
1

Big Data Approach to fMRI Data Analysis with
Intel DAAL and Full Correlation Matrix Analysis

Yin Lok Wong

Abstract—This report describes the combination of the use and
testing of the open source Spark NIfTI reader library biananes,1
dedicated for scalable fMRI data analysis, together with Intel
Data Analytics Acceleration Library(DAAL), to realize analytic
operations of fMRI data on the Big Data framework Apache
Spark and replacing the use of Apache Spark MLlib with DAAL
under the Computational Science for Undergraduate Research
Experience programme(CSURE 2016).

I. INTRODUCTION

fMRI data analysis deals with data represented in large scale
matrices. Operations on those matrices generate intermediate
and resulting matrices and data that are often even larger, for
example, the use of data in gigabytes might generate results
in terabytes, which breeds an ideal scenario for the use of Big
Data framework such as Apache Spark. However, the use of
Big Data framework in fMRI data analysis is limited due to
the difficulty of representing fMRI data in distributed data sets
that can then be utilized by such frameworks.

The Resilient Distributed Dataset(RDD) is the primary data
abstraction in Apache Spark, which is essentially the fault-
toleration collection of records. In memory transformations
and actions on RDD support the core of operations on Spark.
The use of open source Spark NIfTI Reader library - biananes
enables NIfTI image files of fMRI data to be read into
RowMatrix RDD for Apache Spark, and thus available to
MLlib function calls.

However, some MLlib functions are limited in performance.
According to the benchmark results from Intel upon the release
of Intel Data Analytics Acceleration Library,2 on computation
of principal component analysis under Spark, DAAL shows a
most significant 7x performance boost compared with MLlib.
Therefore, in the hope to enhance the analysis process, the
use of MLlib is replaced by DAAL with tests to verify
performance difference.

To replace MLlib with DAAL, adaptations are needed to
make biananes return the desired data structure needed by
DAAL. Conversion from RowMatrix to Numeric Table, or
more specifically, Homogeneous Numeric Table, is needed.

The last stage of the project is the realization of Full Corre-
lation Matrix Analysis(FCMA) on Spark. With reference to the
FCMA toolbox and relevant papers by Princeton University,3

attempts to implement the 3-stage pipeline of FCMA are made
with the updated biananes and use of DAAL.

. Mentors: Pragnesh Patel, Kwai Wong, Junqi Yin
1. rboubela, https://github.com/rboubela/biananes.
2. Intel, https://software.intel.com/en-us/blogs/daal.
3. Yida Wang et al., Full correlation matrix analysis of fmri data, technical

report ().

II. BIANANES4 UPDATE FOR DAAL

biananes is a library for fMRI data analysis on large
datasets running on the Apache Spark framework, by reading
fMRI NIfTI files into RowMatrix RDD in Spark MLlib. It is
basically written in scala, and compiled with Java compiler.

NIfTI is the most common file type in representing fMRI
data, which is basically a collection of arrays representing
different dimension of the fMRI image, plus some header
information. biananes extracts the data stored in the multi-
dimensional array in NIfTI files, and concatenates the data in
a continuous row ordered by time volume. The resulting row is
in RowMatrix RDD that can then be divided into partitions and
distributed for computation on memory of respective worker
nodes.

Fig. 1. Flowchart of
core implementation of
first biananes update

RowMatrix, however, is the data
structure in Spark MLlib. The end goal
of this project is to test and replace
the use of MLlib with Intel DAAL.
Therefore, adaptations on biananes is
needed. The data format utilized by Intel
DAAL in its sample codes for Spark is
JavaPairRDD〈Integer,
HomogenNumericTable〉, where In-
teger takes the index number of the
partition, or volume, HomogenNumer-
icTable takes the Homogeneous Nu-
meric Table storing the data content.

Homogeneous Numeric Table in
DAAL represents features in columns
and feature vectors in rows. The
adaptation essentially, and theoretically,
is to read NIfTI data content into rows
in HomogenNumericTable. However,
difficulties were encountered when
attempting to translate data content in
NIfTI to rows in Numeric Table, thus
a different approach was used. Figure
1 shows the basic implementation logic
of the updated biananes.

Development in later stage of the
project required correlation computation by matrix multipli-
cation on Numeric Table input. The construction of Numeric
Table in the updated biananes as specified above was then
problematic as the multiplication of a single column with its
transpose results in the dot product of a single value, which
deviates from the expectation of getting a correlation matrix.

4. rboubela,



2

Fig. 2. Flowchart of
core implementation of
second biananes update

A new approach was then developed
to generate Numeric Table with multiple
rows representing vectors and columns
representing features, the implementa-
tion logic is illustrated in figure 2.

In this approach, the maximum num-
ber of rows in a HomogenNumericTable
is limited to the number of partitions, i.e.
working nodes. Instead of instantiating
a new table from every volume of nifti
content, a new volume of nifti content
will be appended to an existing table
where possible, and a table will only be
instantiated when the number of rows
has reached the maximum number of
rows or when there is no extra partition
left.

A. Code Snippet

As mentioned above, the theoretical
amendment made to biananes is to trans-
late the construction of rows in RowMa-
trix to the construction of rows in Ho-
mogenNumericTable. However, the test
image file contains a total of nearly

500,000 data points per volume, meaning nearly 500,000
columns in 1 single row if the structure of RowMatrix is
retained.

This approach was built successfully. But when tested with
DAAL sample code on Spark, segmentation fault occurred.
An experimental attempt to avoid the problem, corresponding
to the flowchart in figure 1, was to construct the table in
its transpose manner, i.e. taking rows as a representation of
features and columns as a representation of vectors. Basic
implementation as in figure 3.

Fig. 3. Core implementation of single-column construction of JavaPair-
RDD〈Integer,HomogenNumericTable〉

Figure 3 shows the basic implementation of the first ap-
proach which mimics the construction of rowMatrix in the
original biananes code. With this implementation, each volume
of data is concatenated into a single column of a Homogen-
NumericTable.

Sample codes of DAAL, running SVD and QR computation
returned results with this updated biananes. This was taken as
the implementation for the benchmark tests. However, in later
stage of development where matrix-matrix multiplication was
needed, new changes were made to biananes.

Figure 4 shows the implementation of the second major
update to biananes where multi-row Numeric Table are con-
structed according to the logic in figure 2.

Fig. 4. Core implementation of second update of biananes to give multi-row
Numeric Table

This approach was built successfully, but when tested with
data containing ”fat” matrices - matrices with over 10000
rows, segmentation fault occurred at runtime as with the row-
orientated construction of Numeric Table.

Sample codes of DAAL, including QR decomposition and
Covariance computation, returned result with the same imple-
mentation of biananes on input data with small scale matrices
- around 500 rows and columns. The contrary in results with
the same update of biananes has speculated doubts on whether
DAAL supports the analysis of ”fat” matrices.

B. Setup and Run Walkthrough

biananes is an open source library written in scala with
dependencies on a number of other packages and libraries
written in C/C++ or Java, including the Spark packages and
the NIfTI i/o libraries named niftilib. The dependencies are
managed by Apache Maven and thus the compilation and
package of the library is done by updating the dependencies
in the pom.xml correspondingly and then build with Maven.

The following is the note on how the library was built and
used during this project. The platform used throughout the
project is the cluster Beacon in NICS.

biananes was built in this project in the following steps,
1) install niftilib i/o library
2) install and load Apache Maven
3) install Intel DAAL
4) install daal.jar locally with maven-install
5) update dependencies in pom.xml
6) update NiftiTools.scala, which contains the implementa-

tion of functions in the library
7) use (maven clean &)maven compile & maven package

to build the library

Points to note when building the library,
1) daal.jar was installed and linked locally in the maven

project, installation and dependencies update are needed
when building the library on another platform or user
login

2) sparkniftireader.c in bianaes dir/src/main/C/sparkniftireader/src/
contains functions to be called in NiftiTools.scala,
compilation of this code into sparkniftireader.so is
needed in advance for the build of biananes.jar

3) lib so path in NiftiTools.scala needs to be updated to
refer to the correct location sparkniftireader.so

4) Spark version 1.5.2 was used, make sure dependencies
involving Spark core in pom.xml are referring to spark
1.5.2 or above



3

5) inappropriate locale setting might cause error on build,
export LC CTYPE=C if needed

On successful build of biananes, a biananes.jar will result.
Import and link the jar file when compile and run the source
code containing biananes function calls.

When using the interactive spark-shell or submitting a
standalone script with spark-submit, add the following flag:

–jar path to biananes.jar

Notes on build and usage are documented in the
README.md in the biananes folder uploaded to a svn repos-
itory in NICS for the project.

C. Remarks and Evaluation

Discrepancies in results using the same biananes update, i.e.
segmentation error on large scale matrix input vs successful
return on small scale matrix or tall skinny matrix input
might worth investigation on whether it is problem with code
implementation or it is that Intel DAAL does not support
operations on matrices with huge amount of features.

It is worth noting that the default number of partitions
used in biananes is 32, which essentially does not affect the
implementation as data with less volumes will just idle the
partition without force attempt to have calculation done on
those extra partitions.

However, the dimension of Numeric Table instantiated does
affect the implementation. Except the case where large scale
matrices are concatenated into row-oriented Numeric Table
which gives segmentation fault, segmentation error also results
when the dimension of Numeric Table exceeds the dimension
of data points in the Numeric Table, while a smaller Numeric
Table will be constructed and computed without problem, e.g.
for a test case with a data containing array size of 1*577,
a HomogenNumericTable in the size of 1*578 would return
SIGSEGV while a 1*576 table would return results without
error.

III. BENCHMARK TESTS

According to benchmark results released by Intel,5 on com-
putation of Principal Component Analysis on Spark, DAAL
shows a max of 7x performance boost compared with MLlib.
In the hope of verifying the performance difference and
compare such with fMRI data analysis, tests were carried out
using DAAL and MLlib on Spark respectively, with the use
of the updated biananes as implemented in figure 3.

Figure 5 shows the computation time of DAAL and MLlib
on Singular Value Decomposition. Note a volume of data
contains a table of 480115 rows and 1 column. To achieve
proper scaling effect, for computation with 1 node and 2 nodes,
data with 2 volumes are used, and when more nodes are used,
data with corresponding volumes are used, e.g. 8-volume data
is used for 8-node computation. Also note that for single node
computation, it was carried out in local mode while others
were carried out in cluster mode.

5. Intel,

Fig. 5. SVD computation time of DAAL and MLlib

Fig. 6. QR computation time of DAAL and MLlib

Figure 6 shows the computation time of DAAL and MLlib
on QR decomposition. Same as that of SVD, variable data size
on different nodes are used to achieve proper scaling effect.
DAAL has shown performance boost over MLlib on larger
data size.

A. Code Snippet

Sample codes in Java of implementations of different algo-
rithms in DAAL come with the installation of DAAL and can
be found under the installation directory. Changes were made
to the sample codes, mainly to change the way to read data,
from the default setting of HDFS under Hadoop and reading
of CSV files, to the use of biananes and reading of NIfti files.

The implementations of DAAL algorithms used in the test,
i.e. SVD and QR, were left untouched as in the sample
implementation from DAAL.

While with MLlib, Java codes were written to repeat the
steps of function calls used in the interactive Spark-shell to
call SVD and QR computations. The implementations of these
analytic computations in MLlib are encapsulated in single
functions. The Java codes written basically called SVD and
QR with a line of function.

These Java codes had to be written and run with Spark-
submit instead of simply calling functions in Scala using
Spark-shell because of the hope to align the testing environ-
ments, by using Spark-submit with both libraries.

Figure 7 shows the update of the sample code from DAAL.
For each computation in DAAL. There is this controller
script containing the i/o and main function, which calls the
function from another script containing the implementation
of the computation. The implementation of SVD is divided



4

Fig. 7. update to DAAL sample code to read from NIfTI file instead of
reading CSv files into HDFS

into 3 steps during distributed computation.6 The first step is
local computation of partial results from the distributed input
Numeric Table in each local node, the partial will be kept in
the local node for step 3 as well as sent to the master node for
step 2; step 2 requires the master node to collect the partial
results and split the tables across local nodes to finish up the
computation and step 3 is to finish the remaining computation
with partial results from step 1 and those acquired from step
2.

QR decomposition shares the same flow of implementa-
tion as that of SVD.7 The implementation scripts of both
computations were not touched but remained in their default
implementation during the test.

While computations in DAAL are from sample codes which
call steps to perform the computations, implementations in
MLlib are simply the replicate of Scala commands in Spark-
shell in Java codes.

Figure 8 shows the SVD code and figure 9 the QR for MLlib
in Java.

Fig. 8. MLlib SVD computation in Java

Fig. 9. MLlib QR computation in Java

An additional build script from DAAL has been amended
to build the Java codes and run the Spark-submit command.
Code snippet of the build script of SVD computation as in
figure 10.

The commented out statement under Running is the com-
mand to launch in cluster mode, the user can choose between
local and cluster by switching the comment tag.

6. Intel, https://software.intel.com/en-us/node/564638.
7. Intel, https://software.intel.com/en-us/node/564644.

Fig. 10. Build & Run script for SVD with DAAL

B. Setup and Run Walkthrough

This section documented the steps taken for the benchmark
test. The biananes library file used was built as implemented
in figure 3.

Note that for the computation in DAAL, there is the
controller script and the implementation script. Changes to
the controller script is needed for locating the input file
without any changes needed for the implementation file;
while for MLlib, changes to locate the input file are updated
in the single Java code. To link to the different versions of
biananes.jar, the library path is controlled in the build script.
The build script serves as both build and run purpose.

1) Update BIANANES JAR to locate the desired
biananes.jar

2) Update SampleSvd.java/SampleQR.java for DAAL or
computeSVDmllib.java/tallSkinnyQRmllib.java for ML-
lib to locate the desired input data file

3) Update the corresponding build scripts to choose from
local mode and cluster deployment

4) Load spark/1.5.2
5) Run the corresponding build scripts to build and run

the codes

In the test, each and every configuration was run for 10
times. The times obtained are the averaged result from the 10
trials.

C. Remarks and Evaluation

Note that in the test, the structure of Numeric Table used
with DAAL is in column orientation, while with MLlib, data
are represented by the row in RowMatrix. The difference in
structure resulted in difference in the results returned. Figure
11 shows results of SVD with DAAL and figure 12 shows that
with MLlib. Despite the difference in U and V returned, the
singular values are the same.

While the difference in results returned were neglected, the
data used in the test, despite having matrices of around or
over 500000 data points, are quite small in size, i.e. around
1MB for the 2-volume data. The computation time was small
and trivial compared with the overhead of function setup in
the Big Data environment, which could possibly explain the
increase in time when the same data file was used in 1-node
and 2-node test. With the above said, it is to expect that the
comparison results here are too preliminary to serve as an
accurate benchmark test on DAAL and MLlib on fMRI data



5

Fig. 11. Returned result from SVD with DAAL

Fig. 12. REturned result from SVD with MLlib

analysis. Soon after this project, larger scale data are expected
to come and the test shall be conducted again to acquire more
meaningful results.

An additional point to note is that, SVD in DAAL tested
with fat and short matrices, e.g. 1 row with 200 columns,
would fail with Intel MKL error specifying that parameter 1 is
incorrect on entry to DORG2R. Lookup to the reference from
Intel8 reveals that ”each data block must have sufficient size”,
i.e. number of rows(vectors) must be larger than the number
of columns(features), in which case would not be applicable
to the data representation in long rows mimicking that of the
RowMatrix in MLlib.

IV. FCMA

This section describes the last stage of the project, which
is the attempt to migrate the Full Correlation Matrix Analysis
toolbox by Princeton University9 to the Big Data framework
Apache Spark with the use of Intel DAAL.

There is the following three stage pipeline in FCMA10 that
this project aims to replicate on the Big Data framework.

1) Correlation computation by matrix-matrix multiplication
2) Normalization of resulted correlation matrix

8. Intel,
9. Wang et al., Full correlation matrix analysis of fmri data.

10. Yida Wang, Michael B Anderson, and Ted Willke, “Optimizing Full
Correlation Matrix Analysis of fMRI Data on IntelR Xeon PhiTM Coproces-
sors.”

3) Support Vector Machine to validate result

This FCMA pipeline realizes full correlation matrix analysis
in a fairly short period of time, and accuracy can be improved
as compared with single-variate analysis. It is originally a tool-
box of algorithms and libraries, with its core implementation in
parallel computing with MPI. As the nature of FCMA, which
deals with a lot of large scale data, is ideal for computation
under the Big Data framework, the goal of the project is to
employ the concept of the toolbox under Spark.

So far as this project proceeds, development on stage 1
and 3 has started. The intuition was to use matrix-matrix
multiplication provided in MKL to develop stage 1. However,
DAAL encapsulated the use of MKL that the direct call of
matrix-matrix multiplication was not possible.

A. Code Snippet

A workaround to the problem is to make use of Covariance
computation. Covariance is provided in the sample codes
from DAAL, and result Numeric Table supports the change
from type Covariance to type Correlation. By updating the
implementation code in figure 14, a multiplication of the input
Numeric Table(matrix), with its own transpose is resulted.

Fig. 13. Correlation can be computed by updating return result from
ResultId.covariance to ResultId.correlation

Although the code has been updated and test returned
results, with the use of column-oriented biananes as imple-
mented in figure 3, the result returned was in dot product of
a single value instead of the desired correlation matrix. This
was probably due to the multiplication of the column table
with its row transpose.

This undesirable result initiated the revision of the first
biananes update and has yielded the second update with multi-
row table as in figure 4.

V. CONCLUSION

This project is under the Computational Science for Un-
dergraduate Research Experience programme(CSURE 2016),
which is conducted by the Joint Institute for Computational
Sciences and led by the University of Tennessee, Knoxville
and the Oak Ridge National Laboratory. Due to the time
constrain of the programme, this project has not finished.

This project has shown preliminary integration of biananes
and Intel DAAL, and in turn shown the start of fMRI data
analysis under the Big Data framework.

Future development of the project shall reside with the
revision of the biananes updates and most importantly, the
review of Intel DAAL. More data are expected to come which
would facilitate the testing and reviewing of codes. And the
underlying implementation of algorithms and support of its



6

Numeric Table data structure are crucial to the incorporation
of DAAL in fMRI data analysis. The remaining stage of the
FCMA pipeline shall be continued to accomplish the project.

VI. REFERENCE

1) Roland N Boubela et al., “Big Data approaches for
the analysis of large-scale fMRI data using Apache
Spark and GPU processing: A demonstration on resting-
state fMRI data from the Human Connectome Project,”
Frontiers in neuroscience 9 (2015)

2) Wang et al., Full correlation matrix analysis of fmri data
3) Wang, Anderson, and Willke, “Optimizing Full Corre-

lation Matrix Analysis of fMRI Data on IntelR Xeon
PhiTM Coprocessors”


