
Computational Science for Undergraduate
Research Experiences (CSURE-REU)

 Kwai Wong
Joint Institute for Computational Sciences

 kwong@utk.edu
www.jics.utk.edu/staff/kwong

June 3, 2013

Agenda

Go to Menu

Ø  Welcome to Knoxville , introduction to JICS personnel
Ø  Logistics : I-9 forms, questionnaire, Apartment, questions
Ø  Shuttle leaves at 8:30 at Quarry Trail Apt and pick up at 5:30pm
Ø  One time Grocery run this Monday at 6;00pm. Or every Saturday
Ø  Program starts at 9:00 am and ends at ~5:00 pm with 90 minutes lunch

break.
Ø  Round table introduction
Ø  Project assignments , teams
Ø  First week is basic training, June 3 – 7
Ø  Monday morning- round up, campus walk, afternoon- Linus OS, vi
Ø  Tuesday : compiling, C, Fortran, C++
Ø  Wednesday : programing and scripting languages
Ø  Thursday : ORNL , badging, tours, NICS overview
Ø  Friday : Project overview

•  JICS is a collaboration between UT and ORNL since 1991
•  Joint Faculty, Research, Education, Outreach

•  Kraken (65M), RDAV (10M), Keeneland (12M), Beacon (1M)

•  Staffed with 40+ FTEs, multiple projects NSF, DOE, DOE, ..

•  Total JICS funding > $100M

Joint Institute for Computational Sciences

• World’s most powerful
computing facility

• Nation’s largest
concentration
of open source materials
research

• Nation’s most diverse
energy portfolio

• The $1.4B Spallation
Neutron Source in operation

• Managing the billion-dollar
U.S. ITER project

ORNL is the U.S. Department of Energy’s
largest science and energy laboratory

National Center for Computational Sciences (NCCS)

Titan: World’s Most Powerful Computer

Go to Menu

•  Cray XK7 – 27.12 PetaFLOPS (T. Peak), 17.59 PFLOPS (HPL)
•  18688 AMD Opteron processor– 16 cores, 32 GB memory - 2.26 GHz
•  CPU 2,26 x 4 x18688 = 2.392 PF,
•  18688 K20X Nvidia GPU- 6GB memory, 14 active SM, DP 1.31 TFLOPS
•  (CPU) 2.26 x 4 x 18688 = 2.392 ; (GPU) PF 1.31 x 18688 x 14 = 24.27 PF
•  64.8% ; 710 TB RAM ~ 10 times faster than jaguar; 9 Megawatt,

•  Cray XT5 – 1.17 PetaFLOPS (Peak)
•  100 cabinets in 4 rows
•  9408 compute nodes (112896 cores)
•  Each node has 12 cores - 2.6 GHz AMD

(Istanbul) Processor
•  16 GB RAM per node
•  147TB of compute memory
•  Scratch disk space, with 2.4PB of usable space
•  www.nics.utk.edu

Kraken: 1st Academic PetaFLOPS Computer (3rd 2009)

Nautilus & Keeneland

•  SGI Ultraviolet – 10 TFLOPS (Peak)
•  128 nodes x 8 cores (1024 cores) +

16 GPU
•  4.0 GB per core ; 4 TB Global

Addressable RAM SMP
•  1 PB parallel file space; addressable

from kraken
•  Data Analysis; Pre & Post processing

•  HP SL250 – 264 node 615 TFLOPS
(Peak), # 74

•  1 node : 2 Sandy Bridge,16 cores + 3
M2090 GPU

•  32 GB per node + 6 GB / GPU
•  4224 cores + 792 GPU
•  1 PB parallel file space; lustre
•  Interconnect : infinite band 4 x QDR
•  Multi-GPU processing

Climate Simulations and Weather (Storms) forecast

www.caps.ou.edu

Center for Analysis and Prediction of Storms (CAPS), U. Oklahoma
 Predicting Continental US Scale Weather at up to 1 km Grid Spacing
 in Realtime with Full-Scale Radar Data Assimilation
•  26 x 4km and one 1km forecasts were performed on the XT4 Athena using all 18000 processor

cores in dedicated mode 5 nights each week during April – June 2010
–  the 30-hour long forecasts typically take 5 hours to complete during the overnight hours.
–  The same machine was also used to run the two ARPS 4 km forecasts as part of the ensemble.
–  Running realtime forecasts at such a high resolution for a continental-scale domain was a first in this line of research,

while direct assimilation of data from over 120 operational weather radars at such a high resolution had never been
done before.

•  The figure shows an example forecast at 1 km grid spacing for a case where widespread wind,
hail and flooding damages occurred over southern Missouri and southern Illinois

–  Nearly 30 tornadoes were reported in the same region. The severe weather was caused by an intense mesoscale
convective vortex that contained a large bow echo.

–  Figure shows a comparison between the 18-hour forecast of the mesoscale vortex on the 1 km grid, as compared to the
radar observation. The model reproduced the mesoscale vortex very well and predicted a large area of intense surface
winds exceeding 70 miles per hour near the vortex center.

10

Radar reflectivity field produced by
the CAPS 1-km forecast on NICS/
UTK Cray XT5, using 9,600 cores
(left), as compared to radar
observation of the same quantity
(right). The forecast length is 18
hours and the fields are valid1t
18UTC, 8 May 2009.

GISS-climate model CMAQ/WRF

Multi-dimensional Climate and Air
Quality Study,
Joshua Fu
•  Predict U.S. air quality in 2050 for future

air quality planning

•  Evaluate the effect of U.S. climate
changes in 2050

•  Pollutants source and receptor study
for United Nations

•  Downscaling applications coupling
climate and air quality model, CCSM to
WRF, CMAQ

•  Challenges : petacale computing, 2 TB
data per yearly simulation per scenario,
workflow managements, and data
postprocessing

•  NICS helping validate models

Seminar for UTK Industrial and
Information Engineering Department

3/19/10 11

Mathematical Modeling of Heart Rhythm
Disorders,
Xiaopeng Zhao, MABE, UTK
•  A complete understanding of

heart rhythm disorders requires
a system-levels investigation on
the interaction between
electrical, chemical, and
mechanical activities on
biological scales ranging from
ion channels to single cells to
multi-cellular tissue and organ.

•  The goal is to develop a viable
computing framework to model
the cardiac electrical wave
propagation of the human heart.
The work will integrate models
from multiple physics fields
including electrophysiology,
electro-mechanics, and
mechanical deformations.

Highly Scalable Parallel HMMER and BLAST
C. Halloy, B. Rekepalli, and I. Jouline*, UTK
•  HMMER – Protein Domain Identification tool

–  MPI-HMMER limited performance
–  HMMER compares sequences to a database of hidden Markov

models to identify known domains within the sequences

•  New HSP-HMMER code - Excellent performance
•  Currently ~10000x faster than MPI-HMMER for 1K processes
•  Scales up to 98,000 cores very well

•  HSP-HMMER reduces time to identify the Pfam functional
domains in 6.5 millions proteins of the “nr” (non redundant)
database from 2 months on clusters down to less than 10
minutes! using 98000 processing cores..

•  B Rekepalli, C Halloy, IB Jouline. “HSP-HMMER: a Tool for
Protein Domain Identification on a Large Scale,” ACM SAC 2009,
766-770.

•  This is critical, considering that the protein database
continues doubling in size every 6 months!

•  HSParallel BLAST now scales to 50,000 cores on Kraken.
Tests are still under way.

Seminar for UTK Industrial
and Information
Engineering Department

A part of an alignment for the
Globin family from Pfam

13

Multiscale Simulation of Biological Assemblies
Greg Voth, U. Utah

14

The actin-Arp2/3 branch junction
•  Confers shape and structure to

most types of cells
•  Among the largest biomolecular

MD simulations performed to date
(NAMD, 4,000 cores).

Science enabled by NICS
•  Petascale supercomputing resources allow

for long timescale simulation.
•  Thus able to provide meaningful feedback

to experimental research in structural
biology

•  “Kraken is fundamentally changing how we
think about molecular simulation: things
we used to dream about doing are now
possible”

The first CG-MD simulations of the entire
immature HIV-1 virion
•  0.75 million CG sites, equivalent to 108

atoms, using TANTALUS over 2,000
cores

Multiscale simulations of membrane
remodeling. The first direct
comparison of mesoscale simulation
with electron microscopy imaging.
(0.75 million CG sites, equivalent to
1011 atoms, using TANTALUS over
2,000 cores).

Blue figure is simulation. Grey figure is
experimental collaborator results. Blue
figure matches grey figure -- theory
meets experiment in biology.

Atomistic Simulations of Future Nanoelectronics Transistors
Mathieu Luisier, Purdue
Objectives:
•  accelerate nanoscale transistor innovation with petascale

simulation
•  help experimentalists design low power nanodevices

Approach: OMEN - a massively parallel, atomistic, full-band
quantum transport simulator for 1-D, 2-D, and 3-D
nanodevices based on the Non-equilibrium Green’s Function
Formalism

Results:
•  Reproduced InAs HEMT experimental data in an hour with

96,768 cores rather than weeks on cluster; 368 Tflops/s
•  Will be part of a paper on electron-phonon scattering in

nanowire TFETs and opens a door towards larger device
structures

•  Si nanowire with 4nm diameter simulated on 3,000 nodes
with 8GB of memory per core

Impacts:
•  first demonstration of electron-phonon scattering in a 3-D,

atomistic, and full-band basis on Kraken.
•  proved that electron-phonon scattering plays a more important role

when the diameter of the nanowire increases, as expected

•  Full machine runs are the key to simulating large device
structures and to reducing the computational time down to
the minute scale instead of months on a single core.

15

Overview of OMEN capabilities. (a) Examples of nanoelectronics
devices that OMEN can handle (double-gate ultra-thin-body and
gate-all-around nanowire FET). (b) Transfer characteristics Id-Vgs
of different types of TFETs. (c) Spectral current of a GAA NW FET
with electron-phonon scattering. (d) OMEN scaling performances
and sustained performance on Kraken up to 96,768 cores.

Simulating the Big One on Kraken
T. Jordan, Southern California Earthquake Center

5.E+05

5.E+06

1000 10000 100000 G
rid

po
in

ts
 u

pd
at

ed
/s

te
p/

se
c/

co
re

Number of Cores

AWP-ODC Code Scaling on Kraken

On Kraken XT5
Before Upgrade
with
Asynchronous
Communication

On Kraken XT5
Before Upgrade
with
Synchronous
Communication

On Kraken XT5
After Upgrade
with Single-CPU
Optimization

•  Biggest Earthquake Simulation on San Andreas Fault,
the Big One

•  Simulated in a 32 billion grid point subset of the SCEC
Community Velocity Model (CVM) V4 with a minimum
shear-wave velocity of 500 m/s up to a maximum
frequency of 1 Hz.

•  96,000 processor cores used for production runs on
Kraken, 2.6 hrs WCT, 53 sustained TeraFlop/s

16

Simulating the formation of early galaxies
Robert Harkness, UC San Diego

ENZO - Hybrid MPI/OpenMP code
•  Current model is 6,4003 = 268 billion cells and dark

matter particles!
–  Definitely the World's Largest!
–  Star formation and feedback (energy & momentum)
–  Running on 93,750 cores, 125 TB of Kraken

•  “A Blue Waters scale” simulation

–  Largest hydrodynamic cosmology simulation ever done
–  First to simulate large enough volume of the universe to

resolve galaxies across a sufficiently wide range of
masses and luminosities

–  Last checkpoint at redshift 15.5; need to get to 6
•  Requires about 10 more 24-hour 94,000 core runs

•  “The most productive platform in NSF portfolio for
ENZO simulations, bar none,” Harkness

17 \

Computational Science for Undergraduate
Research Experiences (CSURE)

 Kwai Wong, JICS, UTK
kwong@utk.edu

June 3, 2013

Basics of LINUX OS

What do we use and do

•  Linux operating system in general
–  FILE, PATH, FILE MODE

•  General overview Linux OS and terminal commands
–  file, program, executable program
–  cd , ls, mkdir, cp, mv , rm, xedit, gedit, env, path

•  Tools and simple programming skills

•  Compilers – gcc, g++
–  “gcc –o pexe ./prime.c” ; “ ./pexe “

•  Projects, exercises, challenges, games !!

•  Summer projects ??

LINUX – timeline
•  In 70’s, UNIX OS by Bell Lab, for main frame computer
•  C is developed in 1972 by Dennis Ritchie at the

Bell Telephone Laboratories for use with the Unix OS

•  In 80’s, Microsoft’s DOS, Apple MAC

•  GNU project started by Richard Stallman in 1984 : free software,
C compiler in 1991

•  Linux Torvalds, a college sophomore, wrote the first Linux
kernel in Sept. 1991 based on Minix developed by Anfrew
Tanenbaum. …. UNIX on PC ~~ LINUX

•  www.linux .org, www.gnu.org

The Linux System – OS
User commands

Shell

File SystemsKernel

Device Drivers

Hardware

User commands includes
executable programs and
scripts

The shell interprets user
commands. It is responsible for
finding the commands and
starting their execution. Several
different shells are available.
Bash is popular,

The kernel manages the
hardware resources for
the rest of the system.

Kernel

Shell

Linux File System

•  Linux files are
stored in a single
rooted, hierarchical
file system
–  Data files are stored

in directories
(folders)

–  Directories may be
nested as deep as
needed

Directories

User home
directories

Data files

root

LINUX OS – FILE , FILE, more FILES
•  The Linux kernel is written in C

•  EVERYTHING is considered as a FILE in Linux

•  FILE ~~ program : allow read, write, execute

Create a file --------- simple text

Compile a file ------- object file, machine file

Link a file -------------- executable file, run on the machine

 /*	 Simple	 Helloworld	 C	 Example	 :	 hello.c	 */	
#include	 <stdio.h>	
	
int	 main	 ()	
{	

	 printf("Helloworld	 \n");	
	
return	 0;	
}	

To compile : > gcc –o hexe ./hello.c
To run in a computer : > ./hexe

Directory and Path : Absolute and relative

Directories

$> cd
$>pwd
/home/kwong
$> ls
hello.c HI
$>cd HI
$> ls
hi.c
$>pwd
/home/kwong/HI
$> cd ..
$> pwd
/home/kwong

root

Path

•  Absolute
–  use pwd to find the address of the file
–  E.g. home/kwong/CLASS/”file” in the CLASS directory”

•  Relative
–  use ./ to tell the computer the program is in the current

directory
–  E.g use the ./”selected file in the current directory”

File Permissions : read (r), write (w), execute(x)

•  The long version of a file listing (ls -l) will display the file
permissions:
-rwxrwxr-x 1 kwong kwong 5224 Dec 30 03:22 hexe
-rw-rw-r-- 1 kwong kwong 221 Dec 30 03:59 hello.c
-rw-rw-r-- 1 kwong kwong 1514 Dec 30 03:59 hello.s
drwxrwxr-x 7 kwong kwong 1024 Dec 31 14:52 HI

Permissions Owner Group

-rwxrwxrwx (777)

Other permissions
Group permissions
Owner permissions
Directory flag (d=directory; l=link)

READ ~ 4 ; WRITE ~ 2 ; EXECUTE ~ 1 === total ~ 7

Changing File Permissions

•  Use the chmod command to change file permissions
–  The permissions are encoded as an octal number

chmod 755 file # Owner=rwx Group=r-x Other=r-x

chmod 500 file2 # Owner=r-x Group=--- Other=---

chmod 644 file3 # Owner=rw- Group=r-- Other=r--

chmod +x file # Add execute permission to file for all

chmod o-r file # Remove read permission for others

chmod a+w file # Add write permission for everyone

READ ~ 4 ; WRITE ~ 2 ; EXECUTE ~ 1 === total ~ 7

Installation

•  Burn Ubuntu 12.4 from the Linux website

•  Put in CD and press F12 while the machine is turned on

•  A boot menu should pop up and press boot up from
CD-Drive

•  Configure Settings, set username and password, time
zone ,and internet connection

•  Restart machine and access your account, make sure
to take out the CD when you reboot

Terminal

•  For interactive access to your computer, use command
to do the work.

•  Way to view all of your personal files and hidden files
such as source code

•  Also used to write programs in languages such as C++,
C, Fortran, and Python

Commands

•  ls – lists files
•  top – shows what programs the computer is running

•  cd – changes directory

•  cd .. – goes back one directory

•  cp “filename” “newfilename” – copies files

•  mv “filename” “newfilename” – moves the file

•  ls –l – shows what can be read, written, and executable

•  pwd – tells your absolute path of the file you are in

•  mkdir – makes a directory

•  sudo apt-get – gets something you need (update or install, Ubuntu only)

•  env

VI editor

•  Used to create a file

•  2 modes: Insert and View

•  Press ESC to be in View mode

•  Press letter “i” to be in insert mode

•  To save your work press ESC and “:wq”

•  To quit without saving press ESC and “:q!”

•  Webpage for help : google “vi editor summary pdf”

•  http://www.cs.colostate.edu/helpdocs/vi.html or others

Star%ng	 vi	 –	 the	 vi	 material	 are	 copied	 from	 the	
webpage	

Opening	 an	 exis+ng	 file	
vi	 filename	

Crea+ng	 a	 new	 file	
vi	 filename	
	 	

In your workshop directory, create a new file called mytext

vi mytext!

Vi	 Modes	 of	 Opera%on	

–  Command Mode
Allows the entry of commands to manipulate text
Default mode when vi starts
Use Escape key to move into command mode

–  Insert Mode and
Puts anything you type into the current file
To get into insert mode, commands are

a (append) and i (insert)

1. Use the i command to move into insert mode (Press i key).
2. Attempt to type in the title of your favorite song.
3. Use the Esc key to move to command mode.

Quit	 and	 Save	 Changes	 in	 vi	

:wq	 	 	 Write/save	 changes	 and	 quite	
:w	 	 	 Write/Save	 changes,	 but	 don’t	 quit	

1.  Type vi mysong to re-edit your song file.
2.  Use the i command to move into insert mode (Press i key).
3.  Retype the title of your favorite song.
4.  Use the Esc key to move to command mode.
5.  Use the :w command to write/save your edits to file
6.  Use the i command to enter insert mode (Enter i).
7.  Type Title: somewhere on the line with the song title.
8.  Use the Esc key to move to command mode.
9.  Use the :wq command to save and quit vi .

:q	 	 	 	 Quit	 the	 editor	
:q!	 	 	 Quit	 without	 saving	 changes	 to	 the	 file	

1.  Use the Esc key to make sure you are in command mode.
2.  Use the :q command to try to quit vi
3.  Use the :q! command to force quit without saving (Enter :q!).

Vi	 Editor	

•  How to type commands in command mode
[count] command [where]

count : Its a number

where : Specifies how many lines or how much of the

document the command affects. It can also be any
command that moves the cursor.

Moving	 the	 cursor	 in	 vi	

h	 key 	 	 	 move	 cursor	 to	 the	 le/	 one	 posi+on	
l	 key 	 	 	 move	 cursor	 right	 one	 posi+on	
j	 key 	 	 	 move	 cursor	 down	 one	 line	
k	 key 	 	 	 move	 cursor	 up	 one	 line	

1.  Type vi mysong to re-edit your song file.
2.  Use the l command several times to move cursor to the far right
3.  Use the a command to move into append mode (Press a key).
4.  Use the Enter key to start a new line of text.
5.  Type: Artist: and then the name of the artist
6.  Use the Esc key to move to command mode .
7.  Practice moving cursor up, down, left,

and right with h,l,j,k keys.

8.  .

Simple	 vi	 edi%ng	 commands	

r 	 	 	 	 	 	 replace	 one	 character	 under	 the	 cursor	
x	 	 	 	 	 	 delete	 1	 character	 under	 the	 cursor.	
2x	 	 	 	 delete	 2	 characters	 (3x,	 etc.)	
u	 	 	 	 	 	 undo	 the	 last	 change	 to	 the	 file	

	

1.  Use the Esc key to make sure
you are still in command mode.

2.  Reposition your cursor and
use the a, l, r and x commands
to repair any typos in your
title and artist, and change
the title to ALL CAPS

3.  Use the :w command to save your changes.

Cu?ng	 text	 in	 Vi	

d^	
	 	 Deletes	 from	 current	 cursor	 posi+on	 to	 the	 	 	
	 beginning	 of	 the	 line	

d$	
	 	 Deletes	 from	 current	 cursor	 posi+on	 to	 the	 	
	 	 end	 of	 the	 line	

Dw	
	 	 Deletes	 from	 current	 cursor	 posi+on	 to	 the	
	 	 end	 of	 the	 word	

dd	
	 	 Deletes	 one	 line	 from	 current	 cursor	 posi+on.	 	 	 Specify	
count	 to	 delete	 many	 lines.	

Cu?ng	 	 &	 Yanking	 Text	 in	 Vi	

dd Delete (cut) 1 line from current cursor position
2dd Delete (cut) 2 lines (3dd to cut 2 lines, etc.)
p paste lines below current line

1.  Move cursor to top line and type dd to cut the title line
2.  Use the p command to paste the title line below the

artist line
3.  Use the p command to paste it again.

Cu?ng	 	 &	 Yanking	 Text	 in	 Vi	

yy 	 	 yank	 (copy)	 a	 single	 line	 	
2yy	 yank	 (copy)	 2	 lines	 (3yy	 to	 copy	 3	 lines,	 etc.)	
P 	 	 	 paste	 lines	 before	 current	 line	

1.  Move cursor to first of the 2 title lines and
type 2yy to yank/copy 2 lines

2.  Move cursor to the first line, then use the capital P command to paste the
two yanked links above the artist

Vi	 Editor	

To	 go	 to	 a	 specific	 line	 in	 the	 file	
:linenumber	

1.  Go to the 3rd line by typing :3
2.  Go to the 1st line by typing :1
3.  Go to the last line by typing G

Vi	 string/search	

/[paAern]	 	 search	 forward	 for	 the	 paAern	

?[paAern]	 	 search	 backward	 for	 the	 paAern	

n 	 	 	 	 	 	 	 	 	 search	 for	 the	 next	 instance	 of	 a	 string	

1.  Search forward for the next line containing the string Title
by typing /Title

2.  Search forward for the next instance of Title by typing n
3.  Search backward for the most recent instance of Title by

typing ?Title
4.  Search backward for the next most recent instance of Title

by typing n

More	 commands	

yl
 yank a single character. Specify count to yank more characters

yw
 yank a single word. Specify count to yank more words

d^
 Deletes from current cursor position to the

 beginning of the line
d$

 Deletes from current cursor position to the
 end of the line

Dw
 Deletes from current cursor position to the
 end of the word

Prac%ce	 Edi%ng	 with	 vi	

Take	 5	 minutes	 to	 pracKce	 what	 you’ve	 learned	 by	
entering	 as	 many	 of	 the	 lyrics	 to	 the	 song	 as	 you	
can.	 	

Use	 yank	 and	 paste	 to	 repeat	 chorus	 lines.	

Use	 :w	 to	 write	 changes	 every	 30	 seconds.	

Have	 one	 Ktle	 line	 at	 line	 1.	

Have	 one	 arKst	 line	 at	 line	 2.	

Save	 file	 and	 exit	 vi	 when	 finished	 or	 Kme	 expires.	

CSURE-REU

 Kwai Wong, JICS at UTK
kwong@utk.edu

June. 3, 2013

Compiling, Linking, Performance

TOP 500 – www.top500.org
Rank Site Computer/Year Vendor Cores Rmax Rpeak Power

1

National
Supercomputing Center
in Tianjin
China

Tianhe-1A - NUDT YH
Cluster, X5670 2.93Ghz
6C, NVIDIA GPU, FT-1000
8C / 2010
NUDT

186368 2566.00 4701.00 4040.00

2
DOE/SC/Oak Ridge
National Laboratory
United States

Jaguar - Cray XT5-HE
Opteron 6-core 2.6 GHz /
2009
Cray Inc.

224162 1759.00 2331.00 6950.60

3

National
Supercomputing Centre
in Shenzhen (NSCS)
China

Nebulae - Dawning
TC3600 Blade, Intel
X5650, NVidia Tesla
C2050 GPU / 2010
Dawning

120640 1271.00 2984.30 2580.00

4
GSIC Center, Tokyo
Institute of Technology
Japan

TSUBAME 2.0 - HP
ProLiant SL390s G7 Xeon
6C X5670, Nvidia GPU,
Linux/Windows / 2010
NEC/HP

73278 1192.00 2287.63 1398.61

5 DOE/SC/LBNL/NERSC
United States

Hopper - Cray XE6 12-
core 2.1 GHz / 2010
Cray Inc.

153408 1054.00 1288.63 2910.00

75% of peak ;7.8 GFLOPS/CORE;

Numbers : Lots of Them:
•  Core : computing unit : processor
•  Dual core machine (Intel or AMD CPU) : a CPU with 2 cores, each core is a 2.4

GHz computing unit with 2GB of RAM (memory in the processor not disk space)

•  Binary bits (b) : “0” or “1” , 1 Byte (B) = 8 bits

•  Binary number : 11111111= (27 + 26 + 25 + 24 + 23 + 22 + 21 + 20) = (28 -1) = 255 !!

•  32 bits machine or operating system => largest integer (all positive) = (232 -1) =
(4,294,967,296 -1) or range of integer = -(231) to (231 -1)

•  64 bits machine or operating system => range of integer = -(263) to (263 -1)

•  Kilo (K) = 103 (or 210) ; Mega (M) = 106 (or 220); Giga (G) = 109 (or 230); Tera (T
billion) = 1012 (or 240) ; Peta (P) = 1015 (or 250)

•  FLoating Point Operation (+, -, / , *) : (10.1 + 0.1) * 1.0 / 2.0 = 5.1 => 3 FLOP

•  FLOPS = FLOP per second :: 1 PetaFLOPS (kraken) = 1015 FLOP in one second
•  FLOPS in a core = (clock rate) x (floating point operation in one clock

cycle)

•  Peak Rate = (FLOPS in one compute unit, core) x (no. of core)

LINUX OS – FILE , FILE, more FILES
•  The Linux kernel is written in C

•  EVERYTHING is considered as a FILE in Linux

•  FILE ~~ program : allow read, write, execute

Create a file --------- simple text

Compile a file ------- object file, machine file

Link a file -------------- executable file, run on the machine

 /*	 Simple	 Helloworld	 C	 Example	 :	 hello.c	 */	
#include	 <stdio.h>	
	
int	 main	 ()	
{	

	 printf("Helloworld	 \n");	
	
return	 0;	
}	

To compile : > gcc –o hexe ./hello.c
To run in a computer : > ./hexe

More about compiling : --
To compile : > gcc hello.c –o hexe
To run in a computer : > ./hexe

To compile : > gcc –c hello.c ====è hello.o
To link > gcc hello.o –o ./hexe ===è executable
To run > ./hexe

Ø gcc –v hello.c –o hexe
………
COLLECT_GCC_OPTIONS='-v' '-mtune=generic'
 /usr/lib/gcc/x86_64-linux-gnu/4.4.1/collect2 --build-id --eh-frame-hdr
-m elf_x86_64 --hash-style=both -dynamic-linker /lib64/ld-linux-x86-64.so.2 -z relro
/usr/lib/gcc/x86_64-linux-gnu/4.4.1/../../../../lib/crt1.o
/usr/lib/gcc/x86_64-linux-gnu/4.4.1/../../../../lib/crti.o
/usr/lib/gcc/x86_64-linux-gnu/4.4.1/crtbegin.o
-L/usr/lib/gcc/x86_64-linux-gnu/4.4.1 -L/usr/lib/gcc/x86_64-linux-gnu/4.4.1
-L/usr/lib/gcc/x86_64-linux-gnu/4.4.1/../../../../lib -L/lib/../lib
-L/usr/lib/../lib -L/usr/lib/gcc/x86_64-linux-gnu/4.4.1/../../..
-L/usr/lib/x86_64-linux-gnu /tmp/ccm2W1PN.o
-lgcc --as-needed -lgcc_s --no-as-needed -lc -lgcc --as-needed
-lgcc_s --no-as-needed /usr/lib/gcc/x86_64-linux-gnu/4.4.1/crtend.o
/usr/lib/gcc/x86_64-linux-gnu/4.4.1/../../../../lib/crtn.o

More hello1.c and myprint.c
/*	 More	 Helloworld	 C	 Example	 :	 hello1.c	 */	
int	 myprint();	
	
#include	 <stdio.h>	
int	 main	 ()	
{	

	 myprint();	
return	 0;	
}	

/*	 myprint	 C	 function	 :	 myprint.c	 */	
#include	 <stdio.h>	
	
int	 mprint()	
{	

	 printf("Helloworld	 \n");	
return	 0;	
}	

To compile : > gcc –c hello1.c myprint.c ====è hello1.o, myprint.o
To link > gcc *.o –o ./hexe1 ===è combine all object files to an executable
To run > ./hexe1

Makefile :

hello1:
 gcc –O3 -c hello1.c
 gcc –O3 -c myprint.c
 gcc *.o -o hexe1

clean:

 rm *.o

CC = gcc
LINKER = gcc

hello1: *.o

 $(CC) –O3 -c hello1.c
 $(CC) –O3 -c myprint.c
 $(LINKER) *.o -o hexe1

clean:

 rm *.o

To compile
> make
gcc –O3 -c hello1.c
gcc –O3 -c myprint.c
gcc *.o -o hexe1

>make
Nothing to do

To clean all object files:
>make clean

Timing Code – clock() , FLOPS
/*	 Simple	 timing	 C	 Example	 :	 tc.c	 */	
#include	 <stdio.h>	
#include	 <sys/types.h>	
#include	 <time.h>	
	
int	 main	 ()	
{	
	 	 int	 i;	
	 	 double	 a=1.0,	 b=1.0,	 c=0.0,	 ttime,	 tflops;	
	 	 clock_t	 start,	 end;	
	 	 start	 =	 clock();	 	
	 	 for(i=0;	 i<1000000000;i++)	 	 c=a+b;	
	 	 end	 =	 clock();	
	 	 ttime	 =	 (double)	 (end-‐start)	 /	 CLOCKS_PER_SEC;	
	 	 tflops	 =	 1.0/	 ttime	 ;	
	 	 printf(“	 	 CPU	 time	 =	 %f	 ;	 GFLOPS	 =	 %f	 \n“,	 ttime,	 tflops);	
return	 0;	
}	

To compile : > gcc –o tcexe ./tc.c
To run in a computer : > ./tcexe

matmul.c
#include <sys/types.h>
#include <time.h>
#include <stdio.h>
#include <unistd.h>

#define DIM 500

int main() {

 clock_t start, end;
 double a=1.0, b=1.0 , c=1.0, d=0.0, ttime, tflops;
 static double A[DIM][DIM], B[DIM][DIM], C[DIM][DIM];
 int i,j,k;

 for (i = 0; i < DIM; ++i) {
 for (j = 0; j < DIM; ++j) {
 A[i][j] = 1.0;
 B[i][j] = 1.0;
 C[i][j] = 0.0;
 }
 }

matmul.c
start = clock() ;
for (i = 0; i < DIM; i++) {
 for (j = 0; j < DIM; j++) {
 for (k = 0; k < DIM; k++) {
 C[i][j] = C[i][j] + A[i][k]*B[k][j];
 }
 }
 }
 end = clock() ;
 printf(" C[0][0] = %f, C[last][last] = %f \n", C[0][0],C[DIM-1]
[DIM-1]);
 ttime = (double) (end - start)/CLOCKS_PER_SEC ;
 tflops = 2.0*DIM*DIM*DIM/ttime/1000000000;
 printf(" CPU time = %f , GFLOPS = %f \n", ttime , tflops);

return 0;
}

To compile : > gcc –O3 matmul.c –o mmexe
To run in a computer : > ./mmexe

mm.f
 PROGRAM dgemmtest
 IMPLICIT NONE

 integer i, j, nn, n, m, k, LD
 double precision A(500,500), B(500,500), C(500,500)
 double precision alpha, beta, rtime1, rtime2, rtime, rflops
 real etime ! Declare the type of etime()
 real elapsed(2) ! For receiving user and system time
 real startt, total ! For receiving total time

 alpha = 1.0d0
 beta = 1.0d0
 nn = 500
 LD = 500

C m = rows of A, k = cols of A (= rows of B), n = cols of B

 m = nn
 k = nn
 n = nn

mm.f C Generate matrices A, B, & C:
 do 30 i=1, m
 do 30 j=1, n
 A(i,j) = 1.0d0
 B(i,j) = 1.0d0
 C(i,j) = 1.0d0
 30 continue

 startt = etime(elapsed)
 call dgemm('n','n',m,n,k,alpha,A,LD,B,LD,beta,C,m)
 total = etime(elapsed) - startt

 rtime=total*1.0d0
 rflops = 2.0d0*nn*nn*nn/rtime/1000000.0
 write(*,*) ' ***** MFLOPS = ', rflops
 write(*,*) ' **** My time = ', total, C(1,1)

 end

> gfortran –O3 mm.f –o mmexe –L/home/kwong/LAPACK/lib -lblas
To run in a computer : > ./mmexe

CSURE-REU

 Kwai Wong, JICS at UTK
kwong@utk.edu

June. 3, 2013

 FORTRAN F90 Overview

F90 Features
•  Major extension of F77
•  All of FORTRAN 77

•  Syntax improvements including free-form source

•  Array operations

•  New intrinsic procedures (arrays, bit manipulation)

•  New and improved control constructs

•  Dynamic storage allocation

•  User-defined data types

•  Pointers

•  Procedure interfaces

Syntax Improvements
•  Statements may appear anywhere
•  Columns 1-6 are no longer reserved

•  Line continuation -- “&”

•  Trailing comments may be used -- “!”

•  Multiple statements allowed in one line

•  Underline symbol “_” is permitted

•  31 characters for length of variables

•  Example :
TMP_VALUE_OF_X = X ; X = Y ; Y &
= TMP_VALUE_OF_X ! swap X and Y

Language Elements

•  Attributes are extra properties of variables in Type
specifications

 INTEGER, PARAMETER :: n=1000
 REAL, DIMENSION(n,n) :: a , b

•  Data Types :
 INTEGER, DIMENSION(10) : : m, n
 REAL X(-10 : 20), Y(1:50)
 CHARACTER :: CH
 LOGICAL :: TF

•  Do loops :
 DO I = 0, 10
 M(I) = I*I + 1
 END DO

High Performance Fortran 62

Array Features

F77

REAL A(50,50), B(50,50), C(50,50)

DO I =1, 50

 DO J = 1,50

 C(I,J) = A(I, J) + B (I, J)

 END DO

END DO

F90

REAL, DIMENSION(50,50) :: A, B, C

C = A + B

--

REAL, DIMENSION(5,20) :: X, Y

REAL, DIMENSION(-2:2, 1:20) :: Z

!elementwise multiplication

Z = 4.0*Y * X

Array Allocations

Allocatable Array
(creation and destruction are user-

controlled)
PROGRAM simulate

IMPLICIT NONE

INTEGER :: n

INTEGER, DIMENSION(:, :), &
ALLOCATABLE :: a

PRINT *, n

……

ALLOCATE(a (n, 2*n))

……

DEALLOCATE (a)

END

Automatic Arrays
(created on entry and destroyed

on exit from procedure)
PROGRAM auto_array

INTEGER :: n,m

READ *, n,m

CALL sim(n,m)

END

SUBROUTINE sim(n,m)

REAL :: a(n,m), b(m)

…….

RETURN

END

Assumed-Shape Array

•  Assume shape of actual
argument to which it is
associated

subroutine asshape(f, isign, indx)
!assumed-shape array
real, dimension(:) :: f
integer isign, indx
…….
end subroutine asshape

•  Assumed-shape arrays require
an explicit interface (compiler
verifies matching arguments)

program main
integer, parameter :: isign=0,

indx=10, nx=2**indx
real, dimension(nx) :: f
interface

 subroutine asshape(a, j,k)
 real, dimension(:) :: a
 integer :: j, k

end interface
call asshape(f, isign, indx)
end

Interface Blocks

•  Interface blocks provide the compiler with all the information
necessary to make consistency checks and ensure that
enough information is communicated to the procedure at run-
time.

•  An interface declaration gives the characteristics (attributes) of
both the dummy arguments (e.g. name, kind, type, and rank)
and the procedure (e.g. name, class, and type).

 Interface
 subroutine of function header
 declarations of dummy arguments
 end subroutine or function
 end interface

Statement Ordering

PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK DATA

USE

IMPLICIT NONE

PARAMETER IMPLICIT

Derived-Type Definition, Interface blocks, Declarations, Statement functions

DATA Executable constructs

CONTAINS

Internal or module procedures

END

Module and Use Statements
•  Modules contain declarations, functions, and type definitions that can be

conveniently accessed and used by executable program units
•  Modules create interface blocks automatically. It is sometimes advantageous

to package INTERFACE definitions into a module.

 module test
 ………. declarations ….
 contains
 subroutine abc(x,y)
 ………
 end subroutine abc
 end module test

•  Use statement makes modules “available”, like F77 COMMON and INCLUDE

Example : Module
module swapping

 contains

 subroutine swap (x, y)

 real, intent(inout) : : x, y

 tmp = x; x= y ; y = tmp

 end subroutine swap

end module swapping

program trymodule

 use swaping

 real : : a = 1.0 , b=2.0

 call swap(a, b)

end program trymodule

module Pye
! save makes pi a global constant
! acts like common

 real, save :: pi = 3.1415926
end module Pye

program Area

 use Pye
 implicit none
 real : : r
 read * , r
 print* , “ Area = “, pi *r *r

end program Area

Derived Types
•  User defined type from intrinsic and previously defined types
•  Various components can be unified by a derived type

type private_complex

 real :: real, imaginary
 end type private_complex

 type (private_complex) :: a, b, c
 a%real = 1.0
 b%imaginary = 2.0
 c%real = a%real*b%real - a%imaginary*b%imaginary
 c%imaginary = a%real*b%imaginary + a%imaginary*b%real

Encapsulation in Modules

•  Grouping of data and operations into a single well-defined unit

module private_complex_module
type private_complex ! define type

 real :: real, imaginary
end type private_complex
contains

 type (private_complex) function pc_mult(a,b) ! function def.
 type (private_complex), intent (in) : : a, b
 pc_mult%real = a%real*b%real - a%imaginary*b%imaginary
 pc_mult%imaginary = a%real*b%imaginary + a%imaginary*b%real
 end function pc_mult

end module private_complex_module

Encapsulation (Cont’d)

•  A main program to multiply two private_complex numbers

 program main
 use private_complex_module ! bring in the module
 type (private_complex) : : a, b, c
 a%real = 1.0
 a%imaginary = -1.0
 b%real = -1.0
 b%imaginary = 2.0
 c = pc_mult(a, b)
 print *, ‘c=‘, c%real, c%imaginary
 stop
 end program main

FORTRAN 90 Pointers
•  Pointer variables do not hold data, they point to scalar or

array variables which themselves may contain data

•  Target : the space to which a pointer variable points

•  Pointer and target declarations :

real, pointer :: ptor
real, dimension(:,:), pointer :: ptoa
real, target : : x, y ! may associate with ptor
real dimension(5,3), target ::a, b ! may associate with ptoa
x = 3.1416
ptor => y ! pointer assignment (aliasing)
ptor = x ! “normal” assignment , y = x

 nullify(ptr) ! disassociate pointer from y
 ptoa => a(3:5:2, ::2)

Intrinsic Functions (F90)

•  Array construction functions
–  SPREAD, PACK, RESHAPE,…

•  Vector and matrix multiplication
–  DOT_PRODUCT, MATMUL

•  Reduction functions
–  SUM, PRODUCT, COUNT, MAXCAL, ANY, ALL...

•  Geometric location functions
–  MAXLOC, MINLOC

•  Array manipulation functions
–  CSHIFT, EOSHIFT, TRANSPOSE…...

Examples (F90)
REAL :: a(100), b(4,100)

scalar = SUM(a) ! sum of all elements

a = PRODUCT(b, DIM=1) ! product of elements in first dim

scalar = COUNT (a = = 0) ! gives number of zero elements

scalar = MAXVAL (a , MASK = a .LT. 0)

LOGICAL a(n)

REAL, DIMENSION(n) :: b, c

IF (ALL(a)) …… ! global AND

IF(ALL(b = = c) …… ! true if all elements equal

IF (ANY(a)) …… ! global OR

IF (ANY(b < 0.0)) ….. ! true if any elements < 0.0

Acknowledgements

•  NSF, DOE, Cray, NCCS, NICS staff,
students

•  many helpful hands and collaborators

•  Pictures are obtained from the web.

