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The Beacon Project 

•  This material is based upon work supported by the National 
Science Foundation (NSF) under Grant #1137097 

•  NSF funding is used to port and optimize scientific codes to the 
Intel® Xeon Phi™ coprocessor  

•  The state of Tennessee has funded an expansion focusing on 
energy efficiency, big data applications, and industry 

•  The pre-production Intel® Xeon Phi™ coprocessors in the original 
Beacon cluster have been upgraded to the commercial Intel® Xeon 
Phi™ 5110P coprocessors 

•  Currently, there are 60 projects that may request time on the 
Beacon cluster 



Beacon System Specs 

Beacon Cray CS300-AC Cluster 
CPU cores 768 

Coprocessor cores 11520 

Total system RAM 12 TB 

Total coprocessor 
RAM 

1.5 TB 

Total SSD storage 73 TB 

I/O nodes 6 

Interconnect FDR InfiniBand 

Node configuration 
Two 2.6 GHz eight-core Intel® Xeon® E5-2670 
256 GB memory, 960 GB SSD storage 
Four Intel® Xeon Phi™ 5110P coprocessors 



top500.org list as of June 2013 
Rank Site System Rmax (TFlop/

s) 
Rpeak (TFlop/s) Power (kW) 

1 National University of 
Defense Technology 
China 

Tianhe-2 (Milky 
Way-2) 
Xeon Phi 

33862.7 54902.4 17808 

2 DOE/SC/Oak Ridge 
National Laboratory 
United States 

Titan 
Nvidia K20x 

17590.0 27112.5 8209 

3 DOE/NNSA/LLNL 
United States 

Sequoia 17173.2 20132.7 7890 

4 RIKEN Advanced Institute 
for Computational Science 
(AICS) 
Japan 

K computer 10510.0 11280.4 12660 

5 DOE/SC/Argonne National 
Laboratory 
United States 

Mira 8586.6 10066.3 3945 

397 National Institute for 
Computational Sciences/
University of Tennessee 
United States 

Beacon 
Xeon Phi 

110.5 157.5 45 



New World Record 



Green500 as of November 2012 



Intel® Xeon Phi™ Coprocessor  

• Xeon Phi is the brand name that Intel uses for all their 
products based on the Many Integrated Core (MIC) 
architecture 

• The cores are based on the x86 instruction set 
• Xeon Phi can be programmed in familiar languages 

(C/C++ and Fortran) with familiar parallel 
programming models (OpenMP and/or MPI) 

• Xeon Phi was initially referred to as Knights Corner 
(KNC) 

• Knights Landing (KNL) is the codename for the next 
generation MIC product 



Intel® Xeon Phi™ Coprocessor Overview 

Ring 

Scalar 
Registers 

Vector 
Registers 

512K L2 Cache 

32K L1 I-cache 
32K L1 D-cache 

Instruction Decode 

Vector 
Unit 

Scalar 
Unit 

•  Up to 61 in-order cores 
–  Ring interconnect 

•  64-bit addressing 
•  Two pipelines 

–  Intel® Pentium® processor family-based scalar units 
•  Dual issue with scalar instructions 

–  Pipelined one-per-clock scalar throughput 
•  4 clock latency, hidden by round-robin scheduling of 

threads 

•  4 hardware threads per core 
–  Cannot issue back to back instruction in same thread 

•  All new vector unit 
–  512-bit SIMD Instructions – not Intel® SSE, MMX™, or Intel® 

AVX 
–  32 512-bit wide vector registers 

•  16 singles or 8 doubles per register 

•  Fully-coherent L1 and L2 caches 



Intel® Xeon Phi™ coprocessor 5110P
(codenamed Knights Corner)  
 

SKU # 5110P 
Form factor PCIe card 
Thermal solution passively 

cooled 
Peak double 
precision 

1011 GF 

Max number of cores 60 
Core clock speed 1.053 GHz 
Memory capacity 8 GB 
GDDR5 memory 
speeds  

5.0 GT/s 

Peak memory BW 320 
Total cache 30 MB 
Board TDP 225 Watts 
Fabrication process 22 nm 

The	
  Intel®	
  Xeon	
  Phi™	
  coprocessor	
  
(codenamed	
  Knights	
  Corner)	
  
is	
  the	
  ;irst	
  commercial	
  product	
  
employing	
  the	
  Intel®	
  Many	
  
Integrated	
  Core	
  (MIC)	
  architecture.	
  
	
  	
  
The	
  Intel®	
  Xeon	
  Phi™	
  coprocessor	
  	
  
5110P	
  shown	
  here	
  employs	
  passive	
  
cooling.	
  

Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in 
the U.S. and /or other countries. 



x86 SMP-on-a-chip running Linux 

• SMP = symmetric multiprocessor 
– shared memory running a single operating system 

• Each coprocessor has its own ip address 
• Can ssh to individual coporocessors 
• Feels like an independent compute node 
• Currently uses a custom Linux operating system

(Not Ubuntu, Red Hat, etc.) 



Many core trend 

•  In the early 2000s, CPU core speeds plateaued at ~3 GHz 
• Further advances to increase computing power are 

achieved using parallel programming 
• As seen in the previous Top500 slide, supercomputers 

are now turning to accelerators/coprocessors to 
increase computing power 

• This new hardware is requiring new ways of 
programming 

• There is a push for hybrid distributed/threaded 
programming using these accelerators/coprocessors 



Why Use Xeon Phi? 

• Code tuned to run on Xeon Phi is guaranteed to 
run well on normal Xeon CPUs 

• Popular programming models such as MPI, 
OpenMP, and Intel TBB are fully supported 

• Support for newer models exists as well: 
Coarray Fortran, Intel Cilk Plus, and OpenCL 

• Can run programs that GPUs cannot 
– Example: NWChem 



Considerations for Good Performance on 
the Intel® Xeon Phi™ Coprocessor  
• Some portion of the code must be highly parallel 

and highly vectorizable 
– Not all code can be written this way 
– Serial code run on the Intel Xeon Phi will take a huge 

performance hit 

• Very short (low-latency) tasks are not optimal to 
offload to the coprocessor 
– There will be thread setup and communication 

overhead 



Programming Models – Brief Overview 

• Native Mode 
–  Everything runs on the MIC 
– May have issues with libraries not existing, needing copied over 

(e.g., MKL, MPI with debug symbols) 
–  Especially useful when the majority of the code can run in 

parallel 

• Offload Mode 
–  Serial portion runs on host 
–  Parallel portions are offloaded and run on the MIC 
–  Especially useful when there are plenty of data dependent serial 

calculations, and only small sections of code that can run in 
parallel 

• Automatic Offload Mode 
–  select MKL functions only 

 
 



Native mode 

• Native mode libraries and binaries are created 
by simply compiling with the –mmic compile flag 

• After they are created, they need to be either 
copied to the coprocessors directly (scp file 
mic0), or be placed in a directory on a file 
system that is mounted by the coprocessors (i.e. 
lustre/medusa scratch filesystem) 

• This does not make a serial code parallel 
• The native mode binaries can be launched by 

either connecting to the coprocessor via ssh or 
by using MPI to launch it remotely from the host 
node 



Offload Mode 
• Code starts running on host and regions 

designated to be offloaded via pragmas are 
run on the MIC card when encountered 

• The host CPU and the MIC cards do not share 
memory in hardware 

• Data is passed to and from the MIC card 
explicitly or implicitly (C/C++ only) 

• The statement immediately following the 
offload pragma/directive will be run on a 
coprocessor 

C/C++ Syntax Fortran Syntax 
#pragma offload <clauses> 
<statement> 

!dir$ offload <clauses> 
<statement> 
 



Marking Variables/Functions for use 
on MIC 
•  In offload mode, the compiler needs to know ahead of 

time which functions will run on the MIC 
• Also any variables that are to exist on both the host 

and the MIC need to be known by the compiler as 
well 

• This is done for both functions and variables using 
the following keyword 

C/C++ Syntax Fortran Syntax 
__attribute__((target(mic))) !dir$ attributes offload:<MIC> :: 

<routine-name> 
 

An alternative keyword is __declspec(target (mic)) 



Explicit Copy 

• Programmer identifies the variables that need 
copying to and from the card in the offload 
directive 

• C/C++ Example:  
– #pragma offload target(mic) in(data:length(size)) 

• Fortran Example: 
– !dir$ offload target(mic) in(data:length(size)) 

• Variables and pointers to be copied are 
restricted to scalars, structs of scalars, and 
arrays of scalars 
– i.e. double *var is allowed, but not double **var. 



Explicit Copy Clauses and Modifiers 

Clauses / Modifiers Syntax Semantics 
Target specification  target( name[:card_number] ) Where to run construct 

Conditional offload if (condition) Boolean expression 

Inputs in(var-list modifiersopt)  Copy from host to coprocessor 

Outputs out(var-list modifiersopt)  Copy from coprocessor to host 

Inputs & outputs inout(var-list modifiersopt)  Copy host to coprocessor and back 
when offload completes 

Non-copied data nocopy(var-list modifiersopt)  Data is local to target 

Modifiers 

Specify pointer length length(element-count-expr) Copy N elements of the pointer’s type  

Control pointer memory 
allocation 

alloc_if ( condition ) Allocate memory to hold data 
referenced by pointer if condition is 
TRUE 

Control freeing of pointer 
memory 

free_if ( condition ) Free memory used by pointer if 
condition is TRUE 

Control target data 
alignment 

align ( expression ) Specify minimum memory alignment 
on target 



Implicit Copy 

• This method is available only in C/C++ 
• Sections of memory are maintained at the 

same virtual address on both the host and the 
MIC 

• This enables sharing of complex data 
structures that contain pointers 

• This “shared” memory is synchronized when 
entering and exiting an offload call 

• Only modified data is transferred between 
CPU and MIC 



Dynamic Memory Allocation Using 
Implicit Copies 
• Special functions are needed in order to allocate 

and free dynamic memory for implicit copies 
_Offload_shared_malloc() 
_Offload_shared_aligned_malloc() 
_Offload_shared_free() 
_Offload_shared_aligned_free() 



The _Cilk_shared keyword for Data 
and Functions 

What Syntax Semantics 
Function int _Cilk_shared f(int x)  

{ return x+1; } 
Versions generated for both 
CPU and card; may be called 
from either side 

Global Cilk_shared int x = 0; Visible on both sides 

File/Function static static _Cilk_shared int x; Visible on both sides, only to 
code within the file/function 

Class class _Cilk_shared x {…};  Class methods, members, and 
and operators are available on 
both sides 

Pointer to shared 
data 

int _Cilk_shared *p; p is local (not shared), can 
point to shared data 

A shared pointer int *_Cilk_shared p; p is shared; should only point 
at shared data 

Entire blocks of code #pragma offload_attribute
( push, _Cilk_shared) 

  
#pragma offload_attribute(pop) 

Mark entire files or large blocks 
of code _Cilk_shared using this 
pragma 



Offloading using Implicit Copy 

• Rather than using a pragma directive, the 
keyword “_Cilk_offload” is used when calling 
a function to be run on the MIC 
o Examples: 

o x = _Cilk_offload function(y) 
o x = _Cilk_offload_to (card_number) function(y) 

o Note: function needs to be defined using the 
_Cilk_shared keyword 



Explicit/Implicit Copy Comparison 

Offload via Explicit Data 
Copying 

Offload via Implicit Data 
Copying 

Language Support Fortran, C, C++ (C++ functions 
may be called, but C++ classes 
cannot be transferred) 

C, C++ 

Syntax Pragmas/Directives: 
• #pragma offload in C/C+
+ 

• !dir$ omp offload 
directive in Fortran 

Keywords: 
 _Cilk_shared and 
_Cilk_offload 

Used for… Offloads that transfer 
contiguous blocks of data 

Offloads that transfer all or parts 
of complex data structures, or 
many small pieces of data 



Select Offload Examples 

•  The offload mode allows select portions of a code to run on 
the Intel MIC, while the rest of it runs on the host. 

•  Ideally, the offload regions are highly parallel 
• What follows is select offload examples, provided by Intel, 

that demonstrate how to move data to and from the Intel 
MIC cards 

•  Intel has many offload examples located in the following 
directory 
– /global/opt/intel/composerxe_mic/Samples/en_US/C++/
mic_samples/intro_sampleC/ 

•  They can be copied to a directory of your choice and then 
compiled with make mic 



SampleC01 

•  This code computes Pi on the MIC using #pragma offload 

•  #pragma offload target (mic) runs the very next line (or block 
of code if braces are used) on the Intel MIC 
–  In this case the whole for loop is run on the Intel MIC 

•  Note that pi was declared outside of the offload region, and it did not 
need to be explicitly copied to the MIC since it is a scalar 

 float pi = 0.0f; 
 int count = 10000; 
 int i; 
 
 #pragma offload target (mic) 
 for (i=0; i<count; i++) 
 { 
    float t = (float)((i+0.5f)/count); 
    pi += 4.0f/(1.0f+t*t); 
 } 
 pi /= count; 



SampleC02 
•  This code initializes 2 arrays on the host, and then has the Intel 

MIC add the arrays together, and store the result in a third array 

•  The #pragma offload_attribute(push/pop) pair marks the 
block of code between them to be used on both the host and the 
Intel MIC 

•  They could have been marked individually with __attribute__
((target(mic)))  

•  Without those statements, the Intel MIC would not be able to 
see/use the 3 arrays 

typedef double T; 
 
#define SIZE 1000 
 
#pragma offload_attribute(push, target(mic)) 
static T in1_02[SIZE]; 
static T in2_02[SIZE]; 
static T res_02[SIZE]; 
#pragma offload_attribute(pop) 
 
static void populate_02(T* a, int s); 



SampleC02 Continued 

•  The sum of the 2 arrays is done by the Intel MIC 
•  Note that only a single Intel MIC core is used 

 
void sample02() 
{ 
    int i; 
    populate_02(in1_02, SIZE); 
    populate_02(in2_02, SIZE); 
 
    #pragma offload target(mic) 
    { 
    for (i=0; i<SIZE; i++) 
        { 
            res_02[i] = in1_02[i] + in2_02[i]; 
        } 
    } 
} 



SampleC03 

•  This program is similar to SampleC02, except that it avoids 
unnecessary data transfer 

 
 
•  Previously, all 3 arrays were copied to the card at the start of the 

offload call, and then copied back at the end of the offload call 
•  Now, only the in1_03 and in2_03 arrays are copied to the card, 

and only the res_03 array is copied back 

void sample03() 
{ 
    int i; 
    populate_03(in1_03, SIZE); 
    populate_03(in2_03, SIZE); 
 
    #pragma offload target(mic) in(in1_03, in2_03) out(res_03) 
    { 
        for (i=0; i<SIZE; i++) 
        { 
             res_03[i] = in1_03[i] + in2_03[i]; 
        } 
    } 
} 
 



SampleC04 

•  This program is similar to the previous two samples, but now we 
are dealing with pointers instead of the static arrays directly 

 
•  Since the length of the pointer is not known, it must be explicitly 

passed as an argument 
•  res_04 is still a static array in this sample 

void sample04() 
{ 
    T* p1, *p2; 
    int i, s; 
    populate_04(in1_04, SIZE); 
    populate_04(in2_04, SIZE); 
 
    p1 = in1_04; 
    p2 = in2_04; 
    s = SIZE; 
 
    #pragma offload target(mic) in(p1, p2:length(s)) out(res_04) 
    { 
        for (i=0; i<s; i++) 
        { 
                res_04[i] = p1[i] + p2[i]; 
        } 
    } 
} 



SampleC05 
•  This program is like the last except the sum of the arrays, via 

pointers, is now stored in a pointer to the result array 
•  This pointer needs to have its length specified as well 
•  Also, the summation now happens in the function get_result() 
•  get_result() did not need to be marked with __attribute__
((target(mic))) because it was called by the host and not by the 
Intel MIC 

void sample05() 
{ 
    T my_result[SIZE]; 
    populate_05(in1_05, SIZE); 
    populate_05(in2_05, SIZE); 
 
    get_result(in1_05, in2_05, my_result, SIZE); 
} 

static void get_result(T* pin1, T* pin2, 
                       T* res, int s) 
{ 
    int i; 
 
    #pragma offload target(mic)           \ 
            in(pin1, pin2 : length(s))    \ 
            out(res : length(s))  
    { 
        for (i=0; i<s; i++) 
        { 
                res[i] = pin1[i] + pin2[i]; 
        } 
    } 
} 



SampleC07 
•  In this program, an array of data is sent from the host to the Intel 

MIC in one offload call 
•  The array values are then doubled on the MIC in a separate 

offload call, as long as a MIC card exists 
#define SIZE 1000 
 
__attribute__((target(mic))) int array1[SIZE]; 
__attribute__((target(mic))) int send_array(int* p, int s); 
__attribute__((target(mic))) void compute07(int* out, int size); 
 
void sample07() 
{ 
    int in_data[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 
                        9, 10, 11, 12, 13, 14, 15, 16 }; 
    int out_data[16]; 
    int array_sent = 0; 
    int num_devices; 
 
    // Check if coprocessor(s) are installed and available 
    num_devices = _Offload_number_of_devices(); 
 
    #pragma offload target(mic : 0) 
    array_sent = send_array(in_data, 16); 
 
    #pragma offload target(mic : 0) if(array_sent) out(out_data) 
    compute07(out_data, 16); 
} 



SampleC07 Continued 
•  Reminder, __attribute__((target(mic))) makes it so both the 

host and the Intel MIC can see/use the variable/function 
•  The function _Offload_number_of_devices() returns how many 

Intel MIC cards are available 
•  The macro __MIC__ lets you know if the MIC (value of 1) or host 

(value of 0) is currently evaluating the statements 
__attribute__((target(mic))) int send_array(int* p, int s) 
{ 
    int retval; 
    int i; 
 
    for (i=0; i<s; i++) 
    { 
        array1[i] = p[i]; 
    } 
 
#ifdef __MIC__ 
    retval = 1; 
#else 
    retval = 0; 
#endif 
 
    // Return 1 if array initialization 
    // was done on target 
    return retval; 
} 

__attribute__((target(mic))) void compute07(int* out, int size) 
{ 
    int i; 
    for (i=0; i<size; i++) 
    { 
        out[i] = array1[i]*2; 
    } 
} 



SampleC08 

•  This program is like SampleC01, except now the Pi calculation is 
done using an OpenMP for loop on the Intel MIC to utilize the many 
cores 

    float pi = 0.0f; 
    int count = 10000; 
    int i; 
 
    #pragma offload target (mic) 
    #pragma omp parallel for reduction(+:pi) 
    for (i=0; i<count; i++) 
    { 
        float t = (float)((i+0.5f)/count); 
        pi += 4.0f/(1.0f+t*t); 
    } 
    pi /= count; 



Applications run on Xeon Phi 

•  Science codes ported and/or optimized through the Beacon 
Project 
–  Chemistry – NWChem (ported) 
–  Astrophysics – Enzo (ported and optimized) 
–  Magnetospheric Physics – H3D (ported and optimized) 

•  Other codes of interest 
–  Electronic Structures – Elk FP-LAPW (ported) 
–  Computational Fluid Dynamics (CFD) – Euler and BGK Boltzmann 

Solver (ported and optimized) 



Enzo	
  

•  Community	
  code	
  for	
  computational	
  astrophysics	
  and	
  cosmology	
  
•  More	
  than	
  1	
  million	
  lines	
  of	
  code	
  
•  Uses	
  powerful	
  adaptive	
  mesh	
  re:inement	
  
•  Highly	
  vectorized	
  with	
  a	
  hybrid	
  MPI	
  +	
  OpenMP	
  programming	
  model	
  
•  Utilizes	
  HDF5	
  and	
  HYPRE	
  libraries	
  

Enzo	
  was	
  ported	
  and	
  optimized	
  for	
  the	
  the	
  Intel®	
  Xeon	
  Phi™	
  Coprocessor	
  by	
  
Dr.	
  Robert	
  Harkness	
  
harkness@sdsc.edu	
  

	
  



Preliminary	
  Scaling	
  Study:	
  Native	
  

•  ENZO-C 
•  128^3 mesh (non-AMR)  
•  pure MPI  
•  native mode 
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  were	
  generated	
  on	
  the	
  Intel®	
  Knights	
  Ferry	
  software	
  development	
  platform	
  	
  



Hybrid3d (H3D) 

•  Provides breakthrough kinetic simulations of the Earth’s 
magnetosphere 

•  Models the complex solar wind-magnetosphere interaction using 
both electron fluid and kinetic ions 
–  This is unlike magnetohydrodynamics (MHD), which completely 

ignores ion kinetic effects 
•  Contains the following HPC innovations: 

1. multi-zone (asynchronous) algorithm 
2. dynamic load balancing 
3. code adaptation and optimization to large number of  cores 

Hybrid3d	
  (H3D)	
  was	
  provided	
  for	
  porting	
  to	
  the	
  the	
  Intel®	
  Xeon	
  Phi™	
  Coprocessor	
  by	
  
Dr.	
  Homa	
  Karimabadi	
  

hkarimabadi@ucsd.edu	
  



Hybrid3d (H3D) Performance 
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Results	
  were	
  generated	
  on	
  a	
  Pre-­‐Production	
  Intel®	
  Xeon	
  Phi™	
  coprocessor	
  
with	
  B0	
  HW	
  and	
  Beta	
  SW	
  

61	
  cores	
  @	
  1.09	
  GHz	
  and	
  8	
  GB	
  of	
  GDDR5	
  RAM	
  @	
  2.75	
  GHz	
  	
  	
  
	
  

Optimizations	
  were	
  
provided	
  by	
  Intel	
  senior	
  
software	
  engineer	
  Rob	
  Van	
  
der	
  Wjingaart	
  



Elk FP-LAPW 
http://elk.sourceforge.net/ 
Paramount to extracting functionality from these  
advanced materials is having a detailed understanding  
of their electronic, magnetic, vibrational, and optical  
properties. 
Elk is a software platform which allows for the  
understanding of these properties from a first  
principles approach. It employs electronic  
structure techniques such as density functional  
theory, Hartree-Fock theory, and Green’s  
function theory for the calculation of relevant  
properties from first principles. 

Antiferromagnetic  
structure of Sr2CuO3 

Elk	
  was	
  ported	
  to	
  the	
  the	
  Intel®	
  Xeon	
  Phi™	
  Coprocessor	
  by	
  
W.	
  Scott	
  Thornton	
  

wsttiger@gmail.com	
  
	
  



Elk	
  FP-­‐LAPW	
  Performance	
  

Elk	
  uses	
  master-­‐slave	
  parallelism	
  where	
  orbitals	
  for	
  different	
  momenta	
  are	
  
computed	
  semi-­‐independently.	
  In	
  this	
  test	
  27	
  and	
  64	
  different	
  crystal	
  
momenta	
  were	
  used.	
  Test	
  case	
  was	
  bulk	
  silicon.	
  

Results	
  were	
  generated	
  on	
  a	
  Pre-­‐Production	
  Intel®	
  Xeon	
  Phi™	
  coprocessor	
  
with	
  A0	
  HW	
  and	
  Beta	
  SW	
  

52	
  cores	
  @	
  1.00	
  GHz	
  and	
  8	
  GB	
  of	
  GDDR5	
  RAM	
  @	
  2.25	
  GHz	
  	
  	
  
	
  



Unsteady	
  solution	
  of	
  a	
  Sod	
  Shock	
  using	
  the	
  Euler	
  
equations	
  

Steady-­‐state	
  solution	
  of	
  a	
  Couette	
  :low	
  using	
  the	
  Boltzmann	
  
equation	
  with	
  BGK	
  collision	
  approximation	
  

•  2 CFD solvers were developed in house at NICS 
•  1st solver is based on the Euler equations 
•  2nd solver is based on Model Boltzmann equations 

Computational Fluid Dynamics (CFD) 

The	
  above	
  CFD	
  solvers	
  were	
  developed	
  for	
  the	
  Intel®	
  Xeon	
  Phi™	
  Coprocessor	
  by	
  
Ryan	
  C.	
  Hulguin	
  

ryan-­‐hulguin@tennessee.edu	
  



Impact of Various Optimizations on 
the Model Boltzmann Equation Solver 

•  The	
  Model	
  Boltzmann	
  Equation	
  solver	
  was	
  optimized	
  by	
  Intel	
  software	
  
engineer	
  Rob	
  Van	
  der	
  Wjingaart	
  

•  He	
  took	
  a	
  baseline	
  solver	
  where	
  all	
  loops	
  were	
  vectorized	
  except	
  for	
  
one,	
  and	
  applied	
  the	
  following	
  optimizations	
  to	
  get	
  the	
  most	
  
performance	
  out	
  of	
  the	
  Intel®	
  Xeon	
  Phi™	
  Coprocessor	
  

	
  	
  	
  	
  	
  	
  (codename	
  Knights	
  Corner)	
  	
  

•  Set I — Loop Vectorization 
–  Stack variable pulled out of the loop 
–  Class member turned into a regular 

structure 
•  Set II — Data Access 

–  Arrays linearized using macros 
–  Align data for more efficient access 

•  Set III — Parallel Overhead 
–  Reduce the number of parallel sections 

•  Set	
  IV	
  —	
  Dependency	
  
•  Remove	
  reduction	
  from	
  computational	
  loop	
  by	
  
saving	
  value	
  into	
  a	
  private	
  variable	
  

•  Set	
  V	
  —	
  Precision	
  
•  Use	
  medium	
  precision	
  for	
  math	
  function	
  calls	
  (-­‐
;imf-­‐precision=medium)	
  

•  Set	
  VI	
  —	
  Precision	
  
•  Use	
  single	
  precision	
  constants	
  and	
  intrinsics	
  

•  Set	
  VII	
  —	
  Compiler	
  Hints	
  
•  Use	
  #pragma	
  SIMD	
  instead	
  of	
  #pragma	
  IVDEP	
  



Optimization Results from the Model 
Boltzmann Equation Solver 
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Loop Vectorization 

Results	
  were	
  generated	
  on	
  a	
  Pre-­‐Production	
  Intel®	
  Xeon	
  Phi™	
  coprocessor	
  
with	
  B0	
  HW	
  and	
  Beta	
  SW	
  

61	
  cores	
  @	
  1.09	
  GHz	
  and	
  8	
  GB	
  of	
  GDDR5	
  RAM	
  @	
  2.75	
  GHz	
  	
  	
  
	
  



Model Boltzmann Equation Solver 
Performance 

Results	
  were	
  generated	
  on	
  a	
  Pre-­‐Production	
  Intel®	
  Xeon	
  Phi™	
  coprocessor	
  
with	
  B0	
  HW	
  and	
  Beta	
  SW	
  

61	
  cores	
  @	
  1.09	
  GHz	
  and	
  8	
  GB	
  of	
  GDDR5	
  RAM	
  @	
  2.75	
  GHz	
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Number of OpenMP Threads 

Relative Speedup of two 8-core 3.5 GHz Intel® Xeon E5-2680 
Processors Versus an Intel® Xeon Phi™ Coprocessor 

Dual Intel® Xeon E5-2680 - Compiler Hints 

Intel Xeon Phi - Compiler Hints - Balanced 



Requesting time on Beacon 

• Fill out form at 
https://portal.nics.tennessee.edu/accounts/request for a 
director’s discretionary account 
–  Students should have their advisor make the request 

• An abstract and justification as to why time should be 
granted is needed 



Links/Contact Information 

• More information about beacon can found at: 
http://www.jics.tennessee.edu/aace/beacon/ 

• More information about using/programming for Intel 
Xeon Phi can be found at: 
http://software.intel.com/en-us/mic-developer 

Ryan Hulguin 
ryan-hulguin@tennessee.edu 
 


