
Introduction to GPGPU
Programming

Pragnesh Patel

pragnesh@utk.edu
Remote Data Analysis and Visualization Center
National Institute for Computational Sciences

University of Tennessee

Pnmath	
§  Motivation
§  History
§  GPU architecture
§  GPU programming model
§  CUDA C
§  CUDA tools
§  OpenCL in brief
§  Other useful GPU tools
§  Summary
§  References

Outline:

Pnmath	 Motivation:
Chapter 1. Introduction

2 CUDA C Programming Guide Version 4.1

Figure 1-1. Floating-Point Operations per Second and
Memory Bandwidth for the CPU and GPU

Chapter 1. Introduction

2 CUDA C Programming Guide Version 4.1

Figure 1-1. Floating-Point Operations per Second and
Memory Bandwidth for the CPU and GPU

Pnmath	

§  Graphics Processing Unit
Ø Designed to rapidly manipulate and alter memory

in such a way so as to accelerate the building of
images in a frame buffer intended for output to a
display.

Ø The term was popularized by NVIDIA in 1999.
Ø GeForce 256: The World’s first GPU.

History:

Pnmath	

§  GPU = Graphics Processing Unit
Ø Chip in computer video cards, PlayStation 3,

XBOX etc..
Ø Two major vendors: NVIDIA and AMD

GPU:

Reference:	 h.p://en.wikipedia.org/wiki/Nvidia_Tesla	
	

Pnmath	

§  Desktop GPUs
Ø GeForce series for CPU

§  Mobile GPUs
Ø GeForce series for Mobile

§  Workstation/HPC GPUs
§  Quadro NVS, Tesla, Kepler

NVIDIA GPUs:

Pnmath	

§  Supports CUDA and OpenCL
§  Fermi(Tesla version)

Ø Upto 512 cores
Ø Upto 6GB memory
Ø Upto 665 GFLOPS – Double precision
Ø Caches included: L1 per multiprocessor, L2

shared
§  Kepler in 2012
§  Maxwell in 2014

NVIDIA GPUs:

Pnmath	

§  Desktop GPUs
Ø Radeon series

§  Mobile GPUs
Ø Mobility Radeon

§  Workstation GPUs
Ø FirePro, FireStream

§  Supports OpenCL (no CUDA)

AMD GPUs:

Pnmath	
§  Modern GPUs are very efficient at

Ø Manipulating computer graphics, and their highly parallel
structure makes them more effective than general-purpose
CPUs for algorithms where processing of large block of data
is done in parallel.

§  GPUs are massively multithreaded manycore chips.
Ø NVIDIA tesla products have upto 512 cores.
Ø Over 665 GFLOPS sustained performance (double precision

floating point)
Ø 6GB of Memory
Ø Memory bandwidth upto 177 GBytes/sec.

§  Users across science and engineering disciplines are
achieving very good speedups on GPUs.

GPU continue:

Pnmath	

§  Large amount of nodes.
Ø Distributed memory
Ø Multicore processors (e.g. 12 cores per node Kraken)

§  Fast interconnect.
§  Programming models

Ø MPI
Ø Hybrid (Pthreads, OpenMP with MPI)

Typical Supercomputer:

Pnmath	

§  Accelerated HPC floating workloads using
GPUs.
Ø Peak FP performance 10x vs CPU.
Ø Memory bandwidth 20x vs CPU.
Ø Parallelism, of the order of 500 cores, thousands of

threads.

§  GPUs are accelerators.
Ø Has its own fast memory.
Ø Separate card connected to CPU node Via PCI-E bus.

Accelerated Supercomputer:

Pnmath	

§  Intel
Ø Intel MIC(Many Integrated

Core)
Ø ~ 50 X86 vector cores
Ø OpenMP, OpenCL, Intel

parallel building blocks
etc...

Ø First commercial
product(Knights corner) in
2012.

§  Other(FPGA and DSP
based system etc…)

Other accelerators:

Reference:	 h.p://intel.com	
	

Pnmath	

§  SIMD(Single Program, Multiple Data) are best.
§  Operations need to be sufficient size to

overcome overhead.
§  Think millions of operations.
§  Data transfer could be bottleneck (between CPU

memory and GPU memory)

Not for all applications:

Pnmath	

§  GPU is specialized for compute-intensive,
highly parallel computation-exactly what
graphics rendering is about.

§  GPU devotes more transistors to data
processing rather than data caching and flow
control.

How it is different from CPU:

 Chapter 1. Introduction

CUDA C Programming Guide Version 4.1 3

The reason behind the discrepancy in floating-point capability between the CPU and
the GPU is that the GPU is specialized for compute-intensive, highly parallel
computation – exactly what graphics rendering is about – and therefore designed
such that more transistors are devoted to data processing rather than data caching
and flow control, as schematically illustrated by Figure 1-2.

Figure 1-2. The GPU Devotes More Transistors to Data
Processing

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations – the same program is executed on many
data elements in parallel – with high arithmetic intensity – the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA™: a General-Purpose Parallel
Computing Architecture
In November 2006, NVIDIA introduced CUDA™, a general purpose parallel
computing architecture – with a new parallel programming model and instruction
set architecture – that leverages the parallel compute engine in NVIDIA GPUs to

Cache

ALU Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Pnmath	 Trying it together:

Pnmath	

§  High level block diagram of NVIDIA GPU chip.

GPU architecture :

Reference:	 h.p://nvidia.com	

Pnmath	

§  Multilevel levels of memory hierarchy

GPU memory model:

Reference:	 h.p://nvidia.com	

Pnmath	

§  Thread: is a ready for execution/running instance of a
kernel. Each thread has its own instruction address
counter and register state.

§  Warp: is a group of 32 parallel threads.
§  Block: is a groups of Warps. A block is executed on one

multiprocessor. Every block has its own shared memory
and registers in the multiprocessor.

§  Grid: is a group of Blocks.
§  Host: is the CPU in CUDA applications.
§  Device: is the GPU in CUDA applications.

Terminology:

Pnmath	

§  GPU has much more aggressive memory
 subsystem.

GPU memory model:

Reference:	 h.p://nvidia.com	

Pnmath	

How to use GPUs

§  Use existing GPU software
§  Use available libraries for GPUs
§  Program GPU with directives
§  Program native GPU code

GPU programming:
EFFO

RT	

Pnmath	

§  NAMD, GROMACS, GPU-HMMER, TeraChem
§  Pros

Ø No implementation headaches for end users.
§  Cons

Ø Existing applications do not cover all science areas.
Ø Often include limited number of algorithms/models.
Ø For many applications the GPU version is still

immature.

Use existing GPU software:

Pnmath	

§  GPU accelerator is called device, CPU is
host.

§  GPU code (kernel) is launched and executed
on the device by several threads.

§  Threads grouped into thread blocks.
§  Program code is written from single thread's

point of view.
Ø Each thread can diverge and execute a unique

code path (can cause performance issues)

GPU programming model:

Pnmath	

§  Threads:
Ø 3D IDs, unique in block

§  Blocks:
Ø 3D IDs, unique in grid

§  Dimensions are set at
kernel launch.

§  Built-in variables for
device code:
Ø threadIdx, blockIdx
Ø blockDim, gridDim

Thread Hierarchy : Thread Hierarchy

Grid

Block (1,1)

Block (1,0)Block (0,0)

Block (0,1)

Thread (0,1) Thread (1,1) Thread (2,1) Thread (3,1)

Thread (0,0) Thread (1,0) Thread (2,0) Thread (3,0)

Block (1,0)• Threads:
– 3D IDs, unique in block

• Blocks:
– 3D* IDs, unique in grid

• Dimensions are set at
kernel launch

• Built-in variables for device
code:
– threadIdx, blockIdx

– blockDim, gridDim

* Since CUDA4

Pnmath	

§  Compute Unified Device Architecture
§  CUDA is a C/C++ language extension for

GPU programming.
Ø PGI has developed similar FORTRAN 2003

extension.
§  Two APIs: Runtime and Driver

Introduction to CUDA:

Pnmath	

CUDA software stack:

© 2008 NVIDIA Corporation.

CUDA Software Development

NVIDIA C Compiler

NVIDIA Assembly
for Computing (PTX)

CPU Host Code

Integrated CPU + GPU
C Source Code

CUDA Optimized Libraries:
math.h, FFT, BLAS, …

CUDA
Driver

Profiler Standard C Compiler

GPU CPU

Reference:	 h.p://nvidia.com	

Pnmath	
§  Qualifiers

Ø global, device,
shared, local,
constant…

§  Built-in variables
Ø  threadIdx, blockIdx

§  Intrinsics
Ø __syncthreads,

§  Runtime API
Ø Memory, device

execution
management.

§  Kernel launch

Introduction to CUDA C:
__device__ float array[128];
__global__ void kern(float *data)
{
__shared__ float buffer[32};

 buffer[threadIdx.x] = data[i];

 __syncthreads;

}
float *d_data;
cudaMalloc((void **))&d_data,
bytes);
kern<<<1024, 128>>>(d_data);

Pnmath	

Vector add CPU:
void add(int *a, int *b, int *c)
{

 int i;
 for (i=0; i<N; i++)
 {
 c[i] = a[i] + b[i];
 }

}

Pnmath	
//include header files
#include <cuda.h>
#include <cutil.h>
//include kernels
#include "vector_add_kernel.cu"
static const int N = 100000;

int main(int argc, char** argv) {

int a[N], b[N], c[N];

int *dev_a, *dev_b, *dev_c;

//Memory allocation on device
cudaMalloc(&dev_a, N*sizeof(int);

cudaMalloc(&dev_b, N*sizeof(int);

cudaMalloc(&dev_c, N*sizeof(int);

//Memory copy host to device
cudaMemcpy(dev_a, a, N*sizeof(int), cudaMemcpuKind:cudaMemcpuHostToDevice);

cudaMemcpy(dev_b, b, N*sizeof(int), cudaMemcpuKind:cudaMemcpuHostToDevice);

//Call Kernel (in next slide)
//Copy result from GPU to CPU
cudaMemcpy(c,dev_c, N*sizeof(int), cudaMemcpuKind:cudaMemcpuDeviceToHost);

//Free memory
cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);

}

CUDA memory management:

Pnmath	 Vector launch kernel:

add<<<1,1>>>(dev_a, dev_b, dev_c);//serial

add<<<N,1>>>(dev_a, dev_b, dev_c);//parallel
//Only the first parameter interest us right
now. The first parameter ask Cuda to execute
the function on N parallel blocks.

Pnmath	
////vector_add_kernel.cu serial
static const int N=100000;

__global__ void add(int *a, int *b, int* c)

{
 for(int i=0;i<N;i++){

 c[i] = a[i] + b[i];

 }
}

Vector add kernel function:

Pnmath	
////vector_add_kernel.cu parallel
__global__ void add(int *a, int *b, int* c)

{
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]

}

Vector add kernel function:

Pnmath	

§  Modified C function call syntax:
 kernel<<<dim3 dG, dim3 dB>>>(...)
§  Execution Configuration (“<<< >>>”)
§  dG - dimension and size of grid in blocks Two-dimensional:

x and y
Blocks launched in the grid: dG.x * dG.y

§  dB - dimension and size of blocks in threads: Three-
dimensional: x, y, and z
Threads per block: dB.x * dB.y * dB.z

§  Unspecified dim3 fields initialize to 1

Launching Kernels:

Pnmath	

§  Compilation tools are a part of CUDA SDK.
§  nvcc compiler translates code written in CUDA

into PTX.
§  nvcc separates the code for host and device.

Ø Host code is compiled with regular C/C++ compiler.

§  More information:
http://www.nics.tennessee.edu/~ksharkey/
tutorials/

Compiling CUDA code:

Pnmath	

§  More information:

http://www.nics.tennessee.edu/~ksharkey/tutorials/

Compiling CUDA code:
On Keeneland:

>module load PE-intel
>module load cuda/4.1

> nvcc –ccbin $CC –o gpu.out
gpucode.cu

On Nautilus:

>module load PE-gnu
>module load cuda/4.0RC2

> nvcc –ccbin $CC –o
gpu.out gpucode.cu

Pnmath	

§  More information:

https://wiki-rdav.nics.tennessee.edu/index.php/
Using_the_Nvidia_GPUs_on_Nautilus

 AND
 http://keeneland.gatech.edu/support/quick-start#runningjobs

Running CUDA code:
On Keeneland:

> qsub –I -l nodes=1:ppn=1:gpus=3,walltime=00:30:00
> ./gpu.out

 On Nautilus:

> qsub –I –l ncpus=1,gpus=1,walltime=00:30:00
> ./gpu.out

Pnmath	

§  CUDA with MultiGPU
§  CUDA + OpenMP
§  CUDA + MPI
§  CUDA + OpenMP + MPI

Hybrid:

Pnmath	

§  MAGMA
§  CUBLAS
§  CULA
§  CUFFT
§  CUSPARSE
§  THRUST
§  Optix

CUDA libraries:

§  Easy to use in your
programs.

§  Algorithms in libraries
are usually efficient.

Pnmath	

§  Debuggers:
Ø Allinea DDT
Ø CUDA-GDB
Ø Totalview
Ø Cuda-memcheck

§  Profilers:
Ø Tau
Ø NVIDIA visual profiler

CUDA debuggers and profilers:

Pnmath	

§  NVIDIA: CUDA
§  Use compiler to

build kernels
§  C language

extensions(nvcc)
Ø Also a low-level

driver-only API

CUDA and OpenCL:

§  Open-free standard.
§  Builds kernel at

runtime.
§  API only, no new

compiler-API calls to
execute kernel

Pnmath	

§  Two main products
Ø PGI accelerators
Ø HMPP (CAPS enterprise)

§  Normal C or Fortran code with directives to
guide compiler in creating a GPU version.

§  Backend supporting CUDA, OpenCL and
even normal CPUs.

Directive based GPU code:

Pnmath	

§  Pros
Ø Same code base as CPU version
Ø Less time consuming
Ø Portability is better due to different backends.

§  Cons
Ø Generated code may not be as fast as hand-

tuned CUDA.

Directive based GPU code:

Pnmath	
§  Describes a collection of compiler directives to

specify loops and regions of code in standard
C,C++ and Fortran.

§  Allow programmer to create high-level host+
accelerators programs without the need to
explicitly initialize the device, manage data or
program transfers.

§  Backed by PGI, CAPS, Cray and NVIDIA
§  Part of OpenMP 4.0 ?
§  More information:

http://www.openacc-standard.org/

OpenACC:

Pnmath	

§  Aim to compile CUDA programs so that they can
be run on architectures other than NIVIDA GPUs

§  It is a modular dynamic compilation framework
for heterogeneous system, providing various
backend targets for CUDA programs and
analysis modules for the PTX virtual instruction
set.

§  Proliferation of Heterogeneous computing.
§  Ocelot currently allows CUDA programs to be

executed on NVIDIA GPUs, AMD GPUs, and
x86-CPUs at full speed without recompilation.

Ocelot:

Pnmath	
§  It combines the speed of CUDA and the graphics of the

GPU with the user friendliness.
§  Provides GPU library for C, C++, Fortran, Python and

MATLAB.
§  Provides GPU counterparts to CPU data types, such as

real and complex double, single,uint32, int32, logical,
etc. Any variable residing in the host (CPU) memory can
be cast to Jacket's GPU data types.

§  It’s memory management system allocates and manages
memory for these variables on the GPU automatically,
behind-the-scenes. Any functions called on GPU data
will execute on the GPU automatically without any extra
programming.

§  For more information: http://www.accelereyes.com/

Jacket:

Pnmath	
	

CPU:
X = double(magic(3));
Y = ones(3, 'double');
A = X * Y

GPU:
addpath <jacket_root>/engine
X = gdouble(magic(3));
Y = gones(3, 'double');
A = X * Y
 	

Jacket example:

Pnmath	

§  pyCUDA, pyOpenCL
§  MATLAB with CUDA toolbox
§  CUDA FORTRAN
§  ROpenCL, RCUDA
§  Haskell, Perl etc…

Programming languages and
GPGPU:

Pnmath	
§  http://developer.nvidia.com/category/zone/cuda-zone
§  http://gpgpu.org/
§  http://developer.nvidia.com/about-parallel-forall
§  http://www.gputechconf.com/page/home.html#
§  http://software.intel.com/en-us/articles/vcsource-tools-opencl-sdk/
§  http://developer.amd.com/pages/default.aspx
§  http://developer.download.nvidia.com/compute/DevZone/docs/html/

CUDALibraries/doc/CUBLAS_Library.pdf
§  http://www.vpac.org/files/GPU-Slides/04.debugging_profiling_tools.pdf
§  http://keeneland.gatech.edu/software/cuda
§  http://developer.nvidia.com/nvidia-visual-profiler

Resources:

Pnmath	

§  Get the data on the GPU(and keep it there! If
possible)
Ø PCIe x16 v2.0 bus: 8GiB/s in a single direction
Ø GPUs: ~180 GiB/s

§  Give the GPU enough work to do
§  Reuse and locate data to avoid global memory

bottlenecks
§  Corollary: Avoid malloc/free

Rules for fast GPU codes:

Pnmath	
§  Accelerated supercomputers emerging.
§  GPUs offer tremendous potential to accelerate

scientific applications.
§  Newer generations GPUs getting easier to

program.
§  Challenges still remain in using them efficiently.
§  Still a few cliffs:

Ø HOST-GPU transfer
Ø Careful memory access
Ø Lots of parallelism
Ø Thread divergence

Summary:

Pnmath	

§  Challenges remain

Ø Applicability: Can you solve your algorithm efficiently using
a GPU ?

Ø Programmability: Effort of code writing that uses a GPU
efficiently.

Ø Portability: Incompatibilities between vendors
Ø Availability: Are you able gain access to large scale

system ?
Ø Scalability: Can you scale the GPU software efficiently to

several nodes ?

Accelerated Supercomputer:

Pnmath	
§  https://nimrodteam.org/meetings/team_mtg_8_10/nimrod_gpu.pdf
§  http://people.maths.ox.ac.uk/~gilesm/hpc/NVIDIA/

NVIDIA_CUDA_Tutorial_No_NDA_Apr08.pdf
§  http://www.nvidia.com/docs/IO/105880/DS-Tesla-M-Class-Aug11.pdf
§  http://www.nics.tennessee.edu/~ksharkey/tutorials/
§  http://en.wikipedia.org/wiki/Graphics_processing_unit
§  http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2012-02-20/08-

opencl.pdf
§  http://developer.amd.com/gpu_assets/

OpenCL_Parallel_Computing_for_CPUs_and_GPUs_201003.pdf
§  http://gamelab.epitech.eu/blogtech/?p=28
§  Introduction GPU computing by Sebastian von alfthan
§  Supercomputing for the Masses: Killer-Apps, Parallel Mappings, Scalability

and Application Lifespan by Rob Farber
§  The PTX GPU Assembly Simulator and Interpreter By N.M. Stiffler, Zheming

Jin, Ibrahim Savran

References:

Pnmath	

§  In this tutorial session, we covered
Ø GPU architecture
Ø GPU programming model
Ø CUDA C
Ø CUDA tools
Ø OpenCL in brief
Ø Other useful GPU tools
Ø References

Summary/Wrapping up:

Pnmath	

Thank You !!!

