NATIONAL INSTITUTE FOR COMPUTATIONAL SCIENCES

” [

‘ I 1[‘1|||I|I|nuw

Intro to Beacon and
Intel Xeon Phi Coprocessors

Ryan Hulguin

ryan-hulguin@tennessee.edu

NATIONAL INSTITUTE FOR COMP#IFATIONAL SCIENCES

Outline

* Beacon
— The Beacon project
—The Beacon cluster
—TOP500 ranking
— System specs

* Xeon Phi Coprocessor

—Technical specs

—Many core trend

— Programming models

— Applications and performance

NICS)

r

The Beacon Project = | ¢

MIC

Partner_J

This material is based upon work supported by the National
Science Foundation (NSF) under Grant #1137097

NSF funding is used to port and optimize scientific codes to the
Intel® Xeon Phi™ coprocessor

The state of Tennessee has funded an expansion focusing on
energy efficiency, big data applications, and industry

The pre-production Intel® Xeon Phi™ coprocessors in the original
Beacon cluster have been upgraded to the commercial Intel® Xeon
Phi™ 5110P coprocessors

Currently, there are 60 projects that may request time on the
Beacon cluster

NICS)

Beacon System Specs

Beacon Cray CS300-AC Cluster

CPU cores 768
Coprocessor cores 11520
Total system RAM 12 TB
Total coprocessor 1.5TB

RAM
Total SSD storage 73 TB
I/O nodes 6
Interconnect FDR InfiniBand

Node configuration

Two 2.6 GHz eight-core Intel® Xeon® E5-2670
256 GB memory, 960 GB SSD storage

Four Intel® Xeon Phi™ 5110P coprocessors

NICS,

top500.0rg list as of June 2013

Rank | Site System Rmax (TFlop/ Rpeak (TFlop/s) | Power (kW)
s)

1 National University of Tianhe-2 (Milky 33862.7 54902 .4 17808
Defense Technology Way-2)
China Xeon Phi

2 DOE/SC/Oak Ridge Titan 17590.0 27112.5 8209
National Laboratory Nvidia K20x
United States

3 DOE/NNSA/LLNL Sequoia 17173.2 20132.7 7890
United States

4 RIKEN Advanced Institute | K computer 10510.0 11280.4 12660
for Computational Science
(AICS)
Japan

5 DOE/SC/Argonne National | Mira 8586.6 10066.3 3945
Laboratory
United States

397 National Institute for Beacon 110.5 157.5 45
Computational Sciences/ | Xeon Phi
University of Tennessee
United States

NICS)

New World Record

WORLD RECORD!
“Beacon” at NIGS

Intel® Xeon® + Intel Xeon Phi™
Cluster
First to Deliver
2.499 GigaFLOPS / Watt
71.4% efficiency
#1 on current Green500

intel’ inside’ | NICS M@\ intel)

"
- - -
-
e I t

XeonﬁPhi”

Green500 as of November 2012

sponsored by

SUPERMICR®'

This certificate is in recognition of your organization’s achievements in reducing the
environmental impact of high-performance computing.

National Institute for Computational Sciences/University of Tennessee

is ranked

1st

on the world's Green500 List of computer systems as of

Wu-chun Feng Co-Chair Kirk Cameron, Co-Chair

e e e e e e e e
\ I\ il g\ I\ iy I\ I y
o =il >l S il s e S e S e e S —

-

Intel® Xeon Phi™ Coprocessor

 Xeon Phi is the brand name that Intel uses for all their
products based on the Many Integrated Core (MIC)

architecture

e The cores are based on the x86 instruction set

 Xeon Phi can be programmed in familiar languages
(C/C++ and Fortran) with familiar parallel
programming models (OpenMP and/or MPI)

 Xeon Phi was initially referred to as Knights Corner
(KNC)

* Knights Landing (KNL) is the codename for the next
generation MIC product

NICS)

Intel® Xeon Phi™ Coprocessor Overview

Up to 61 in-order cores
— Ring interconnect

64-bit addressing

Two pipelines Vector
— Intel® Pentium® processor family-based scalar units Unit
* Dual issue with scalar instructions

Instruction Decode

— Pipelined one-per-clock scalar throughput e Vector
* 4 clock latency, hidden by round-robin scheduling of Registers Registers
threads S—

4 hardware threads per core e Lr poache

— Cannot issue back to back instruction in same thread
512K L2 Cache

All new vector unit

— 512-bit SIMD Instructions — not Intel® SSE, MMX™, or Intel&
AVX

— 32 512-bit wide vector registers
* 16 singles or 8 doubles per register

Fully-coherent L1 and L2 caches
NICS)

Intel® Xeon Phi™ coprocessor 5110P
(codenamed Knights Corner)

The Intel® Xeon Phi™ coprocessor
(codenamed Knights Corner)

is the first commercial product
employing the Intel® Many
Integrated Core (MIC) architecture.

The Intel® Xeon Phi™ coprocessor
5110P shown here employs passive
cooling.

Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in
the U.S. and /or other countries.

SKU # 5110P

Form factor PCle card

Thermal solution passively
cooled

Peak double 1011 GF

precision

Max number of cores | 60

Core clock speed 1.053 GHz

Memory capacity 8 GB

GDDRS5 memory 5.0 GT/s

speeds

Peak memory BW 320

Total cache 30 MB

Board TDP 225 Watts

Fabrication process 22 nm

NICS)

x86 SMP-on-a-chip running Linux

* SMP = symmetric multiprocessor
—shared memory running a single operating system

* Each coprocessor has its own ip address
* Can ssh to individual coporocessors
* Feels like an independent compute node

* Currently uses a custom Linux operating system
(Not Ubuntu, Red Hat, etc.)

NICS)

Many core trend

* In the early 2000s, CPU core speeds plateaued at ~3 GHz

* Further advances to increase computing power are
achieved using parallel programming

* As seen in the previous Top500 slide, supercomputers
are now turning to accelerators/coprocessors to
increase computing power

* This new hardware is requiring new ways of
programming

* There is a push for hybrid distributed/threaded
programming using these accelerators/coprocessors

NICS)

Why Use Xeon Phi?

* Code tuned to run on Xeon Phi is guaranteed to
run well on normal Xeon CPUs

* Popular programming models such as MPI,
OpenMP, and Intel TBB are fully supported

* Support for newer models exists as well:
Coarray Fortran, Intel Cilk Plus, and OpenCL

 Can run programs that GPUs cannot
— Example: NWChem

NICS)

Considerations for Good Performance on
the Intel® Xeon Phi™ Coprocessor

* Some portion of the code must be highly parallel
and highly vectorizable

— Not all code can be written this way

— Serial code run on the Intel Xeon Phi will take a huge
performance hit

* Very short (low-latency) tasks are not optimal to
offload to the coprocessor

— There will be thread setup and communication
overhead

NICS)

Programming Models - Brief Overview

* Native Mode

— Everything runs on the MIC

— May have issues with libraries not existing, needing copied over
(e.g., MKL, MPI with debug symbols)

— Especially useful when the majority of the code can run in
parallel

e Offload Mode

— Serial portion runs on host
— Parallel portions are offloaded and run on the MIC

— Especially useful when there are plenty of data dependent serial
calculations, and only small sections of code that can run in
parallel

e Automatic Offload Mode

— select MKL functions only

NICS)

Native mode

 Native mode libraries and binaries are created
by simply compiling with the —mmic compile flag

* After they are created, they need to be either
copied to the coprocessors directly (scp file
mic0), or be placed in a directory on a file
system that is mounted by the coprocessors (i.e.
lustre/medusa scratch filesystem)

* This does nof make a serial code parallel

* The native mode binaries can be launched by
either connecting to the coprocessor via ssh or
by using MPI to launch it remotely from the host

node
NICS,

Offload Mode

* Code starts running on host and regions
designated to be offloaded via pragmas are
run on the MIC card when encountered

e The host CPU and the MIC cards do not share
memory in hardware

* Data is passed to and from the MIC card
explicitly or implicitly (C/C++ only)

C/C++ Syntax Fortran Syntax
#pragma offload <clauses> Idir$ offload <clauses>
<statement> <statement>

* The statement immediately following the
offload pragmal/directive will be run on a
coprocessor NICS

Marking Variables/Functions for use
on MIC

* In offload mode, the compiler needs to know ahead of
time which functions will run on the MIC

* Also any variables that are to exist on both the host
and the MIC need to be known by the compiler as
well

* This is done for both functions and variables using
the following keyword

C/C++ Syntax Fortran Syntax

__attribute _ ((target(mic))) Idir$ attributes offload:<MIC> ::
<routine-name>

An alternative keyword is __ declspec(target (mic))

NICS)

Explicit Copy

* Programmer identifies the variables that need
copying to and from the card in the offload
directive

* C/C++ Example:

— #pragma offload target(mic) in(data:length(size))

* Fortran Example:
- 'dir$ offload target(mic) in(data:length(size))

* Variables and pointers to be copied are
restricted to scalars, structs of scalars, and
arrays of scalars

—i.e. double *var is allowed, but not double **var.
NICS

Explicit Copy Clauses and Modifiers

Clauses / Modifiers

Target specification
Conditional offload
Inputs

Outputs

Inputs & outputs

Non-copied data
Modifiers

Specify pointer length

Control pointer memory
allocation

Control freeing of pointer
memory

Control target data
alignment

Syntax

target (name[:card number])
if (condition)
in(var-list modifiers,,)

out (var-1list modifiersqm)

inout (var-list modifiers,,)

nocopy (var-list modifiers%m)

length (element-count-expr)

alloc if (condition)

free if (condition)

align (expression)

NICS

Semantics

Where to run construct
Boolean expression

Copy from host to coprocessor
Copy from coprocessor to host

Copy host to coprocessor and back
when offload completes

Data is local to target

Copy N elements of the pointer’s type

Allocate memory to hold data
referenced by pointer if condition is
TRUE

Free memory used by pointer if
condition is TRUE

Specify minimum memory alignment
on target

Implicit Copy

* This method is available only in C/C++

e Sections of memory are maintained at the
same virtual address on both the host and the
MIC

* This enables sharing of complex data
structures that contain pointers

* This “shared” memory is synchronized when
entering and exiting an offload call

* Only modified data is transferred between
CPU and MIC

NICS)

Dynamic Memory Allocation Using

Implicit Copies

* Special functions are needed in order to allocate
and free dynamic memory for implicit copies
_Offload shared malloc()

_Offload shared aligned malloc()
_Offload shared free()

_Offload shared aligned free()

NICS)

The _Cilk_shared keyword for Data
and Functions

What
Function

Global
File/Function static

Class

Pointer to shared
data

A shared pointer

Entire blocks of code

Syntax

int Cilk shared f (int Xx)
{ return x+1; }

Cilk shared int x = 0;

static Cilk shared int x;

class Cilk shared x {..};

int Cilk shared *p;

int * Cilk shared p;

#pragma offload attribute
(push, Cilk shared)

#pragma offload attribute (pop)

NICS

Semantics

Versions generated for both
CPU and card; may be called
from either side

Visible on both sides

Visible on both sides, only to
code within the file/function

Class methods, members, and
and operators are available on
both sides

p is local (not shared), can
point to shared data

p is shared; should only point
at shared data

Mark entire files or large blocks
of code _Cilk_shared using this
pragma

Offloading using Implicit Copy

* Rather than using a pragma directive, the
keyword “ Cilk offload” is used when calling
a function to be run on the MIC

o Examples:
ox = Cilk offload function(y)
ox = Cilk offload to (card number) function(y)

o Note: function needs to be defined using the
_Cilk shared keyword

NICS)

Explicit/Implicit Copy Comparison

Language Support

Syntax

Used for...

Offload via Explicit Data
Copying
Fortran, C, C++ (C++ functions

may be called, but C++ classes
cannot be transferred)

Pragmas/Directives:
e #pragma offload in C/C+
+

e!dir$ omp offload
directive in Fortran

Offloads that transfer
contiguous blocks of data

NICS

Offload via Implicit Data
Copying
C, C++

Keywords:
_Cilk shared and
_Cilk offload

Offloads that transfer all or parts
of complex data structures, or
many small pieces of data

Select Offload Examples

* The offload mode allows select portions of a code to run on
the Intel MIC, while the rest of it runs on the host.

* Ideally, the offload regions are highly parallel

* What follows is select offload examples, provided by Intel,
that demonstrate how to move data to and from the Intel
MIC cards

* Intel has many offload examples located in the following
directory

- /global/opt/intel/composerxe mic/Samples/en US/C++/
mic samples/intro sampleC/

* They can be copied to a directory of your choice and then
compiled with make mic

NICS)

SampleCO01

* This code computes Pi on the MIC using #pragma offload

float pi1 = 0.0f;
int count = 10000;
int 1i;

#fpragma offload target (mic)

for (1=0; i<count; i++)

{
float t = (float) ((1i+0.5f) /count);
pi += 4.0£/(1.0f+t*t);

}
pi /= count;
e #pragma offload target (mic) runs the very next line (or block
of code if braces are used) on the Intel MIC

— In this case the whole for loop is run on the Intel MIC

* Note that pi was declared outside of the offload region, and it did not
need to be explicitly copied to the MIC since it is a scalar

NICS)

SampleC02

* This code initializes 2 arrays on the host, and then has the Intel
MIC add the arrays together, and store the result in a third array

typedef double T;

#define SIZE 1000

#pragma offload attribute (push, target (mic))
static T inl 02[SIZE];

static T in2 02[SIZE];

static T res 02[SIZE];

#pragma offload attribute (pop)

static void populate 02(T* a, int s);

* The #pragma offload attribute (push/pop) pair marks the
block of code between them to be used on both the host and the
Intel MIC

* They could have been marked individually with __attribute
((target (mic)))

Without those statements, the Intel MIC would not be able to
see/use the 3 arrays

NICS)

SampleC02 Continued

* The sum of the 2 arrays is done by the Intel MIC
* Note that only a single Intel MIC core is used

void sample02 ()

{
int 1i;
populate 02 (inl 02, SIZE);
populate 02 (in2 02, SIZE);

#fpragma offload target (mic)

{
for (i=0; 1<SIZE; i++)
{
res 02[1] = inl 02[i] + in2 02[i];
}

NICS)

SampleCO03

* This program is similar to SampleC02, except that it avoids
unnecessary data transfer

void sample03 ()

{
int 1i;
populate 03 (inl 03, SIZE);
populate:03(in2:03, SIZE) ;

#pragma offload target(mic) in(inl 03, in2 03) out(res 03)
{
for (i=0; 1i<SIZE; i++)
{
res 03[1i] = inl 03[i] + in2 03[i];
}

* Previously, all 3 arrays were copied to the card at the start of the
offload call, and then copied back at the end of the offload call

* Now, only the in1 03 and in2_ 03 arrays are copied to the card,
and only the res 03 array is copied back

NICS)

SampleC04

* This program is similar to the previous two samples, but now we
are dealing with pointers instead of the static arrays directly

void sample04 ()

{
T* pl, *p2;
int i, s;
populate 04 (inl 04, SIZE);
populate 04 (in2 04, SIZE);

pl = inl 04;
p2 = in2 04;
s = SIZE;

#pragma offload target(mic) in(pl, p2:length(s)) out(res 04)
{

for (i=0; i<s; 1i++)

{

res 04[1i] = pl[i] + p2[i];

}

}
}

* Since the length of the pointer is not known, it must be explicitly
passed as an argument

* res_04 is still a static array in this sample

NICS)

SampleCO05

* This program is like the last except the sum of the arrays, via
pointers, is now stored in a pointer to the result array

* This pointer needs to have its length specified as well
* Also, the summation now happens in the function get result()

* get result() did not need to be marked with __attribute
((target (mic))) because it was called by the host and not by the
Intel MIC

static void get result(T* pinl, T* pinZ,
T* res, int s)

{

int 1i;
void sample05 ()
{ #fpragma offload target (mic)
T my_result[SIZE]; in(pinl, pin2 : length(s))
populate 05(inl 05, SIZE); out (res : length(s))
populate 05(in2 05, SIZE); {

for (i=0; i<s; 1i++)
get result(inl 05, in2 05, my result, SIZE); {
} res[i] = pinl[i] + pin2]
}

NICS)

il;

SampleCO07

* In this program, an array of data is sent from the host to the Intel
MIC in one offload call

* The array values are then doubled on the MIC in a separate
offload call, as long as a MIC card exists

#define SIZE 1000

__attribute ((target(mic))) int arrayl[SIZE];
__attribute ((target(mic))) int send array(int* p, int s);
__attribute ((target(mic))) void computeO7 (int* out, int size);

void sample07 ()

{
int in dataflle] = { 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16 };
int out dataf[l6];
int array sent = 0;

int num devices;

// Check 1f coprocessor(s) are installed and available
num devices = Offload number of devices();

#pragma offload target (mic : 0)
array sent = send array(in data, 16);

#pragma offload target(mic : 0) if(array sent) out (out data)
computeO7 (out data, 16);

NICS)

SampleC07 Continued

* Reminder, attribute ((target(mic))) makes it so both the
host and the Intel MIC can see/use the variable/function

* The function Offload number of devices () returns how many
Intel MIC cards are available

* The macro _ MIC lets you know if the MIC (value of 1) or host
(value of 0) is currently evaluating the statements

__attribute ((target(mic))) int send array(int* p, int s)

{

int retval;

int 1i;
attribute ((target(mic))) void computeO7 (int* out, int size)
for (i=0; i<s; i++) T_ —
{ _ . int i;
arraylli] = plil; for (i=0; i<size; i++)
J {
out[i] = arrayl[i]*2;

#ifdef MIC }

retval = 1; }
felse

retval = 0;
#endif

// Return 1 if array initialization
// was done on target
return retval;

NICS)

SampleCO08

* This program is like SampleC01, except now the Pi calculation is
done using an OpenMP for loop on the Intel MIC to utilize the many
cores

float pi = 0.0f;
int count = 10000;
int i;

#pragma offload target (mic)
#pragma omp parallel for reduction (+:pi)
for (i=0; i<count; i++)
{
float t = (float) ((1+0.5f) /count);
pi += 4.0f£/(1.0f+t*t);
}

pi /= count;

NICS)

Applications run on Xeon Phi

* Science codes ported and/or optimized through the Beacon
Project
— Chemistry — NWChem (ported)
— Astrophysics — Enzo (ported and optimized)
— Magnetospheric Physics — H3D (ported and optimized)
e Other codes of interest
— Electronic Structures — EIk FP-LAPW (ported)
— Computational Fluid Dynamics (CFD) — Euler and BGK Boltzmann
Solver (ported and optimized)

Xeon Phi™ Coprocessor

, -
-

Enzo

* Community code for computational astrophysics and cosmology

* More than 1 million lines of code

* Uses powerful adaptive mesh refinement

* Highly vectorized with a hybrid MPI + OpenMP programming model
» Utilizes HDF5 and HYPRE libraries

Enzo was ported and optimized for the the Intel® Xeon Phi™ Coprocessor by
Dr. Robert Harkness
harkness@sdsc.edu

NICS,

Preliminary Scaling Study: Native

32

ENZO'C exgmm(Observed
12823 mesh (non-AMR) =i e al
pure MPI "

native mode

Speedup

1 2 4 8 16 32
Number of Threads

Results were generated on the Intel® Knights Ferry software development platform

NICS,

Hybrid3d (H3D)

* Provides breakthrough kinetic simulations of the Earth’s
magnetosphere
* Models the complex solar wind-magnetosphere interaction using
both electron fluid and kinetic ions
— This is unlike magnetohydrodynamics (MHD), which completely
ignores ion kinetic effects
* Contains the following HPC innovations:
1. multi-zone (asynchronous) algorithm

2.dynamic load balancing
3. code adaptation and optimization to large number of cores

Hybrid3d (H3D) was provided for porting to the the Intel® Xeon Phi™ Coprocessor by
Dr. Homa Karimabadi
hkarimabadi@ucsd.edu

NICS)

Hybrid3d (H3D) Performance

H3D Speedup on the Intel® Xeon
Phi™ Coprocessor

(codename Knights Corner)

»
N

w
N

-
»

Optimizations were
provided by Intel senior
software engineer Rob Van
der Wjingaart

=== Observed

Speedup

Relative Speedup

1 2 4 8 16 32 64
Number of MPI Processes

Results were generated on a Pre-Production Intel® Xeon Phi™ coprocessor
with BO HW and Beta SW

61 cores @ 1.09 GHz and 8 GB of GDDR5 RAM @ 2.75 GHz
NICS,

Elk FP-LAPW
http://elk.sourceforge.net/

Paramount to extracting functionality from these
advanced materials is having a detailed understanding
of their electronic, magnetic, vibrational, and optical
properties.

Elk is a software platform which allows for the
understanding of these properties from a first
principles approach. It employs electronic
structure techniques such as density functional
theory, Hartree-Fock theory, and Green'’s
function theory for the calculation of relevant
properties from first principles.

® - i Antiferromagnetic
covg e @ e g<e> structure of Sr,CuO,
O @ O

Elk was ported to the the Intel® Xeon Phi™ Coprocessor by
W. Scott Thornton
wsttiger@gmail.com

NICS

Elk FP-LAPW Performance

Elk uses master-slave parallelism where orbitals for different momenta are
computed semi-independently. In this test 27 and 64 different crystal

momenta were used. Test case was bulk silicon.

-~
o

4?
|

8
T

I
|
|
r
|
|

&
T

8
T

Speedup of Si (27 k-pts)
8

Speedup of Si (64 k-pts)

-
o
T

L 1 1 1 1 1 1 1 1 1
50 60 10 20 20 40 50 60 70 80 90

20 30 40
Number of OpenMP threads Number of OpenMP threads

Results were generated on a Pre-Production Intel® Xeon Phi™ coprocessor
with AO HW and Beta SW

52 cores @ 1.00 GHz and 8 GB of GDDR5 RAM @ 2.25 GHz
NICS,

Computational Fluid Dynamics (CFD)

2 CFD solvers were developed in house at NICS
* 1stsolver is based on the Euler equations
o 2nd golver is based on Model Boltzmann equations

Unsteady Sod Shock Couette Flow o Couette Flow
t=1.7, delta_t = 0.017, delta_x = 0.025, Ist Order Roe Fluxes o Kn=0.1199, Right Wall = 300m/s in y direction Kn=0.1199, Right Wall = 300m/s in y direction
- - 300 ; ; . ; . N
I— : ‘ : [: T | | | 300 ———— 17—
~— Velocity in x direction P T
— Pressure 250 A
08 e
) 2951 / |
200}~ e - /
06 2@ / % /
] ,/" g
E 150 e — 2200 _
04 e R ‘\.\
100 — S - / \
/ \
, 285 _," \\“_
02F sl 1 j
A S B R N 5 P S N R
0 |4 2 0 2 4 % 0.2 0.4 X 0.6 0.8 1 20 02 04 m 0.6 08 1
Unsteady solution of a Sod Shock using the Euler Steady-state solution of a Couette flow using the Boltzmann
equations equation with BGK collision approximation

The above CFD solvers were developed for the Intel® Xeon Phi™ Coprocessor by
Ryan C. Hulguin
ryan-hulguin@tennessee.edu

NICS,

Impact of Various Optimizations on
the Model Boltzmann Equation Solver

* The Model Boltzmann Equation solver was optimized by Intel software

engineer Rob Van der Wjingaart

 He took a baseline solver where all loops were vectorized except for

one, and applied the following optimizations to get the most
performance out of the Intel® Xeon Phi™ Coprocessor

(codename Knights Corner)

Set | — Loop Vectorization « SetIV — Dependency
— Stack variable pulled out of the loop

) * Remove reduction from computational loop by
— Class member turned into a regular

saving value into a private variable

structure cr
Set Il — Data Access * SetV— Precision |
— Arrays linearized using macros * Use medium precision for math function calls (-
— Align data for more efficient access fimf-precision=medium)
Set lll — Parallel Overhead * Set VI — Precision
— Reduce the number of parallel sections + Use single precision constants and intrinsics

 Set VII — Compiler Hints
* Use #pragma SIMD instead of #pragma IVDEP

NICS)

Optimization Results from the Model
Boltzmann Equation Solver

° balanced scatter

7

6
Loop Vectorization

y

Relative Speedup
N

O N I I I I I | I
Baseline Loop Data Parallel Depen- Precision Precision Compiler
Vector- Access Overhead dency l ¥ Hints
1zation

Results were generated on a Pre-Production Intel® Xeon Phi™ coprocessor
with BO HW and Beta SW
61 cores @ 1.09 GHz and 8 GB of GDDR5 RAM @ 2.75 GHz

NICS)

Model Boltzmann Equation Solver
Performance

Relative Speedup of two 8-core 3.5 GHz Intel® Xeon E5-2680

Processors Versus an Intel® Xeon Phi™ Coprocessor
128

64
32

16

8 Dual Intel® Xeon E5-2680 - Compiler Hints

Relative Speedup

e=p@m|ntel Xeon Phi - Compiler Hints - Balanced

1 2 4 64 128 256

8 16 32
Number of OpenMP Threads

Results were generated on a Pre-Production Intel® Xeon Phi™ coprocessor
with BO HW and Beta SW
61 cores @ 1.09 GHz and 8 GB of GDDR5 RAM @ 2.75 GHz

NICS)

Requesting time on Beacon

* Fill out form at
https://portal.nics.tennessee.edu/accounts/request for a
director’s discretionary account

— Students should have their advisor make the request

 An abstract and justification as to why time should be
granted is needed

NICS

Links/Contact Information

e More information about beacon can found at:
http://www.jics.tennessee.edu/aace/beacon/

* More information about using/programming for Intel
Xeon Phi can be found at:
http://software.intel.com/en-us/mic-developer

Ryan Hulguin

ryan-hulguin@tennessee.edu

NICS

