User Interfaces Development in openDIEL

Argens Ng
August 5, 2016

Abstract

This paper serves the purpose of reporting the progress of user inter-
faces enhancement in the work flow engine openDIEL. While openDIEL
has the potential to become a powerful work flow engine, its interface to-
wards users has been staggering in development which magnifies the urge
of this project. In this paper, I will describe the progress of a module
making python script known as modMaker, as well as the development
tool timer.

1 Introduction

OpenDIEL stands for open Distributive Interoperable Executive Library. It is
a lightweight software framework which aims at combining different interopera-
ble computational componenets to simulate system-wide scientific application.
It uses Message Passing Interface (MPI) to facilitate the cooperation between
loosely coupled modules and outputs a single executable.

To use openDIEL, user needs to provide:

1. Modules
2. Configuration File (using libconfig)

3. Driver (driver.c)

Figure 1: The structure of openDIEL.

Our ultimate goal is of course to automate the generation of all of the above
three files, or sets of files. In this project, we will focus on the generation of the
module first. This will be done by a python script called modMaker.

2 ModMaker

2.1 What is modMaker?

At the current stage, modMaker is a package of 2 python scripts — modMaker.py
and worker.py. Together they can transform a C-file or a directory of C-files
(and other files from C family) into a module (or modules). This is done by a

series of pattern matching of strings as well as the addition of static supporting
files.

2.2 What is a module?

For user defined code or simulation models to run in openDIEL, it has to be
in the format of an openDIEL module. There are a few requirements. For
example, it has to be rid of the main program. It also has to be rid of
MPI_.COMM_WORLD, MPI_Init and MPI_Finalize to facilitate the coopera-
tion between different modules. This complicated formatting would be done by
modMaker in the following manner.

Software A Software C

[ModMaker

Module A Module C
$ 4 $

Compiled together as libraries into
runnable executable

Figure 2: Illustration of modules.

“

<-|<-

p

2.3 How to transform a module?

To transform a module, we have to first understand the syntactic structure of
the language. As the C-family is our first target, we would naturally focus on
it first.

I started off by focusing on the target ”int main”.. As ”int main” is now
located in driver.c, we would need to replace the main program of individual
modules with a function header. To do that, we have to accurately identify ”int
main” and modify it. (To be more precise, we would also need to consider ”void
main” but we would focus on ”int main” only for the purpose of this paper)

Thinking as a human, I quickly realize that as long as ”int” and ”main”
are two separate and individual strings, it would be unique and correct as the
target we would like to change. This actually holds true for all other targets
that we wish to change and hence the problem becomes ”identifying individual
strings correctly separated”. From this insight, the following flow diagram is
constructed.

Locating Finding Prompting
Identifying Replacement User

Feature Candidate Confirmation

Figure 3: ModMaking workflow.

2.3.1 Locating identifying feature

Two approaches were considered for locating identifying feature. The first one
"matching by character” and the other is "matching by string”. To illustrate
the difference, take a look at Fig.4 below.

lﬂlﬂlﬂﬂlﬂﬂ

Pattern 1 int ma
Pattern 2 MP I _ |
Nomatchx2 / * T h i
Nomatchx2 * T h i

lﬂlﬂﬂﬂlﬂﬂ

»nw wuw S

Pattern 1 int ma

No match Al s |
No match & AN (R K= i S
Pattern 2 MPI1 _Init
No match /*This i
No match A el e

Figure 4: Matching-By-Character vs Matching-By-String

The upper diagram illustrates the process of matching-by-character. By
reading in and comparing at each character, we can determine if it is a match
to any of the patterns that we are trying to match. So since the first character
is a ’/’, which is neither a match to pattern 1 nor pattern 2, we will continues
to match the next character with the heads of both string (we will not proceed
within the patterns).

The bottom diagram illustrates the process of matching-by-string. By read-
ing in a line at a time, we can use python function string.find(string) to see if the
line contains the target patterns, looping by pattern. Again, we found out that
there is no match for both patterns at both position 1 and 2 in 4 comparisons.

While the benefit is not significant in this case. Matching-by-character can
lead to a performance boost if the patterns have similar sub-string head to start
with. For example, when matching patter ”MPI_Init” and ”MPI_Finalize”, we
can determine that both patterns have first 4 characters matched or not with 4
comparisons instead of 8, after understanding that they starts with the same 4

characters.

However, it was soon realized that this require extra effort in identifying com-
mon sub-string start. As long as the built-in string.find(string) can terminate
comparisons prematurely upon finding unmatched characters, the performance
boost would be insignificant, especially so when compared with the time waiting
user input. Hence matching-by-string was used.

2.3.2 Finding Replacement Candidate

First we need to understand the difference between ”locating identifying feature”
and "finding replacement candidate”. Identifying feature refers to pattern such
as ”int[space|main” and ”int[tab]main” (Notice that they are no different from
the compiler’s perspective). However, we would like to replace much more than
identifying feature itself. For example, we might want to replace ”int main(int
arge, char** argv)” or simply ”int main ()”. This is when syntactic freedom of
C proves to become a barrier.

Luckily, C is a language depending heavily on separators, in contrast to
Python, which is a indentation based language, and Fortran, which has its
own set of strict formatting rules, C can have the whole code in one line and
minimal separation. Its extensive use of special characters is both a threat and
opportunity for our module transformation. In this case, it is the solution to
the above problem.

1) int main(int argc,char**argv){\n

2)MPI _Init(&argec, &argv);
3) rc=MPI _Init(&argc,&argv);
4) int rc=MPI _Init(&argc,&argv);

5 int main(int_argc,char**argv) {\n

Figure 5: Finding replacement candidate

It soon became apparent that the closing parenthesis ”)” marks the end
of our replacement candidate. To tackle this problem more systematically, we
divide the statements that we need to convert in C into 3 categories.

1. Function Title
2. Statement

3. Variable

Function title refers to cases like ”int main”. They are likely ended with
a closing parenthesis and then followed by a open bracket ””. Statement such
as "MPI_Init()” can be function call or assignment of variables. Luckily in C,
they are usually ended with a semi-colon ”;”. Lastly, variables are usually not
enclosed in separators and they are identifiable by themselves alone. Examples
are "MPI_COMM_WORLD”.

By locating the separator in front of an ”Identifying Feature” and the one
after, we can now locate with high accuracy the ”Replacement Candidate” for
our modules. After checking the spaces within and making sure each token is
in fact a word by itself, we can pass on the results for the user to verify.

worker.baseCheck

Occurrence (token) =0

Check Validity

Valid Candidates

¥

Find Next Separator

l

findLastSeparator

replace / remove line

¥

showProgress

!
-®

Figure 6: Modular approach to various checking method

2.3.3 User Participation

Notice that we have been using the word ”Replacement Candidate”. This is
because we believe that there might be missing factors even after serious inves-
tigation, and we do not wish to alter the program without user consent. This
can cause serious problem that is hard to debug.

Hence all the replacement that we would like to change would appear on
screen in a highlighted manner, with replacement suggestion listed out to see if
the user see fit.

This soon raises another problem, which is the huge number of prompts
generated. While the modMaker script was created with test cases of 2 files and
around 40 lines in total, it was soon discovered that hundreds of files and tens
of thousands of codes are common in real life scenario. Hence 3 tactics were
employed to combat this problem.

The first one is the combination of similar prompts. In our case, MPI.COMM_WORLD
is the most common token and hence generates the most prompts. Hence we
decided to count, combine and ask for confirmation all together as illustrated
in Fig.8.

The second tactic is to use extension matching to prevent going into un-

Transforming file "test.c" into module "first"
0ld files will be put into directory Archive_modMaker
3 MPI_COMM_WORLD have been replaced.

We have found something that may need to be changed in your code for the followi
ng reason:

Only one Main can exist and it belongs in the driver.c

5) int main(int arge,charssargv)

I you agree on this change press [Enter] or key in [y/Y]. If it is incorrect, k
ey in [n/N]

Figure 7: Prompting for user confirmation

Transforming file "test.c" into module "first"
0ld files will be put into directory Archive_modMaker

13) MPI_Comn_rank (MPI_COMM_WORLD, &rank);

14) MPI_Comn_size (MPI_COMM_WORLD, &size);

18) MPI_Barrier (MPI_COMM_WORLD);

We have found 3 occurances of MPI_COMM_WORLD.
Press [Enter] to authorize every change or key-in “n/N" to authorize one-by-onefl

Figure 8: Combination of similar prompts

)

wanted files. This takes in multiple inputs and hence for example, ”.c” and

”.cpp” could both be accepted in one transformation.

wWhat file types should we focus on? Please optionally enter extensions one by on
e and end with a blank line.
(Include "." and use small letters. Example: ".c")

Extension: .c
Extension:

Press Enter to Continue or type “exit" to quit: |

Figure 9: Getting the list of allowed file extension

This last tactic was to screen out files without any replacement candidate.
While this seems obvious in later stages, it was not thought of in earlier stages
and a lot of times was wasted for confirming file searches with user input.

As seen in the last figure, a large proportion of files did not require the
modMaker to go through nor user to confirm. They are hence simply skipped.
A large sum of time is saved after these 3 tactics were implemented.

2.3.4 Testing

Testing is a huge part in modMaker, simply because changing a program at
source code level is dangerous and risky. Hence we provide sufficient testing
tools for the user to make sure their module runs normally.

After changing a program into a module. It compiles into a library and acts
like a function. Hence, a "tester.c” is provided for a main program entry point
for the new module. The user can then compile it as a program again and see
if it runs correctly.

An artificial ”IEL.h” was also provided for the user to test the module out
of openDIEL scenario. In the developement stage, we can separate the issues
of module transformation from any problem in openDLEL. Even in later stages
when openDIEL becomes stable, it is still always better to keep the testing
environment as clean and simple as possible.

We are about to conduct transformation on 1_SOURCE/appdbconld.c.
Press [Enter] to begin or key-in “n/N" to skip this file.

Figure 10: Skipping files without any chances of replacement

2.4 Timer

As a tool targeting at high-performance computing, openDIEL is supposed to
save the user time. It is supposed to automate process combination with minimal
overhead and thus by using timer, we can monitor this process and mark any
progress.

We will now divide the use of timer from two perspective — that of openDIEL
user and that of developer.

2.4.1 For OpenDIEL User

As said in the very beginning of this paper, users have to provide a configuration
file to utilize openDIEL. This file consists the dependency of the modules as well
as groupings. This file greatly determines the order of execution of modules as
well as idle times.

While automated optimization would be ideal in the long run, at the cur-
rent stage, changing the configuration file would be more than sufficient for
optimization at the user end.

At the end of every run, there would be a conclusive timing information as
follow.

Most Idle Time: [Process 11 | 30.195744 seconds (90.631661%).

Earliest End Time: Process 1 time = 27.261870 seconds.
Latest End Time: Process ® time = 33.316978 seconds.

Figure 11: Showing conclusive timing information

Seeing that process 11 takes the most time, we can then go into a folder with
more detailed information.

User can then tell that Function 5 waits for a lot of its dependencies and
this results in a hefty 84% time wasted in process 11. The user can then think
of how the configuration file can be rewritten to better optimize openDIEL and
the CPU usage.

0.048955 (~0.023994) [Begin] Info Unpack
0.048968 (©.000013) [End] Info Unpack

0.048968 (-0.000000) [Begin] Direct Communi

0.096939 (©.047971) [End] Direct Communication Setup
0.095940 (~0.000000) [Begin] Workflow Setup

0.145035 (©.048995) { Eng | Workflow Setup

8.150633 (-8.004699) [-24.025%] [Begin] Function 5
9.150605 (1.000062) [End] Function
19.25006 (-10.10027) [-30.314%] [Begin] Function_s
20.25102 (1.000057) [End] Function
30.27751 (-10.02648) [-30.093%] [Begin] Function_s
31.27764 (1.000133 [End] Function s
33.31793 (-2.040202) (Begin] IEL Finalize
33.31794 (©.000005) [End] IEL Finalize
33.31704 (33.31704) [End] driver.c

)
)

Total Idle Tine = 30.195744 seconds. (98.629081%)
End Time = 31.277643.

Figure 12: Showing detailed timing information for process 11

2.4.2 For OpenDIEL Developer

For openDIEL developer, timer can actually help reduce overhead in coordi-
nating different modules. This is done by using levels defined in ”timestamp”
function.

Level basically refers to the hierarchy of function call. The top level (or
level 1) is always driver.c. This has to be placed inside driver.c by the user
after MPI_Init and before MPI_Finalize. Each call then add the level by 1 while
return statements generally should be accompanied by a negative level of 1.
This goes deeper and deeper and returns similar to call stack.

[Begin] Driver.c
[Begin] Group_1
[Begin] Function_1
[End] Function_1
[Begin] Function_2
[End] Function_2
[End] Group_1
[End] Driver.c

‘Level 1 ‘ ‘Level 2‘ ‘Level 3‘

Figure 13: Showing the use of levels in timestamping

Levels are not only useful for presentation. It is also useful for extracting
information for timing data without intervention of user.

9.000223 [Add] MODULE-6

0.025378 (-0.825155) [Begin] Info Pack

1.825436 (-1.000058) 4 [Begin] Info Pack
1.025455 (9.000019) [End] Info Pack
1.025455 (1.000077) 4 [End 1 Info Pack

1.025462 (-0.000007) [Begin] Direct Communication Setup

Figure 14: Showing the meaning of different times of timer files

Next to each time, a square bracket would contain a number representing
time difference. If the level difference is negative, openDIEL has just returned
from a function call or finished a process. The timer would then find the cor-
responding starting time and the total time used in this process can then be

found. This is shown as a positive number in the square bracket.

If level difference is positive of zero, however, this means that the time
difference would be the time used between neighboring process of time used
to prepare for this particular process. This time is most likely overhead that
could be reduced by openDIEL developer. Hence the time difference is shown
as negative.

2.5 Possible Development

While we have gone over several test cases and debugged several times, there
is undeniably potential threats in our approach — that is the approach of string
matching — to module making.

The first one is the dependency on human support. As a developer, it
is quite frankly easy to develop white box test cases that can render mod-
Maker useless. For example, we can create variables that contains the substring
MPI_.COMM_WORLD, or we can create wrap MPI_Init() in another function
located in another file that is not gone under the radar of modMaker.

It would be even easier if we do not wish to defeat the core purpose of module
making. For example, we can put the keyword "main” in every program as a
comment, then the pre-detection stage of module making would become useless.
We can also eliminate line break characters from the file. While this would not
affect module making, users can no longer identify the key feature that require
our attention because the limit of screen width would render highlighting useless.

The second one is the unpredictability of program structure. Simply put,
we just cannot be sure we can handle all C-programs flawlessly using mod-
Maker. For example, we only learned that "argc”, "argv” replacement should
be available in future versions of modMaker. However a quick implementation
was proven ineffective. This is because we have been treating the "main file”, or
the file containing main program, indifferently from other files. A effective and
efficient way to do that in the future would be to either identify the ”main file”
or asking the user to provide it, as the ”main file” contains a lot of features that
we would like to work on and is the place we need to add a lot of signatures.

To stress on the seriousness, imagine a program that used preprocessor di-
rectives. They are in effect another language building on top of C-files. These
have even more unpredictable behavior and syntax. Imagine if the user has
always been using it to replace keywords at compile time, thus using the direc-
tives together with compiler to correctly generate executable, the chance of a
successful module making would then be even dimmer.

Problems like this would, in my prediction, come up for every large scale
programs that we convert in the future. While we predicted at the beginning
that human intervention was necessary, the amount needed at the current stage
is far from satisfactory. The hope for rapidly losing this need is also dim. The
creation of a fully automated modMaker would be as complex as creating a
compiler or interpreter. This would not be an ideal solo or short project in the
near future.

2.6 Future Work

Besides continual improvement of modMaker and timer, I believe that future
development of the User Interface of openDIEL can aim at module making of

FORTRAN codes and the issue of multiple file I/O in running multiple copies
of parallel modules.

2.7 Reference
1. openDIEL (http://cfdlab.utk.edu/openDIEL /opendiel.php)

2. Stack Overflow (http://stackoverflow.com)

2.8 Acknowledgment

This project is made possible only with the support of my mentor Dr. Kwai
Wong, the NSF, the University of Tennessee and Oak Ridge National Labora-
tory. I would like to express my deepest gratitude towards all of the people,
in particular Dr. Wong, who have supported and guided me throughout the
project. I would not have achieved close that what I have today without them.

2.9 Appendix

modMaker.py worker.py
v
filename, tokenlist
Check Interest init
interest
v
filename, tokenlist
‘Compiled Consent receiveConsent
consents
¥
‘Open File
¥
line, module name
Save To Backup heckM:
modified line
¥
line
Check Function Ti checklnit
a2 ¥
Check Statement m chechkfinalize
modified line
line, consents
Check Variable checkMPICommWorld
modified line
¥
Check Main Main
w

createMainHeader

v

addGlobal

Yes .

Figure 15: The flowchart of transforming a file

10

modMaker.py worker.py
‘ argv
Main Program A e
inputFileName, outputFileName, mode, directory, moduleName, fileExtension)
'_Eﬁode;?
il |
lobalHeader|
o + +
\ \ |
':‘:L;sl F\I;;?:' 3 | 4 a’c;m-:f\.‘ 3
" Directory
File
Yes
End
Figure 16: The flowchart of modMaker as a whole.

11

worker.baseCheck

QOceourrence (token) =0

Check Validity

Valid Candidates

Has Separators

h J

Find Mext Separator

h 4

findLastSeparator
Mo P

promptChange

F

Mo

replace / remove line

L]

showProgress

!
@

Figure 17: The flowchart of baseCheck, one of the fundamental checking pro-
grams 12

49

import worker
import sys
import os

tokensOfInterest = ["MPLCOMMWORLD” , »MPI_Finalize” , "MPI_Init”, 7
main(”, 7 main 7]

#include \”IEL.h\”\n

header = "#include \”MODULE.GLOBAL.h\”\n”

Description: Transform a file under the copy mode
Usage: copyMode (inputFileName, outputFileName, moduleName)

Variables: [string] inputFileName: the file to be changed

[string] outputFileName: the filename of the file to be
output

[string] moduleName: the name of module to be created

def copyMode (inputFileName, outputFileName, moduleName) :

global header, tokensOfInterest

hasInterest = worker.init (inputFileName, tokensOflnterest)
if not hasInterest:

return
(consents, cont) = worker.receiveConsent (inputFileName, [”

MPLCOMM.WORLD”])
if not cont:

worker.showProgress (”%s has been left untouched.” % (
inputFileName))

return

try:
inputFile = open (inputFileName, ’'r’)
outputFile = open (outputFileName, ’'w’)
outputFile.write (header)

for line in inputFile:

(foundMain, changedMain, headerCreated) = worker.getMain ()

line = worker.checkFunctionTitle (line, moduleName)
line = worker.checkStatement (line)
line = worker.checkVariable (line, consents)

if worker.foundMain and not worker.headerCreated:
worker . createMainHeader (moduleName, outputFileName)

if worker.foundMain and not worker.changedMain:
line = worker.addGlobal (line)

outputFile.write (line)
worker.lineCounter += 1

inputFile.close ()
outputFile.close ()
except:
print ”Unexpected error:”, sys.exc-info () [0]
if os.path.exists (outputFileName):
os.remove (outputFileName)
extention = len (inputFileName)
print ”

13

69

81

83

91

93

99

111

7 4 77 % (extention + 1)
print ?Module building in %s have been reverted while prior
changes retained.” % (inputFileName)

print 7

74 7= % (extention + 1)

raise
Description: Transform a file under the replace mode
Usage: replaceMode (inputFileName, outputFileName,

moduleName)

5s|# Variables: [string] inputFileName: the file to be changed

[string] moduleName: the name of module to be created
def replaceMode (filename , moduleName) :

global header, tokensOfInterest

hasInterest = worker.init (filename, tokensOfInterest)
if not hasInterest:

return
(consents, cont) = worker.receiveConsent (filename, [”

MPLCOMM-WORLD”])
if not cont:

worker.showProgress (”%s has been left untouched.” % (filename)
)
return

inputFile = open (filename, ’'r’)

lines = inputFile.readlines ()

inputFile.close ()

try:
outputFile = open (filename,
outputFile.write (header)

)

w)

for line in lines:

(foundMain, changedMain, headerCreated) = worker.getMain ()

line = worker.checkFunctionTitle (line, moduleName)
line = worker.checkStatement (line)
line = worker.checkVariable (line, consents)

if worker.foundMain and not worker.headerCreated:
worker . createMainHeader (moduleName, filename)

if worker.foundMain and not worker.changedMain:
line = worker.addGlobal (line)

outputFile.write (line)
worker . lineCounter += 1

outputFile.close ()

except:
print ”Unexpected error:”, sys.exc-info () [0]
outputFile = open (filename, ’'w’)

for line in lines:
outputFile.write (line)
outputFile.close ()

14

113 extention = len (filename)
print 7

?—7 % (extention + 1)

115 print ”Changes in %s have been reverted while prior changes
retained.” % (filename)

print ”

77 % (extention + 1)

Description: Transform a file under the archive mode
19| # Usage: archiveMode (inputFileName, outputFileName,
moduleName)

121|# Variables: [string] inputFileName: the file to be changed
[string] outputFileName: the filename of the archived
file
123| # [string] moduleName: the name of module to be created

125| def archiveMode (inputFileName, outputFileName, moduleName) :

127 global header, tokensOflInterest

hasInterest = worker.init (inputFileName, tokensOfInterest)
129 if not hasInterest:

return

(consents, cont) = worker.receiveConsent (inputFileName, [”
MPLCOMM WORLD”])

133 if not cont:

worker . showProgress ("%s has been left untouched.” % (

inputFileName))

135 return
137 inputFile = open (inputFileName, ’'r’

lines = inputFile.readlines ()
139 inputFile.close ()
141 outputFileName = worker.sequenced (outputFileName)
143 try:

outputFile = open (inputFileName, ’'w’)

145 archiveFile = open (outputFileName, ’'w’)
147 outputFile. write (header)
149 for line in lines:

archiveFile.write (line)

(foundMain, changedMain, headerCreated) = worker.getMain ()

153

line = worker.checkFunctionTitle (line, moduleName)
155 line = worker.checkStatement (line)

line = worker.checkVariable (line, consents)
157

if worker.foundMain and not worker.headerCreated:
159 worker . createMainHeader (moduleName, inputFileName)
161 if worker.foundMain and not worker.changedMain:

line = worker.addGlobal (line)
163
outputFile.write (line)
165 worker . lineCounter += 1

15

167 outputFile.close ()
archiveFile.close ()

169 except:
print ”Unexpected error:”, sys.exc_info () [0]
171 outputFile = open (inputFileName, ’'w’)
for line in lines:
173 outputFile.write (line)
outputFile.close ()
175 if os.path.exists (outputFileName):
os.remove (outputFileName)
177 extention = len (inputFileName)
print ”
bk +
7—7 % (extention + 1)
179 print ”Changes in %s have been reverted while prior changes
retained.” % (inputFileName)
print ”
7o+
77 % (extention + 1)
181 raise
183| status = 77
(inputFileName, outputFileName, mode, directory , moduleName,
fileExtension) = worker.receiveArguments (sys.argv)
185 option = 717
while option != 7”7 and option != 7exit”:
187 option = raw_input (”\nPress Enter to Continue or type \”exit\”
to quit: 7)
1g0| if option =— "exit”:
sys.exit (0)
191
if directory = "F”:
193 if mode = "C”: #
195 copyMode (inputFileName, outputFileName, moduleName)
197 elif mode =— "R”: #
199 replaceMode (inputFileName, moduleName)
201 elif mode = 7A”:
203 if not os.path.exists (outputFileName):
try:
205 os.makedirs (outputFileName)
except OSError:
207 worker . displayMsg ("We do not have the permission to create

a directory OR disk space is full OR directory already exists.
Please either:\n\n 1)\t create a directory;\n 2)\t remove some
files; OR\n 3)\t use another mode\n”)

sys.exit (1)

209

outputFileName = os.path.join (outputFileName, inputFileName)
211 archiveMode (inputFileName, outputFileName, moduleName)
213 elif directory =— "D”:

if mode = 7C”:

215

if not os.path.exists (outputFileName):
217 try:

16

219

239

249

259

261

263

269

&
~

os.makedirs (outputFileName)
except OSError:

worker . displayMsg (”"We do not have the permission to create
a directory OR disk space is full OR directory already exists.
Please either:\n\n 1)\t create a directory;\n 2)\t remove some
files; OR\n 3)\t use another mode\n”)

sys.exit (1)

worker . createGlobalHeader (outputFileName)
for dirname, dirnames, filenames in os.walk(inputFileName):
for filename in filenames:

if not filename.startswith (’.7):

iName = os.path.join (dirname, filename)
ext = os.path.splitext (filename)[1].lower ()

if ext in fileExtension:

oName = os.path.join (outputFileName, filename)
oName = worker.sequenced (oName)
worker .showProgress (”\n———=In file %s=———=\n" % (

iName))
copyMode (iName, oName, moduleName)

elif mode = "R”:
worker . createGlobalHeader (inputFileName)

for dirname, dirnames, filenames in os.walk(inputFileName):
for filename in filenames:
if not filename.startswith (’.7):
iName = os.path.join (dirname, filename)
ext = os.path.splitext (filename)[1].lower ()

if ext in fileExtension:
worker . showProgress (”\n———=In file %s=————=\n" % (
iName))
replaceMode (iName, moduleName)

elif mode == "A”:
worker . createGlobalHeader (inputFileName)

if not os.path.exists (outputFileName):
try:
os.makedirs (outputFileName)
except OSError:
worker . displayMsg ("We do not have the permission to create
a directory OR disk space is full OR directory already exists.
Please either:\n\n 1)\t create a directory;\n 2)\t remove some
files; OR\n 3)\t use another mode\n”)
sys.exit (1)

for dirname, dirnames, filenames in os.walk(inputFileName):
for filename in filenames:
if not filename.startswith (’.7):
iName = os.path.join (dirname, filename)
ext = os.path.splitext (filename)[1].lower ()

if ext in fileExtension:
worker . showProgress (”\n———=In file %s=———=\n" % (

17

273

275

277

I

16

24

26

28

30

32

3¢

36

38

4C

iName))
archiveMode (iName, os.path.join (outputFileName,
filename), moduleName)

worker .showProgress (7

’7)

worker.showProgress (”We have completed the transformation.”)

worker.showProgress (” Please note that \”argc\” and \”argv\” in
main program have to be changed into”)

worker.showProgress (”\” exec_info—>modules—>mod_argc\” and \”
exec_info—>modules—>mod_argv\” respectively”)

worker .showProgress (”

)

modMaker.py

This is the worker program that uses python to do work
It can read in a c¢ file and return a ”package” used under the IEL
model

import sys
from array import x*
import os

#Global Flags
#initRemoved = False
#finRemoved = False

#mainRemoved = False

#Global Buffer

status = 77
lineCounter = 1
lines = []
foundMain = False

changedMain = False
headerCreated = False
#changed = False

TN IR I R IN TR TN TN : : TR IR TN TR TR TR TN TN
T AT T 1 11 111111 11 DlSplay Functions T 1 111 1111

Clears the screen for displaying messages
def clearScreen ():
print (7\033c”)

Shows debug messages without being cleared (not exactly by not
clearing)
def debug (s):
showProgress (s)

Shows the archived ”"more—important” messages that would ”"not be
cleared”
def displayArchive ():
clearScreen ()
print status

Display a one—time message
def displayMsg (s):

18

60

64

66

68

80

84

88

90

92

94

displayArchive ()
print s

Shows progress and archive the progress
def showProgress (s):
global status
status = status + s + 7\n”
displayArchive ()

Displays a line with its highlight beneath certain region

def displayWithHighlight (lineNumber, line, start, end):
print "%d) %s” % (lineNumber, line [:len(line) — 1])
count = line.count (”\t”)

tempString "\t” % (count + 1)

tempString = tempString + 7 7 * (start — count)
tempString = tempString + -7 % (end — start + 1)
tempString = tempString + ”\n”

print tempString

TN IR TR TN TR L . : . INTRTNINTaT L T
7 T 1T 111117 Worker Functions 7 117 7 11117

Description: Validate user—input path

Usage: pathName = validatePath (pathName, True)

Variables: [str] pathName: user—input pathname

[bool] existing: whether an existing or non—existing
pathName is needed

[bool] directory: whether a directory or file pathName

is needed, true refers to directory
Returns [str] a valid pathName as—per required
def validatePath (pathName, existing , directory):

»» .,

while existing and pathName =—
if directory:

pathName = raw_input (”Please specify a directory for
transformation: ”7).strip ()
else:

pathName = raw_input (”Please specify a file for
transformation: ”).strip ()

if existing and directory:
while not os.path.exists (pathName):
print ”\"%s\” doesn’t exists” % (pathName)
pathName = raw_input (” Please enter an existing dirname: 7).
strip ()
while not os.path.isdir (pathName):
print "\"%s\” is not a directory” % (pathName)
pathName = raw_input (”Please enter an existing dirname: 7).
strip ()

if existing and not directory:
while not os.path.exists (pathName):
print ”"\"%s\” doesn’t exists” % (pathName)
pathName = raw_input (”Please enter an existing filename: 7).
strip ()
while not os.path.isfile (pathName):
print "\"%s\” is not a file” % (pathName)
pathName = raw_input (”Please enter an existing filename: 7).

19

96

98

100

102

104

106

108

110

116

126

128

130

136

140

146

148

strip ()

if not existing and directory:
while os.path.exists
print 7\"%s\” exists already”
pathName = raw_input (” Please
leave blank for auto—generated

(pathName) :

% (pathName)
enter a non—existing dirname or
directory: 7).strip ()

if not existing and not directory:

% (pathName)

while os.path.exists (pathName):
print ”\”%s\” exists already”
pathName = raw_input (” Please

enter a non—existing filename

or leave blank for auto—generated filename: ”).strip ()

return pathName

Description: Find the previous occurance of string s in line
with respect of startLocation

Usage: void function (); int main ();

This function can locate the first 7;”

Variables: [str] line: the line in question

[int] startLocation: the token must be before this
position

[str] s: token in question

Returns [int] location of token. —1 if not found.

def findLastSeperator (line, startLocation, s):

location
prev

line.find (s)
location

if location =— —1 or

return —1

a given
of upper— and lowercases and

location > startLocation:

location + 1)

character is alpha—numeric.

er in question

alphanumeric. False if ¢ is not
57):

90) :

while (location < startLocation):
prev = location
location = line.find (s,
if location = —1:
return prev
return prev
Description: Determines if
(10 numbers, 26 characters
underscore)
Usage: if isAlphanumeric (c):
Variables: [char] «¢: charact
Returns [bool] True if c¢ is
def isAlphanumeric (c):
valid = False
if (ord (c¢) >= 48 and ord (c) <=
valid = True
if (ord (c) >= 65 and ord (c) <=
valid = True

20

if (ord (c) >= 97 and ord (c) <= 122):

152 valid = True
if (ord (c¢) == 95):
154 valid = True
156 return valid
158
Description: Checks if a sub—line contains only spaces (or
space—equivalent , ie. tab)
60| # Usage: if spaceOnly (line, startLocation, endLocation): {do
sth}
162|# Variables: [str] line: the line in question
[int] startLocation: start of substring
164 | # [int] endLocation: end of substring
166| # Example: 01234567289
word word
168| # Pass in (line, 4, 6)
Returns [bool] True if there’s only spaces. False otherwise.
170

def spaceOnly (line, startLocation, endLocation):

172
if startLocation >= endLocation:
174 return False
176 valid = True
178 for counter in xrange (endLocation — startLocation):
if line [startLocation + counter] != ' ’ and line |
startLocation + counter] != "\t :
180 valid = False
182 return valid
184|# Description: To prevent overwriting existing files by adding
numbers at the back
Usage: outputFileName = sequenced (outputFileName)
186
Variables: [str] filename: the original filename
1ss|# Returns [str] filename: the ”safe”, "updated” filename
00| def sequenced (filename):
192 temp = filename
counter =1
194

while os.path.exists (temp):
196 temp = filename + ”_.7 4+ str(counter)
counter += 1

198
return temp
200
202
”II/I /l/l,l,l /I//lll /,l HIIII ”/”,III lll/l/,l,l ll//l/ User COmIHuniCatiOn Il,l”/,l, I/Illll ,l,/ H,l,l,l,/l///” IIIIII ,l,/ HIIII,II
204
Description: Let the user decide whether or not to make a
change
206|# Usage: if promptChange (line, In, start, end, reason): {do
sth}

21

208

210

212

216

218

220

224

228

230

234

236

240

242

246

252

260

#
#
#
#
#
#

d

H* $

#
#
#
#
#
#
#
d

Variables: [str] line: the line in question
[int] linenumber: linenumber to be displayed
[int] start: start of questionable segment
[int] end: end of questionable segment
[str] reason: reason for change
Returns [bool] True if user accepts the change. False if not

ef promptChange (line, lineNumber, start, end, reason):

if start =— end:
return line

print "We have found something that may need to be changed in
your code for the following reason:\n”

print "\t%s\n” % (reason)

end = end — 1

while (True):

displayWithHighlight (lineNumber, line, start, end)

option = raw_input (”If you agree on this change press [Enter]
or key in [y/Y]. If it is incorrect, key in [n/N] 7).strip ()

if option = ”” or option = ”y” or option = 7Y”":
return True

elif option = ”n” or option = "N”:
return False

else:

print ”Unrecognized input. Please try again.”

Description : Receive file related inputs and options from user
Usage: (inputfile , outputfile , mode, directory , moduleName)
= receiveArguments (argv)
Variables: [list] argv: System arguments vector
Returns [tuple] tuple of (input_filename , output_filename ,
mode, directory , module_name)
Representations: modes: A will replace original files which
will then be put into an archive
R replaces without archiving
C duplicates before changing. Original copy is not
affected
direc: D means that modMaker makes changess on a
directory
F means that modMaker makes changes on a file
ef receiveArguments (argv):
clearScreen ()
mode = 7C”
directory = "F”
modeSpec = False

dirSpec = False

li = sorted (sys.argv[1l:])
counter = 0

while (counter < len(li) and li[counter][0] = "—"):

22

264

266

268

286

290

294

296

298

304

306

308

316

if len(li[counter]) = 1:
print
Input!”
sys.exit (1)
elif 1i[counter][1]
if not modeSpec:
mode = "R”
modeSpec =
else:
print
sys.exit

True

”Overlapped Flags!!

(1)

elif li[counter][1]
if not modeSpec:
mode = 7C”
modeSpec =
else:
print ” Overlapped Flags!!
sys.exit (1)

elif 1i[counter][1]
if not modeSpec:
mode = "A”
modeSpec =
else:
print
sys.exit

7 e” or

True

— 7a” or

True

”Overlapped Flags!!
(1)

elif li[counter][1] = 7d” or
if not dirSpec:
directory = "D”
dirSpec = True
else:
print ” Overlapped Flags!!
sys.exit (1)

elif 1i[counter][1]
if not dirSpec:
directory = "F”
dirSpec = True
else:
print
sys.exit

”fY or

”Overlapped Flags!!
(1)

elif li[counter][1] != 7o

”Please check on input format and spacing.

and li[counter][1] !=

Unrecognized

li [counter|[1] == "R”:

%s, %s” % ("-” + mode, "—-R”)

.

—
—

i [counter][1]

%S, %577 % (77777 + mode, 77*077)

—
—

i [counter|[1] = "A”:

%s, %s” % (- + mode, "—A”")

li [counter][1] = "D”:

%s, %s” % ("= 4 directory , 7-D")

li [counter|[1] = "F”:

%s, %s” % (- + directory , "—F”)

PO .

print ”Unrecognized Flag %s” % (1li[counter])

counter += 1

counter = 1
inputFileName =
outputFileName =
moduleFlag = False
moduleName = 77

99

29

while (counter < len

(sys.argv)):
if moduleFlag and moduleName —

[IRIEN

moduleName = sys.argv [counter |

elif sys.argv [counter][0] !=

»_» .

23

330

338

340

346

350

354

360

362

364

366

368

370

376

if inputFileName — 77 :

inputFileName = sys.argv [counter]
elif outputFileName — 7”7 :
outputFileName = sys.argv [counter]
if sys.argv [counter] = ”—0” or sys.argv [counter] = 7-0O":

if not moduleFlag:
moduleFlag = True
else:
print ”Overlapped Flags!! %s, %s” % (sys.argv [counter], "—
O77)
sys.exit (1)

counter += 1

if mode = 7C”: #
if directory =— "F”:
inputFileName = validatePath (inputFileName, True, False)
outputFileName = validatePath (outputFileName, False, False)
else:
inputFileName = validatePath (inputFileName, True, True)
outputFileName = validatePath (outputFileName, False, True)

elif mode = "R”:
if directory = "F”:
inputFileName = validatePath (inputFileName, True, False)
else:
inputFileName = validatePath (inputFileName, True, True)

",

if outputFileName !=

displayMsg (”You have chosen to use the replace option.
Changes will be made directly to the original file and %s doesn
"t matter\n” % (outputFileName))

warning = raw_input (”Type \”exit\” to end program or [Enter]
to continue: 7)
while warning != ”” and warning != "exit”:
warning = raw_input (”Type \”exit\” to end program or |
Enter] to continue:)

if warning = "exit”:
sys.exit (1)

elif mode = "A”: #
if directory = "F”:
inputFileName = validatePath (inputFileName, True, False)
else:
inputFileName = validatePath (inputFileName, True, True)

if directory = ”"D”:
dirD = 7 directory”
else:
dirD = 7 file”

clearScreen ()
if moduleName — :
moduleName = ”"moduleMain”

”

if mode — 7A”:

LRI

if outputFileName —
outputFileName = ” Archive_modMaker”

24

380 (head, tail) = os.path.split (inputFileName)

382 if head:
outputFileName = os.path.join (head, outputFileName)

showProgress (” Transforming %s \"%s\” into module \"%s\”” % (
dirD, inputFileName, moduleName))

386 showProgress (7?0ld files will be put into directory %s” % (
outputFileName))

388 elif mode = "R”:

showProgress (” Transforming %s \”%s\” into module \"%s\” which
will replace the original %s” % (dirD, inputFileName,
moduleName, dirD))

390 outputFileName = 7"
392 elif mode = 7C”:
394 if outputFileName = ”” and directory =— "F”:
(head, tail) = os.path.split (inputFileName)
396 outputFileName = "module.” 4+ tail
398 if head:
outputFileName = os.path.join (head, outputFileName)
100
outputFileName = sequenced (outputFileName)
402
if outputFileName = 7?” and directory = ”"D”:
404
(head, tail) = os.path.split (inputFileName)
406 outputFileName = ”Module.” + tail
108 if head:
outputFileName = os.path.join (head, outputFileName)
410
outputFileName = sequenced (outputFileName)
112
showProgress (”Duplicating %s \"%s\” into a module under the
name \"%s\” and filename \"%s\”” % (dirD, inputFileName,
moduleName, outputFileName))
114 showProgress (”Original files will not be lost”)
416 if directory = ”"D”:
displayMsg (”What file types should we focus on? Please
optionally enter extensions one by one and end with a blank
line.\n(Include \”.\” and use small letters. Example: \”.c\”)\n
”»”
)
118 extension = list ()
ext = raw_input (”Extension: 7)
420 while ext != 77:
extension .append (ext)
422 ext = raw_input (”Extension:)
424 return (inputFileName, outputFileName, mode, directory,
moduleName, extension)
126
128|# Description: Receive consent to speed up replacement process
Usage: consents = (inputFileName, strings)

430

25

Variables: [str] inputFileName: the file to undergo the
process

432 | # list [str] stringList: the strings to look for
Returns list [bool] consents: the consents [True, True,
False, ...] compiled
434 | F# [bool] continue: whether or not the file should

continue transformation
136 def receiveConsent (inputFileName, stringList):

438 if len (stringList) = O0:
return None

440
if not os.path.exists (inputFileName):
142 debug (” File doesn’t exists”)
sys.exit (1)

consent = []
446
option = 7s”
448 while (option != 7”7 and option != ”N” and option != "n”):
option = raw_input (”We are about to conduct transformation on
%s .\ nPress [Enter] to begin or key—in \”n/N\” to skip this file
” % (inputFileName))
450

99,

if option —
inputFile = open (inputFileName, 'r’)
454 lines = inputFile.readlines ()

inputFile.close ()

for string in stringList:

158
displayArchive ()
460 lineNumber = 1
counter = 0
462
for line in lines:
464 start = line.find (string)
if start != —1:
466 displayWithHighlight (lineNumber, line, start, start +
len (string))
counter += 1
468 lineNumber 4= 1
470 if counter != 0:
option = 7s”
472 while (option != 7”7 and option != ”N” and option != "n”):
option = raw_input (”We have found %d occurances of %s.\
nPress [Enter] to authorize every change or key—in \”n/N\” to
authorize one—by—one.” % (counter, string))
474
if option = 7":
476 consent .append (True)
478 if counter =— 1:
showProgress (”%d %s has been replaced.” % (counter ,
string))
480 else:
showProgress ("%d %s have been replaced.” % (counter,
string))
482 else:

26

consent .append (False)

484
if counter = 1:
486 showProgress (”Suspected %s remains unchanged.” % (
string))
else:
488 showProgress ("%d suspected %ss remain unchanged.” % (
counter, string))
490 else:
consent .append (False)
492
return (consent, True)
494
else:
496
for string in stringList:
498 consent .append (False)
500 return (consent, False)

s02| def init (filename , tokenList):
#global changed
504 #changed = False

506 file = open (filename, ’'r’)
lines = file.readlines ()
508 file.close ()
510 lineCounter = 1
512 for line in lines:
for token in tokenList:
514 if line.find (token) != -—1:
debug (token)
516 return True
518 return False

520/ def createGlobalHeader (path):

if os.path.isfile (path):

522 debug (” Directory path required to create global header.”)
return

filename = os.path.join (path, "MODULEGLOBAL.h”)

526 file = open (filename, ’'w’)

file .write ("#include \”IEL.h\”\n\nextern IEL_exec_info_t =
exec_info;\n”)

528 filename = os.path.join (path, 7"IEL.h")

file = open (filename, ’'w’)

530 file .write ("#include \"mpi.h\”\n#ifndef IEL_H\n#define IEL_H)\
ntypedef struct module_depend_t {\n\tint mod_argc;\n\tcharxx
mod_argv;\n}module_depend_t;\n\n”)

file .write (”typedef struct IEL_exec_info_-t {\n\tMPI.Comm
module_copy_comm;\n\tstruct module_depend_t* modules;\n}
IEL_exec_info_t;\n#endif”)

532 file .close ()
534 return

536| def createMainHeader (moduleName, path):

27

5

5

5

5

5

5

5

5

5

o

©
]

46

60

66

68

576

80

84

86

90

global headerCreated

headerCreated = True

if not os.path.isfile (path):
debug (”Main header file creation error. Require filepath to
main.”)

return

————— Creating Module Header

name = os.path.splitext (path) [0]
headername = name + ” .h”

if os.path.exists (headername):
debug (”Main header already exists. Please manual declare
module in header.”)

else:
file = open (headername, ’'w’)
file.write ("#include \”IEL.h\”\n”)
file.write (7int ” 4+ moduleName + 7 (IEL_exec_info_t x
iel_exec-info);”)
showProgress (”Header file \”” + headername + ”\” created
successfully .”)
file.close ()

——————— Creating Test Main.c
name = os.path.dirname (path)

filename = os.path.join (name, "IEL_main.c”)

filename = sequenced (filename)

debug (filename)

file = open (filename, ~’

w’)

file.write (”"#include \”MODULEGLOBAL.h\”\n”)
file . write ("#include \”7)

file .write (os.path.basename (headername))
file.write (7\7\n”)

file . write ("#include <stdlib.h>\n\n")

file .write (”int main(int argc, charx argv[]){\n”)

file.write (”\tMPI_Init (&argc, &argv);\n”)

file . write ("\tIEL_exec_info_t xtemp = (IEL_exec_info_t %) malloc
(sizeof (IEL_exec_-info_t));\n”)

file.write (”\ttemp —> module_copy_-comm = MPLCOMM WORLD;\n”)

file . write (”\ttemp —> modules = (module_depend_-t %) malloc (
sizeof (module_depend_t));\n”)

file . write (”\ttemp —> modules —> mod_argc = argc;\n”)

file.write (”\ttemp —> modules —> mod_argv = argv;\n”)

file .write (”\tmoduleMain (temp);\n”)

file.write (”\tfree (temp —> modules);\n”)

file.write (”\tfree (temp);\n”)

file .write (”\tMPI_Finalize();\n”)

file.write (”\treturn 0;\n”)

file .write (7}7)

file .close ()
showProgress (” Test main created successfully.”)

return

28

s04| def setGlobal (line):

596 global changedMain

598 locationl = line.find (”iel_exec_info”)
location2 = line.find (”{”, locationl)
600 if location2 != —1:
debug (”Main is changed here”)
602 changedMain = True
return (line [:location2 4+ 1] + ”"\n\texec_-info = iel_exec_.info
;\n” + line[location2 + 1:])
604 else:
changedMain = False
606 return line
cos| def addGlobal (line):
610 global changedMain
612 location2 = line.find (7{”)
if location2 = —1:
614 return line
else:
616 changedMain = True
debug (”Main is changed here”)
618 return (line [:location2 4+ 1] + ”"\n\texec_-info = iel_exec_.info
;\n” + line[location2 + 1:])
620
def getMain () :
622 return (foundMain, changedMain, headerCreated)
624 | HHHHEHHHHAHHHAHAHAHE Checking Functions HHHHHHHHHHHH A

626|# Wrapper function for checking all function titles
def checkFunctionTitle (line, moduleName) :

628 line = checkMain (line , moduleName)

return line

630
Wrapper function for checking all in—line statements
632| def checkStatement (line):

line = checkInit (line)

634 line = checkFinalize (line)

return line

636
Wrapper function for checking all in—line variables
63s| def checkVariable (line, consents):

if consents [0]:

640 line = line.replace ("MPLCOMMWORLD” , ”exec_info—>
module_copy_comm”)
else:
642 line = checkMPICommWorld (line)

6a4|# if foundMain:
line = checkArge (line)
646 | # line = checkArgv (line)

648 return line
650|# Defines parameters to check the main

def checkMain (line, moduleName) :
652 msgB = []

29

msgB.append (”Only one Main can exist and it belongs in the
driver.c”)

654 msgB.append (”Main has been changed to ” + moduleName)

msgB.append (7 Suspected Main remained unchanged”)

656 replacement = "IEL_exec_info_t* exec_info;\n” + 7int 7 +
moduleName + 7 (IEL_exec_info_t xiel_exec_info)”
return baseCheck (line, [”int”, "main”], 7}”7, 7)”, msgB,
replacement , 77)

Defiens parameters to check MPI_Init

660| def checkInit (line):

msgB =[]

662 msgB.append (”Only one Init can exist and it belongs in the
driver.c”)

msgB.append (”MPI_Init has been removed”)

664 msgB. append (” Suspected MPI_Init remained unchanged”)

return baseCheck (line, [?MPI_Init”], 7;”, 7;”, msgB, 7”7, 7int”)

666

Defines parameters to check MPI_Finalize

66s| def checkFinalize (line):

msgB =[]

670 msgB.append (”Only one Finalize can exist and it belongs in the
driver.c”)

msgB.append (” MPI_Finalize has been removed”)

672 msgB.append (7 Suspected MPI_Finalize remained unchanged”)

return baseCheck (line, [?”MPI_Finalize”], 7;7, 7;”, msgB, 77, 7
int”)

Defines parameters to check MPLCOMM WORLD

676| def checkMPICommWorld (line):

msgB = []

678 msgB. append (?"MPLCOMMWORLD has been divided into
subcommunicators”)

msgB . append (?"MPLCOMM WORLD has been replaced”)

680 msgB. append (” Suspected MPLCOMM WORLD remained unchanged”)

return baseCheck (line, [?"MPLCOMMWORLD”], ”” ”” msgB, ”
exec_info—>module_copy_comm” , ””)
682
Defines parameters to check argc
6s4|# def checkArgc (line):
msgB = []
686 | # msgB.append (”argc is not directly visible at this level”)
msgB.append (” argc has been replaced”)
688 | # msgB.append (” Suspected argc remained unchanged”)
return baseCheck (line, [?argc”], 7”7, 7”7, msgB, ”"exec_info—>
modules—>mod_arge”, 7”)
690
Defines parameters to check argv
6o2|# def checkArgv (line):
msgB = []
694 | # msgB.append (”argv is not directly visible at this level”)
msgB.append (” argv has been replaced”)
696 | # msgB.append (” Suspected argv remained unchanged”)
return baseCheck (line, [7argv”], 7”7, 7”7, msgB, ”exec_-info—>
modules—>mod_argv”, 77)
698
700|# Description: Base checking function which is versatile and
powerful
Usage: line = baseCheck (...)
702
Variables: [str] line: the line in question

30

704

708

710

730

732

736

738

~
1S

744

746

[list] tokenList: list of tokens to match to

[str] prevSep: Separator that is likely to lead the
segment in question. Replacement starts right afterwards.
Starts from start of token match if omitted.

I+ %

| # [str] nextSep: Separator that is likely to follow the

segment. Replacements continues to this point. Ends at end of
token matach if omitted.
[list] msgBundle: 0: contains ”reasons”, why the
segment needs to be replaced / removed
1: contains ”"successful msg”, showing that
the segment was properly dealt with
2: contains ”unchanged msg”, showing that the
segment was not affected
[str] replacement: if omittied, substring in concern is
commented out. Otherwise, provides replacement for substring.
[str] returnsValue: if set, the replacement concerns a
function which returns value type specified. This only affects
”commenting out”
Returns: line that can be altered or unchanged

#* % F H F

def baseCheck (line, tokenList, prevSep, nextSep, msgBundle,
replacement , returnsValue):

global foundMain
firstPos = []

for token in tokenList:
pos = line.find (token)

if pos — —1:
return line
else:

firstPos.append (pos)

candidates = findCandidates (line, tokenList, firstPos)

if replacement — 77 :

replace = False
else:
replace = True

for (begin, end) in reversed (candidates):
valid = True
if begin != 0:
if isAlphanumeric (line [begin — 1]):
valid = False

if isAlphanumeric (line [end]):

valid = False
if wvalid:
typePos = —1
if nextSep != 77:

end = line.find (nextSep, end + 1) + 1

",

if returnsValue !=
typePos = findLastSeperator (line, begin, returnsValue)

if prevSep != 77:
temp = findLastSeperator (line, begin, prevSep)
if temp != —1:

31

760

764

766

768

786

790

794

796

800

802

804

806

808

810

begin = temp + 1
else:
begin = 0

if promptChange (line, lineCounter, begin, end, msgBundle

[01)

if replace:

output = "7
output = output + line [:begin]
output = output + replacement
output = output + line [end:]
showProgress (msgBundle [1])
line = output
else:
output = "7
if typePos != —1 and typePos >= begin and typePos < end:
equals = line.find (”=", typePos)
if equals != —1 and equals > typePos:
if line[equals — 1] = 7" 7:
output = output 4+ line [:equals — 1]
else:
output = output 4+ line [:equals]
output = output + 7;\n”
elif begin != 0:
output = output + line [:begin]
output = output + 7\n”
output = output + 7//”
output = output + line [begin : end]
if line[end] != "\n":
output = output + 7\n”
output = output + line [end:]
showProgress (msgBundle [1])
line = output
changed = True
if len(tokenList) > 1 and tokenList [1] == ”main”:
foundMain = True
line = setGlobal (line)
else:
showProgress (msgBundle [2])
return line
Description: Verstaile token matching function
Usage: candidates = findCandidates (line, tokenList,
firstPos)
Variables: [str] line: the line in question
[list] tokenList: list of tokens to match to
[str] prevSep: Separator that is likely to lead the
segment in question. Replacement starts right afterwards.
Starts from start of token match if omitted.
[str] nextSep: Separator that is likely to follow the

segment. Replacements continues to this point. Ends at end of
token matach if omitted.

32

[list] msgBundle: 0: contains "reasons”, why the
segment needs to be replaced / removed
812| # 1: contains ”"successful msg”, showing that
the segment was properly dealt with
2: contains “unchanged msg”, showing that the
segment was not affected
s14| # [str] replacement: if omittied, substring in concern is

commented out. Otherwise, provides replacement for substring.

si6| def findCandidates (line, tokenList, firstPos):

818 locationDictionary = []
result = []
820 counter = 0
arraySize = len (tokenList)
822

for token in tokenList:

824
locationArray = []
826
while (firstPos [counter] != —1):
828 locationArray .append (firstPos [counter])
firstPos [counter] = line.find (tokenList[counter], firstPos
[counter] + 1)
830
counter += 1
832 locationDictionary .append (locationArray)
834 accessArray = []
for i in xrange (arraySize):
836 accessArray .append (0)

838 while (True):

valid = True
840 for i in xrange (arraySize — 1):
j = accessArray [1i]
842 k = accessArray [i + 1]
844 if locationDictionary [i][j] > locationDictionary [i+1][k]:
valid = False
846 accessArray [i + 1] 4= 1

if accessArray [i + 1] >= len (locationDictionary [i + 1]):
848 return result

elif not spaceOnly (line, locationDictionary [i][j] 4+ len (
tokenList [i]), locationDictionary [i + 1][k]):

850 valid = False
for ¢ in xrange (i + 1):
852 accessArray [c] 4= 1
if accessArray [c] >= len (locationDictionary ([c]):
854 return result
if wvalid:
856 begin = locationDictionary [0][accessArray [0]]
end = locationDictionary [arraySize — 1][accessArray |
arraySize — 1]] + len (tokenList [arraySize — 1])
858 result .append ((begin, end))
accessArray [i] +=1
860 if accessArray [i] >= len (locationDictionary [i]):

return result

862

worker.py

33

