://intel.com

=
&
&)
-
Z
O
2
=
w
=)
w
&
U

CORE | ACORE ,,, IACORE

INTERPROCESSOR NETWORK

COHERENT COHERENT COHERENT
CACHE CACHE _ CACHE

COHERENT COHERENT COHERENT
CACHE CACHE CACHE

INTERPROCESSOR NETWORK

VECTOR | VECTOR VECTOR
ACORE | IACORE ., IACORE

CACHE

COHERENT
CACHE

MEMORY and I/0 INTERFACES

VECTOR
IA CORE

SIMD(Single Program, Multiple Data) are best.

Operations need to be sufficient size to
overcome overhead.

Think millions of operations.

Data transfer could be bottleneck (between CPU
memory and GPU memory)

How It Is diffe

* GPU is specialized for compute-intensive,
highly parallel computation-exactly what
graphics rendering is about.

= GPU devotes more transistors to data
processing rather than data caching and flow
control.

Control ALU ALU 5‘

[T T T T T T I T T ITTTT1]
LUl

. Loy B [[[[[[T T[T T [TTTT]
[[T T I T T I T T ITTT1]

[[T T I T T I T T ITTT1]

[[T T I T T I T T ITTT1]

[T T I T T I T T ITTIT1]

CPU GPU

Main

- Copy processing data

Copy the result

Instruct the processing)

/e

Memory
for GPU

-
Execute parallel
in each core

(3

!

Processing flow
on CUDA

BT
| |

GPU arch

itecture :

A -
B

Reference: http://nvidia.com

diiiiis Constan
ol -

[ZCate) ([ZCahe) (E2CEhs) ([2Caehe) (IZICAehe) [EZCaene) @@?(b?r Shared Mem

(LECHIT A T A0 D\ ERTIEs / L1 Cache
Global Mem / Local Me N[y - + |

PolyMorph Engine

Cache

Reference: http://nvidia.com

Thread: is a ready for execution/running instance of a
kernel. Each thread has its own instruction address
counter and register state.

Warp: is a group of 32 parallel threads.

Block: is a groups of Warps. A block is executed on one
multiprocessor. Every block has its own shared memory
and registers in the multiprocessor.

Grid: is a group of Blocks.
Host: is the CPU in CUDA applications.
Device: is the GPU in CUDA applications.

GPU memorny

» GPU has much more aggressive memory
subsystem.

Block (O, 0) Block (1, 0)

Reference: http://nvidia.com

How to use GPUs

» Use existing GPU software

» Use available libraries for GPUs
* Program GPU with directives

* Program native GPU code

Use existing C

= NAMD, GROMACS, GPU-HMMER, TeraChem

* Pros
» No implementation headaches for end users.

= Cons
» Existing applications do not cover all science areas.
» Often include limited number of algorithms/models.

» For many applications the GPU version is still
Immature.

GPU programming md"‘

= GPU accelerator is called device, CPU is
host.

» GPU code (kernel) is launched and executed
on the device by several threads.

* Threads grouped into thread blocks.

* Program code is written from single thread's
point of view.

» Each thread can diverge and execute a unique
code path (can cause performance issues)

Thread Hierarchy

Block (1,0)
u Th reads Thread (0,0) |Thread (1,0) [Thread (2,0) | Thread (3,0)

» 3D IDs, unique in block

u BIOCkS Thread (0,1) [Thread (1,1) [Thread (2,1) |Thread (3,1)

» 3D IDs, unique in grid

= Dimensions are set at
kernel launch.

= Built-in variables for \
I Block (0,0 Block (1 ;
» threadldx, blockldx N

» blockDim, gridDim Block%o% BIOCE 1%

~
N
~
R Grid
. ri
~
~N

V-/\/WV‘Q

VWV
S JAVAVAVAV

Introduction

= Compute Unified Device Architecture

= CUDA is a C/C++ language extension for
GPU programming.

» PGl has developed similar FORTRAN 2003
extension.

= Two APIs: Runtime and Driver

CUDA software stack:

CUDA Optimized Libraries: Integrated CPU + GPU
math.h, FFT, BLAS, ... C Source Code

NVIDIA C Compiler

NVIDIA Assembly

for Computing (PTX) CPU Host Code

CUDA

Driver Profiler Standard C Compiler

Reference: http://nvidia.com

Introduction

device float array[128];

= Qualifiers - _
> global, device, __global wvoid kern(float *data)
shared, local, {
constant... __shared float buffer[32};
= Built-in variables e
> threadldx, blockldx buffer[threadldx.x] = datal[i];
* Intrinsics e
» _ syncthreads, __syncthreads;
= Runtime API }""
» Memory, device .
execution float *d data;
management. cudaMalloc ((void **))&d data,
bytes) ;

= Kernel launch
kern<<<1024, 128>>>(d data);

Vector ac

volid add(int *a, int *b, 1int *c)

{

int 1i;
for (1=0; 1i<N; i++)
{
cl[i] = a[i] + bl[i];
}

//include header files

#include <cuda.h>

#include <cutil.h>

//include kernels

#include "vector add kernel.cu"

static const int N = 100000;

int main(int argc, char** argv) {

int a[N], b[N], c[N];

int *dev_a, *dev b, *dev c;

//Memory allocation on device

cudaMalloc (&dev_a, N*sizeof (int);

cudaMalloc (&dev_b, N*sizeof (int);

cudaMalloc (&dev _c, N*sizeof (int);

//Memory copy host to device

cudaMemcpy (dev_a, a, N*sizeof(int), cudaMemcpuKind:cudaMemcpuHostToDevice) ;
cudaMemcpy (dev_b, b, N*sizeof (int), cudaMemcpuKind:cudaMemcpuHostToDevice) ;
//Call Kernel (in next slide)

//Copy result from GPU to CPU

cudaMemcpy (c,dev_c, N*sizeof (int), cudaMemcpuKind:cudaMemcpuDeviceToHost)
//Free memory

cudaFree (dev_a); cudaFree (dev b); cudaFree(dev c);

Vector lau

add<<<l,1>>>(dev a, dev b, dev c);//serial

add<<<N, 1>>>(dev a, dev b, dev c);//parallel

//Only the first parameter interest us right
now. The first parameter ask Cuda to execute
the function on N parallel blocks.

////vector add kernel.cu serial

static const int N=100000;

~_global wvoid add(int *a, int *b, int* c)
{

for(int 1=0;1<N;1++) {
c[i] = a[i] + b[i];

////vector add kernel.cu parallel
__global wvoid add(int *a, int *b, int* c)

{

clblockIdx.x] = al[blockIdx.x] + b[blockIdx.x]

Modified C function call syntax:

kernel<<<dim3 dG, dim3 dB>>>(...)

Execution Configuration ("<<< >>>"

dG - dimension and size of grid in blocks Two-dimensional:
xandy

Blocks launched in the grid: dG.x * dG.y

dB - dimension and size of blocks in threads: Three-

dimensional: x, y, and z
Threads per block: dB.x * dB.y * dB.z

Unspecified dim3 fields initialize to 1

Compilation tools are a part of CUDA SDK.

nvcc compiler translates code written in CUDA
into PTX.

nvcc separates the code for host and device.
» Host code is compiled with regular C/C++ compiler.
More information:

http://www.nics.tennessee.edu/~ksharkey/
tutorials/

Compiling

On Keeneland: On Nautilus:

>module load PE-intel >module load PE-gnu
>module load cuda/4.1 >module load cuda/4.0RC2
> nvcc —-ccbin SCC -o gpu.out > nvcce —ccbin $SCC -o
gpucode.cu gpu.out gpucode.cu

= More information:
http://www.nics.tennessee.edu/~ksharkey/tutorials/

Running C

On Keeneland:

> gsub —-I -1 nodes=1l:ppn=l:gpus=3,walltime=00:30:00
> ./gpu.out

On Nautilus:

> gsub -I -1 ncpus=1,gpus=1,walltime=00:30:00
> ./gpu.out

= More information:

https://wiki-rdav.nics.tennessee.edu/index.php/
Using_the_ Nvidia_GPUs_on_Nautilus

AND
http://keeneland.gatech.edu/support/quick-start#runningjobs

= CUDA with MultiGPU

= CUDA + OpenMP

= CUDA + MPI

= CUDA + OpenMP + MPI

CUDA librari

MAGMA
CUBLAS
CULA
CUFFT
CUSPARSE
THRUST

Optix

= Easy to use in your
programs.

= Algorithms in libraries
are usually efficient.

CUDA deb

= Debuggers:
> Allinea DDT
» CUDA-GDB
» Totalview
» Cuda-memcheck

= Profilers:

» Tau
» NVIDIA visual profiler

CUDA and O

= NVIDIA: CUDA = Open-free standard.

= Use compiler to = Builds kernel at
build kernels runtime.

» C language = APl only, no new
extensions(nvcc) compiler-AP| calls to
> Also a low-level execute kernel

driver-only API

* Two main products
» PGl accelerators

»HMPP (CAPS enterprise)

* Normal C or Fortran code with directives to
guide compiler in creating a GPU version.

= Backend supporting CUDA, OpenCL and
even normal CPUs.

Directive base

= Pros

» Same code base as CPU version
» Less time consuming
» Portability is better due to different backends.

= Cons

» Generated code may not be as fast as hand-
tuned CUDA.

OpenACC:

- I

Describes a collection of compiler directives to
specify loops and regions of code in standard
C,C++ and Fortran.

Allow programmer to create high-level host+
accelerators programs without the need to

explicitly initialize the device, manage data or
program transfers.

Backed by PGI, CAPS, Cray and NVIDIA

Part of OpenMP 4.0 7?

More information:
http://www.openacc-standard.org/

Ocelot:

W

Aim to compile CUDA programs so that they can
be run on architectures other than NIVIDA GPUs

It is a modular dynamic compilation framework
for heterogeneous system, providing various
backend targets for CUDA programs and
analysis modules for the PTX virtual instruction

set.
Proliferation of Heterogeneous computing.

Ocelot currently allows CUDA programs to be
executed on NVIDIA GPUs, AMD GPUSs, and
x86-CPUs at full speed without recompilation.

Jacket:

It combines the speed of CUDA and the graphics of the
GPU with the user friendliness.

Provides GPU library for C, C++, Fortran, Python and
MATLAB.

Provides GPU counterparts to CPU data types, such as
real and complex double, single,uint32, int32, logical,
etc. Any variable residing in the host (CPU) memory can
be cast to Jacket's GPU data types.

It's memory management system allocates and manages
memory for these variables on the GPU automatically,
behind-the-scenes. Any functions called on GPU data
will execute on the GPU automatically without any extra
programming.

For more information: http://www.accelereyes.com/

Jacket ex

CPU:

X = double(magic(3));

Y = ones(3, 'double');

A =X *Y

GPU:

addpath <jacket root>/engine
X = gdouble(magic(3))

Y = gones(3, 'double');
A =X *Y

pyCUDA, pyOpenCL
MATLAB with CUDA toolbox
CUDA FORTRAN
ROpenCL, RCUDA

Haskell, Perl etc...

Resources:

= http://developer.nvidia.com/cateqory/zone/cuda-zone

= http://gpgpu.org/

= http://developer.nvidia.com/about-parallel-forall

= http://www.gputechconf.com/page/home.html#

= http://software.intel.com/en-us/articles/vcsource-tools-opencl-sdk/
= http://developer.amd.com/pages/default.aspx

= http://developer.download.nvidia.com/compute/DevZone/docs/html/
CUDALibraries/doc/CUBLAS Library.pdf

= http://www.vpac.orqg/files/GPU-Slides/04.debuqqging profiling tools.pdf
= http://keeneland.gatech.edu/software/cuda
= http://developer.nvidia.com/nvidia-visual-profiler

Get the data on the GPU(and keep it there! If
possible)

» PCle x16 v2.0 bus: 8GiB/s in a single direction

» GPUs: ~180 GiB/s

Give the GPU enough work to do

Reuse and locate data to avoid global memory
bottlenecks

Corollary: Avoid malloc/free

Accelerated supercomputers emerging.
GPUs offer tremendous potential to accelerate
scientific applications.

Newer generations GPUs getting easier to
program.

Challenges still remain in using them efficiently.

Still a few cliffs:
» HOST-GPU transfer
» Careful memory access
» Lots of parallelism
» Thread divergence

Accelerated

» Challenges remain

» Applicability: Can you solve your algorithm efficiently using
a GPU ?

» Programmability: Effort of code writing that uses a GPU
efficiently.

» Portability: Incompatibilities between vendors

» Availability: Are you able gain access to large scale
system ?

» Scalability: Can you scale the GPU software efficiently to
several nodes ?

https://nimrodteam.org/meetings/team mtg 8 10/nimrod gpu.pdf

http://people.maths.ox.ac.uk/~gilesm/hpc/NVIDIA/
NVIDIA CUDA Tutorial No NDA Apr08.pdf

http://www.nvidia.com/docs/I0/105880/DS-Tesla-M-Class-Aug11.pdf
http://www.nics.tennessee.edu/~ksharkey/tutorials/
http://en.wikipedia.org/wiki/Graphics processing unit

http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2012-02-20/08-
opencl.pdf

http://developer.amd.com/gpu assets/
OpenCL Parallel Computing for CPUs and GPUs 201003.pdf

http://gamelab.epitech.eu/blogtech/?p=28
Introduction GPU computing by Sebastian von alfthan

Supercomputing for the Masses: Killer-Apps, Parallel Mappings, Scalability
and Application Lifespan by Rob Farber

The PTX GPU Assembly Simulator and Interpreter By N.M. Stiffler, Zheming
Jin, Ibrahim Savran

Summary/W

» |n this tutorial session, we covered
» GPU architecture
» GPU programming model
»CUDAC
» CUDA tools
» OpenCL in brief
» Other useful GPU tools
» References

Thank You !

