
Ryan Hulguin
ryan-hulguin@tennessee.edu

Outline

• Beacon
– The Beacon project
– The Beacon cluster
– TOP500 ranking
– System specs

• Xeon Phi Coprocessor
– Technical specs
– Many core trend
– Programming models
– Applications and performance

The Beacon Project

•  This material is based upon work supported by the National
Science Foundation (NSF) under Grant #1137097

•  NSF funding is used to port and optimize scientific codes to the
Intel® Xeon Phi™ coprocessor

•  The state of Tennessee has funded an expansion focusing on
energy efficiency, big data applications, and industry

•  The pre-production Intel® Xeon Phi™ coprocessors in the original
Beacon cluster have been upgraded to the commercial Intel® Xeon
Phi™ 5110P coprocessors

•  Currently, there are 60 projects that may request time on the
Beacon cluster

Beacon System Specs

Beacon Cray CS300-AC Cluster
CPU cores 768

Coprocessor cores 11520

Total system RAM 12 TB

Total coprocessor
RAM

1.5 TB

Total SSD storage 73 TB

I/O nodes 6

Interconnect FDR InfiniBand

Node configuration
Two 2.6 GHz eight-core Intel® Xeon® E5-2670
256 GB memory, 960 GB SSD storage
Four Intel® Xeon Phi™ 5110P coprocessors

top500.org list as of June 2013
Rank Site System Rmax (TFlop/

s)
Rpeak (TFlop/s) Power (kW)

1 National University of
Defense Technology
China

Tianhe-2 (Milky
Way-2)
Xeon Phi

33862.7 54902.4 17808

2 DOE/SC/Oak Ridge
National Laboratory
United States

Titan
Nvidia K20x

17590.0 27112.5 8209

3 DOE/NNSA/LLNL
United States

Sequoia 17173.2 20132.7 7890

4 RIKEN Advanced Institute
for Computational Science
(AICS)
Japan

K computer 10510.0 11280.4 12660

5 DOE/SC/Argonne National
Laboratory
United States

Mira 8586.6 10066.3 3945

397 National Institute for
Computational Sciences/
University of Tennessee
United States

Beacon
Xeon Phi

110.5 157.5 45

New World Record

Green500 as of November 2012

Intel® Xeon Phi™ Coprocessor

• Xeon Phi is the brand name that Intel uses for all their
products based on the Many Integrated Core (MIC)
architecture

• The cores are based on the x86 instruction set
• Xeon Phi can be programmed in familiar languages

(C/C++ and Fortran) with familiar parallel
programming models (OpenMP and/or MPI)

• Xeon Phi was initially referred to as Knights Corner
(KNC)

• Knights Landing (KNL) is the codename for the next
generation MIC product

Intel® Xeon Phi™ Coprocessor Overview

Ring

Scalar
Registers

Vector
Registers

512K L2 Cache

32K L1 I-cache
32K L1 D-cache

Instruction Decode

Vector
Unit

Scalar
Unit

•  Up to 61 in-order cores
–  Ring interconnect

•  64-bit addressing
•  Two pipelines

–  Intel® Pentium® processor family-based scalar units
•  Dual issue with scalar instructions

–  Pipelined one-per-clock scalar throughput
•  4 clock latency, hidden by round-robin scheduling of

threads

•  4 hardware threads per core
–  Cannot issue back to back instruction in same thread

•  All new vector unit
–  512-bit SIMD Instructions – not Intel® SSE, MMX™, or Intel®

AVX
–  32 512-bit wide vector registers

•  16 singles or 8 doubles per register

•  Fully-coherent L1 and L2 caches

Intel® Xeon Phi™ coprocessor 5110P
(codenamed Knights Corner)

SKU # 5110P
Form factor PCIe card
Thermal solution passively

cooled
Peak double
precision

1011 GF

Max number of cores 60
Core clock speed 1.053 GHz
Memory capacity 8 GB
GDDR5 memory
speeds

5.0 GT/s

Peak memory BW 320
Total cache 30 MB
Board TDP 225 Watts
Fabrication process 22 nm

The	
 Intel®	
 Xeon	
 Phi™	
 coprocessor	

(codenamed	
 Knights	
 Corner)	

is	
 the	
 ;irst	
 commercial	
 product	

employing	
 the	
 Intel®	
 Many	

Integrated	
 Core	
 (MIC)	
 architecture.	

	
 	

The	
 Intel®	
 Xeon	
 Phi™	
 coprocessor	
 	

5110P	
 shown	
 here	
 employs	
 passive	

cooling.	

Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in
the U.S. and /or other countries.

x86 SMP-on-a-chip running Linux

• SMP = symmetric multiprocessor
– shared memory running a single operating system

• Each coprocessor has its own ip address
• Can ssh to individual coporocessors
• Feels like an independent compute node
• Currently uses a custom Linux operating system

(Not Ubuntu, Red Hat, etc.)

Many core trend

•  In the early 2000s, CPU core speeds plateaued at ~3 GHz
• Further advances to increase computing power are

achieved using parallel programming
• As seen in the previous Top500 slide, supercomputers

are now turning to accelerators/coprocessors to
increase computing power

• This new hardware is requiring new ways of
programming

• There is a push for hybrid distributed/threaded
programming using these accelerators/coprocessors

Why Use Xeon Phi?

• Code tuned to run on Xeon Phi is guaranteed to
run well on normal Xeon CPUs

• Popular programming models such as MPI,
OpenMP, and Intel TBB are fully supported

• Support for newer models exists as well:
Coarray Fortran, Intel Cilk Plus, and OpenCL

• Can run programs that GPUs cannot
– Example: NWChem

Considerations for Good Performance on
the Intel® Xeon Phi™ Coprocessor
• Some portion of the code must be highly parallel

and highly vectorizable
– Not all code can be written this way
– Serial code run on the Intel Xeon Phi will take a huge

performance hit

• Very short (low-latency) tasks are not optimal to
offload to the coprocessor
– There will be thread setup and communication

overhead

Programming Models – Brief Overview

• Native Mode
–  Everything runs on the MIC
– May have issues with libraries not existing, needing copied over

(e.g., MKL, MPI with debug symbols)
–  Especially useful when the majority of the code can run in

parallel

• Offload Mode
–  Serial portion runs on host
–  Parallel portions are offloaded and run on the MIC
–  Especially useful when there are plenty of data dependent serial

calculations, and only small sections of code that can run in
parallel

• Automatic Offload Mode
–  select MKL functions only

Native mode

• Native mode libraries and binaries are created
by simply compiling with the –mmic compile flag

• After they are created, they need to be either
copied to the coprocessors directly (scp file
mic0), or be placed in a directory on a file
system that is mounted by the coprocessors (i.e.
lustre/medusa scratch filesystem)

• This does not make a serial code parallel
• The native mode binaries can be launched by

either connecting to the coprocessor via ssh or
by using MPI to launch it remotely from the host
node

Offload Mode
• Code starts running on host and regions

designated to be offloaded via pragmas are
run on the MIC card when encountered

• The host CPU and the MIC cards do not share
memory in hardware

• Data is passed to and from the MIC card
explicitly or implicitly (C/C++ only)

• The statement immediately following the
offload pragma/directive will be run on a
coprocessor

C/C++ Syntax Fortran Syntax
#pragma offload <clauses>
<statement>

!dir$ offload <clauses>
<statement>

Marking Variables/Functions for use
on MIC
•  In offload mode, the compiler needs to know ahead of

time which functions will run on the MIC
• Also any variables that are to exist on both the host

and the MIC need to be known by the compiler as
well

• This is done for both functions and variables using
the following keyword

C/C++ Syntax Fortran Syntax
__attribute__((target(mic))) !dir$ attributes offload:<MIC> ::

<routine-name>

An alternative keyword is __declspec(target (mic))

Explicit Copy

• Programmer identifies the variables that need
copying to and from the card in the offload
directive

• C/C++ Example:
– #pragma offload target(mic) in(data:length(size))

• Fortran Example:
– !dir$ offload target(mic) in(data:length(size))

• Variables and pointers to be copied are
restricted to scalars, structs of scalars, and
arrays of scalars
– i.e. double *var is allowed, but not double **var.

Explicit Copy Clauses and Modifiers

Clauses / Modifiers Syntax Semantics
Target specification target(name[:card_number]) Where to run construct

Conditional offload if (condition) Boolean expression

Inputs in(var-list modifiersopt) Copy from host to coprocessor

Outputs out(var-list modifiersopt) Copy from coprocessor to host

Inputs & outputs inout(var-list modifiersopt) Copy host to coprocessor and back
when offload completes

Non-copied data nocopy(var-list modifiersopt) Data is local to target

Modifiers

Specify pointer length length(element-count-expr) Copy N elements of the pointer’s type

Control pointer memory
allocation

alloc_if (condition) Allocate memory to hold data
referenced by pointer if condition is
TRUE

Control freeing of pointer
memory

free_if (condition) Free memory used by pointer if
condition is TRUE

Control target data
alignment

align (expression) Specify minimum memory alignment
on target

Implicit Copy

• This method is available only in C/C++
• Sections of memory are maintained at the

same virtual address on both the host and the
MIC

• This enables sharing of complex data
structures that contain pointers

• This “shared” memory is synchronized when
entering and exiting an offload call

• Only modified data is transferred between
CPU and MIC

Dynamic Memory Allocation Using
Implicit Copies
• Special functions are needed in order to allocate

and free dynamic memory for implicit copies
_Offload_shared_malloc()
_Offload_shared_aligned_malloc()
_Offload_shared_free()
_Offload_shared_aligned_free()

The _Cilk_shared keyword for Data
and Functions

What Syntax Semantics
Function int _Cilk_shared f(int x)

{ return x+1; }
Versions generated for both
CPU and card; may be called
from either side

Global Cilk_shared int x = 0; Visible on both sides

File/Function static static _Cilk_shared int x; Visible on both sides, only to
code within the file/function

Class class _Cilk_shared x {…}; Class methods, members, and
and operators are available on
both sides

Pointer to shared
data

int _Cilk_shared *p; p is local (not shared), can
point to shared data

A shared pointer int *_Cilk_shared p; p is shared; should only point
at shared data

Entire blocks of code #pragma offload_attribute
(push, _Cilk_shared)

 
#pragma offload_attribute(pop)

Mark entire files or large blocks
of code _Cilk_shared using this
pragma

Offloading using Implicit Copy

• Rather than using a pragma directive, the
keyword “_Cilk_offload” is used when calling
a function to be run on the MIC
o Examples:

o x = _Cilk_offload function(y)
o x = _Cilk_offload_to (card_number) function(y)

o Note: function needs to be defined using the
_Cilk_shared keyword

Explicit/Implicit Copy Comparison

Offload via Explicit Data
Copying

Offload via Implicit Data
Copying

Language Support Fortran, C, C++ (C++ functions
may be called, but C++ classes
cannot be transferred)

C, C++

Syntax Pragmas/Directives:
• #pragma offload in C/C+
+

• !dir$ omp offload
directive in Fortran

Keywords:
 _Cilk_shared and
_Cilk_offload

Used for… Offloads that transfer
contiguous blocks of data

Offloads that transfer all or parts
of complex data structures, or
many small pieces of data

Select Offload Examples

•  The offload mode allows select portions of a code to run on
the Intel MIC, while the rest of it runs on the host.

•  Ideally, the offload regions are highly parallel
• What follows is select offload examples, provided by Intel,

that demonstrate how to move data to and from the Intel
MIC cards

•  Intel has many offload examples located in the following
directory
– /global/opt/intel/composerxe_mic/Samples/en_US/C++/
mic_samples/intro_sampleC/

•  They can be copied to a directory of your choice and then
compiled with make mic

SampleC01

•  This code computes Pi on the MIC using #pragma offload

•  #pragma offload target (mic) runs the very next line (or block
of code if braces are used) on the Intel MIC
–  In this case the whole for loop is run on the Intel MIC

•  Note that pi was declared outside of the offload region, and it did not
need to be explicitly copied to the MIC since it is a scalar

 float pi = 0.0f;
 int count = 10000;
 int i;

 #pragma offload target (mic)
 for (i=0; i<count; i++)
 {
 float t = (float)((i+0.5f)/count);
 pi += 4.0f/(1.0f+t*t);
 }
 pi /= count;

SampleC02
•  This code initializes 2 arrays on the host, and then has the Intel

MIC add the arrays together, and store the result in a third array

•  The #pragma offload_attribute(push/pop) pair marks the
block of code between them to be used on both the host and the
Intel MIC

•  They could have been marked individually with __attribute__
((target(mic)))

•  Without those statements, the Intel MIC would not be able to
see/use the 3 arrays

typedef double T;

#define SIZE 1000

#pragma offload_attribute(push, target(mic))
static T in1_02[SIZE];
static T in2_02[SIZE];
static T res_02[SIZE];
#pragma offload_attribute(pop)

static void populate_02(T* a, int s);

SampleC02 Continued

•  The sum of the 2 arrays is done by the Intel MIC
•  Note that only a single Intel MIC core is used

void sample02()
{
 int i;
 populate_02(in1_02, SIZE);
 populate_02(in2_02, SIZE);

 #pragma offload target(mic)
 {
 for (i=0; i<SIZE; i++)
 {
 res_02[i] = in1_02[i] + in2_02[i];
 }
 }
}

SampleC03

•  This program is similar to SampleC02, except that it avoids
unnecessary data transfer

•  Previously, all 3 arrays were copied to the card at the start of the

offload call, and then copied back at the end of the offload call
•  Now, only the in1_03 and in2_03 arrays are copied to the card,

and only the res_03 array is copied back

void sample03()
{
 int i;
 populate_03(in1_03, SIZE);
 populate_03(in2_03, SIZE);

 #pragma offload target(mic) in(in1_03, in2_03) out(res_03)
 {
 for (i=0; i<SIZE; i++)
 {
 res_03[i] = in1_03[i] + in2_03[i];
 }
 }
}

SampleC04

•  This program is similar to the previous two samples, but now we
are dealing with pointers instead of the static arrays directly

•  Since the length of the pointer is not known, it must be explicitly

passed as an argument
•  res_04 is still a static array in this sample

void sample04()
{
 T* p1, *p2;
 int i, s;
 populate_04(in1_04, SIZE);
 populate_04(in2_04, SIZE);

 p1 = in1_04;
 p2 = in2_04;
 s = SIZE;

 #pragma offload target(mic) in(p1, p2:length(s)) out(res_04)
 {
 for (i=0; i<s; i++)
 {
 res_04[i] = p1[i] + p2[i];
 }
 }
}

SampleC05
•  This program is like the last except the sum of the arrays, via

pointers, is now stored in a pointer to the result array
•  This pointer needs to have its length specified as well
•  Also, the summation now happens in the function get_result()
•  get_result() did not need to be marked with __attribute__
((target(mic))) because it was called by the host and not by the
Intel MIC

void sample05()
{
 T my_result[SIZE];
 populate_05(in1_05, SIZE);
 populate_05(in2_05, SIZE);

 get_result(in1_05, in2_05, my_result, SIZE);
}

static void get_result(T* pin1, T* pin2,
 T* res, int s)
{
 int i;

 #pragma offload target(mic) \
 in(pin1, pin2 : length(s)) \
 out(res : length(s))
 {
 for (i=0; i<s; i++)
 {
 res[i] = pin1[i] + pin2[i];
 }
 }
}

SampleC07
•  In this program, an array of data is sent from the host to the Intel

MIC in one offload call
•  The array values are then doubled on the MIC in a separate

offload call, as long as a MIC card exists
#define SIZE 1000

__attribute__((target(mic))) int array1[SIZE];
__attribute__((target(mic))) int send_array(int* p, int s);
__attribute__((target(mic))) void compute07(int* out, int size);

void sample07()
{
 int in_data[16] = { 1, 2, 3, 4, 5, 6, 7, 8,
 9, 10, 11, 12, 13, 14, 15, 16 };
 int out_data[16];
 int array_sent = 0;
 int num_devices;

 // Check if coprocessor(s) are installed and available
 num_devices = _Offload_number_of_devices();

 #pragma offload target(mic : 0)
 array_sent = send_array(in_data, 16);

 #pragma offload target(mic : 0) if(array_sent) out(out_data)
 compute07(out_data, 16);
}

SampleC07 Continued
•  Reminder, __attribute__((target(mic))) makes it so both the

host and the Intel MIC can see/use the variable/function
•  The function _Offload_number_of_devices() returns how many

Intel MIC cards are available
•  The macro __MIC__ lets you know if the MIC (value of 1) or host

(value of 0) is currently evaluating the statements
__attribute__((target(mic))) int send_array(int* p, int s)
{
 int retval;
 int i;

 for (i=0; i<s; i++)
 {
 array1[i] = p[i];
 }

#ifdef __MIC__
 retval = 1;
#else
 retval = 0;
#endif

 // Return 1 if array initialization
 // was done on target
 return retval;
}

__attribute__((target(mic))) void compute07(int* out, int size)
{
 int i;
 for (i=0; i<size; i++)
 {
 out[i] = array1[i]*2;
 }
}

SampleC08

•  This program is like SampleC01, except now the Pi calculation is
done using an OpenMP for loop on the Intel MIC to utilize the many
cores

 float pi = 0.0f;
 int count = 10000;
 int i;

 #pragma offload target (mic)
 #pragma omp parallel for reduction(+:pi)
 for (i=0; i<count; i++)
 {
 float t = (float)((i+0.5f)/count);
 pi += 4.0f/(1.0f+t*t);
 }
 pi /= count;

Applications run on Xeon Phi

•  Science codes ported and/or optimized through the Beacon
Project
–  Chemistry – NWChem (ported)
–  Astrophysics – Enzo (ported and optimized)
–  Magnetospheric Physics – H3D (ported and optimized)

•  Other codes of interest
–  Electronic Structures – Elk FP-LAPW (ported)
–  Computational Fluid Dynamics (CFD) – Euler and BGK Boltzmann

Solver (ported and optimized)

Enzo	

•  Community	
 code	
 for	
 computational	
 astrophysics	
 and	
 cosmology	

•  More	
 than	
 1	
 million	
 lines	
 of	
 code	

•  Uses	
 powerful	
 adaptive	
 mesh	
 re:inement	

•  Highly	
 vectorized	
 with	
 a	
 hybrid	
 MPI	
 +	
 OpenMP	
 programming	
 model	

•  Utilizes	
 HDF5	
 and	
 HYPRE	
 libraries	

Enzo	
 was	
 ported	
 and	
 optimized	
 for	
 the	
 the	
 Intel®	
 Xeon	
 Phi™	
 Coprocessor	
 by	

Dr.	
 Robert	
 Harkness	

harkness@sdsc.edu	

	

Preliminary	
 Scaling	
 Study:	
 Native	

•  ENZO-C
•  128^3 mesh (non-AMR)
•  pure MPI
•  native mode

1

2

4

8

16

32

1 2 4 8 16 32

Sp
ee

du
p

Number of Threads

Observed

Ideal

Results	
 were	
 generated	
 on	
 the	
 Intel®	
 Knights	
 Ferry	
 software	
 development	
 platform	
 	

Hybrid3d (H3D)

•  Provides breakthrough kinetic simulations of the Earth’s
magnetosphere

•  Models the complex solar wind-magnetosphere interaction using
both electron fluid and kinetic ions
–  This is unlike magnetohydrodynamics (MHD), which completely

ignores ion kinetic effects
•  Contains the following HPC innovations:

1. multi-zone (asynchronous) algorithm
2. dynamic load balancing
3. code adaptation and optimization to large number of cores

Hybrid3d	
 (H3D)	
 was	
 provided	
 for	
 porting	
 to	
 the	
 the	
 Intel®	
 Xeon	
 Phi™	
 Coprocessor	
 by	

Dr.	
 Homa	
 Karimabadi	

hkarimabadi@ucsd.edu	

Hybrid3d (H3D) Performance

1

2

4

8

16

32

64

1 2 4 8 16 32 64

R
el

at
iv

e
Sp

ee
du

p

Number of MPI Processes

H3D Speedup on the Intel® Xeon
Phi™ Coprocessor

(codename Knights Corner)

Observed

Ideal
Speedup

Results	
 were	
 generated	
 on	
 a	
 Pre-­‐Production	
 Intel®	
 Xeon	
 Phi™	
 coprocessor	

with	
 B0	
 HW	
 and	
 Beta	
 SW	

61	
 cores	
 @	
 1.09	
 GHz	
 and	
 8	
 GB	
 of	
 GDDR5	
 RAM	
 @	
 2.75	
 GHz	
 	
 	

	

Optimizations	
 were	

provided	
 by	
 Intel	
 senior	

software	
 engineer	
 Rob	
 Van	

der	
 Wjingaart	

Elk FP-LAPW
http://elk.sourceforge.net/
Paramount to extracting functionality from these
advanced materials is having a detailed understanding
of their electronic, magnetic, vibrational, and optical
properties.
Elk is a software platform which allows for the
understanding of these properties from a first
principles approach. It employs electronic
structure techniques such as density functional
theory, Hartree-Fock theory, and Green’s
function theory for the calculation of relevant
properties from first principles.

Antiferromagnetic
structure of Sr2CuO3

Elk	
 was	
 ported	
 to	
 the	
 the	
 Intel®	
 Xeon	
 Phi™	
 Coprocessor	
 by	

W.	
 Scott	
 Thornton	

wsttiger@gmail.com	

	

Elk	
 FP-­‐LAPW	
 Performance	

Elk	
 uses	
 master-­‐slave	
 parallelism	
 where	
 orbitals	
 for	
 different	
 momenta	
 are	

computed	
 semi-­‐independently.	
 In	
 this	
 test	
 27	
 and	
 64	
 different	
 crystal	

momenta	
 were	
 used.	
 Test	
 case	
 was	
 bulk	
 silicon.	

Results	
 were	
 generated	
 on	
 a	
 Pre-­‐Production	
 Intel®	
 Xeon	
 Phi™	
 coprocessor	

with	
 A0	
 HW	
 and	
 Beta	
 SW	

52	
 cores	
 @	
 1.00	
 GHz	
 and	
 8	
 GB	
 of	
 GDDR5	
 RAM	
 @	
 2.25	
 GHz	
 	
 	

	

Unsteady	
 solution	
 of	
 a	
 Sod	
 Shock	
 using	
 the	
 Euler	

equations	

Steady-­‐state	
 solution	
 of	
 a	
 Couette	
 :low	
 using	
 the	
 Boltzmann	

equation	
 with	
 BGK	
 collision	
 approximation	

•  2 CFD solvers were developed in house at NICS
•  1st solver is based on the Euler equations
•  2nd solver is based on Model Boltzmann equations

Computational Fluid Dynamics (CFD)

The	
 above	
 CFD	
 solvers	
 were	
 developed	
 for	
 the	
 Intel®	
 Xeon	
 Phi™	
 Coprocessor	
 by	

Ryan	
 C.	
 Hulguin	

ryan-­‐hulguin@tennessee.edu	

Impact of Various Optimizations on
the Model Boltzmann Equation Solver

•  The	
 Model	
 Boltzmann	
 Equation	
 solver	
 was	
 optimized	
 by	
 Intel	
 software	

engineer	
 Rob	
 Van	
 der	
 Wjingaart	

•  He	
 took	
 a	
 baseline	
 solver	
 where	
 all	
 loops	
 were	
 vectorized	
 except	
 for	

one,	
 and	
 applied	
 the	
 following	
 optimizations	
 to	
 get	
 the	
 most	

performance	
 out	
 of	
 the	
 Intel®	
 Xeon	
 Phi™	
 Coprocessor	

	
 	
 	
 	
 	
 	
 (codename	
 Knights	
 Corner)	
 	

•  Set I — Loop Vectorization
–  Stack variable pulled out of the loop
–  Class member turned into a regular

structure
•  Set II — Data Access

–  Arrays linearized using macros
–  Align data for more efficient access

•  Set III — Parallel Overhead
–  Reduce the number of parallel sections

•  Set	
 IV	
 —	
 Dependency	

•  Remove	
 reduction	
 from	
 computational	
 loop	
 by	

saving	
 value	
 into	
 a	
 private	
 variable	

•  Set	
 V	
 —	
 Precision	

•  Use	
 medium	
 precision	
 for	
 math	
 function	
 calls	
 (-­‐
;imf-­‐precision=medium)	

•  Set	
 VI	
 —	
 Precision	

•  Use	
 single	
 precision	
 constants	
 and	
 intrinsics	

•  Set	
 VII	
 —	
 Compiler	
 Hints	

•  Use	
 #pragma	
 SIMD	
 instead	
 of	
 #pragma	
 IVDEP	

Optimization Results from the Model
Boltzmann Equation Solver

0

1

2

3

4

5

6

7

8

R
el

at
iv

e
Sp

ee
du

p

balanced scatter

Loop Vectorization

Results	
 were	
 generated	
 on	
 a	
 Pre-­‐Production	
 Intel®	
 Xeon	
 Phi™	
 coprocessor	

with	
 B0	
 HW	
 and	
 Beta	
 SW	

61	
 cores	
 @	
 1.09	
 GHz	
 and	
 8	
 GB	
 of	
 GDDR5	
 RAM	
 @	
 2.75	
 GHz	
 	
 	

	

Model Boltzmann Equation Solver
Performance

Results	
 were	
 generated	
 on	
 a	
 Pre-­‐Production	
 Intel®	
 Xeon	
 Phi™	
 coprocessor	

with	
 B0	
 HW	
 and	
 Beta	
 SW	

61	
 cores	
 @	
 1.09	
 GHz	
 and	
 8	
 GB	
 of	
 GDDR5	
 RAM	
 @	
 2.75	
 GHz	
 	
 	

	

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128 256

R
el

at
iv

e
Sp

ee
du

p

Number of OpenMP Threads

Relative Speedup of two 8-core 3.5 GHz Intel® Xeon E5-2680
Processors Versus an Intel® Xeon Phi™ Coprocessor

Dual Intel® Xeon E5-2680 - Compiler Hints

Intel Xeon Phi - Compiler Hints - Balanced

Requesting time on Beacon

• Fill out form at
https://portal.nics.tennessee.edu/accounts/request for a
director’s discretionary account
–  Students should have their advisor make the request

• An abstract and justification as to why time should be
granted is needed

Links/Contact Information

• More information about beacon can found at:
http://www.jics.tennessee.edu/aace/beacon/

• More information about using/programming for Intel
Xeon Phi can be found at:
http://software.intel.com/en-us/mic-developer

Ryan Hulguin
ryan-hulguin@tennessee.edu

