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ModMaker — Workflow

What is openDIEL? ModMaker — Syntactic Freedom

OpenDIEL stands for open Distributive Interoperable Executable
Library. It aims at facilitating cooperation between loosely coupled
modules under the MPI (Message Parsing Interface) system. With
user-defined configuration file and driver, openDIEL can output a
single executable doing the work of multiple modules, which can be
a crucial function in scenarios where users have to conduct
microsimulations in very small time intervals side by side.

Compiled together as libraries into

runnable executable

COMMLIB

What is the problem?

Notice that openDIEL takes in modules for its operation. These have
to follow the format of openDIEL and users had to conduct changes
in their source code accordingly. In terms of modularity and
encapsulation, this practice is highly problematic and hence the need
for enhancements becomes apparent..

What enhancements are made?

There are four main enhancements. The first one is a module maker,
or modMaker. It scan the user’s code and suggest transformation
under the formatting rules of openDIEL. The second one is the
addition of timer, which we hope can be both used for early-stage as
well as late-stage development. The third one is I/O improvement
and last Fortran support, as we believe that many antique codes are
written in Fortran and they are still used in many simulation models.

To conduct module transformation, we look into the syntax of C.
Basically every statement, declaration, variable has its identifying
feature. For example “int” followed by spaces, tabs then “main”
represents the main program. This pattern can only exist once per
program (or twice if we separate declaration and implementation).

However, while we can identify target strings with identifying
feature, we almost always need to change more than just it.
Difference between identifying feature and replacement candidate
would be explained in Syntactic Freedom.

Locating Finding Prompting
Identifying Replacement User

Feature Candidate Confirmation

We then prompts the user confirmation for any change, because we
believe the user knows the most about their own code.

ModMaker — Pattern Matching

ModMaker works off the principle of pattern matching of strings. It
basically treats a C program as a document line by line, then attempts
to locate “identifying features”, or target pattern. Earlier attempts
tried to conduct multi-degree string search in one scan, ie. For each
character, attempt to:

(1) seeifitis the start of any target string; and
(2) seeifitis the continuation of candidate target string.

However we soon realize that reduction of time complexity is
impossible without human optimization. This then gives the same
complexity as string wise search, with n = total character of string list
& s = total character of document:

O(n,s) =ns

This is because information is ultimately proportional to number of
comparisons. Looking for individual target string in a document one-
by-one is no different from matching each character for all strings.
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When transforming modules, syntactic freedom was both a nuisance
and convenience. It is a challenge for both identifying and modifying.

1) int main(int argc,char**argv) {\n

2) NPI_Init(&argc,_&argv);
3) rc=NPI Init(&argc, &argv) ;
4) int rc=NPI _Init(&argc, &argv) ;

5 int main(intargc,char**argv) {\n

Locating replacement candidate

In (1), we can clearly see that while “int main” is the identifying
feature, the declaration of argument also needs to be replaced. The
light-underlined segment is the “replacement candidate”.

Spaces
Highlighted in (2) and (5) are the importance of spaces. While

humans can clearly the difference, interpreters require more rules to
determine if a space is crucial or not. Also we need to deal with
indefinite spaces and tabs between tokens.

Variable Declaration

As we can see in (2), (3) and (4), function returns can be either
abandoned, used, or used to declare. This translates into 3 forms of
handling, which ultimately results in a more complex system.

SOLUTION — modularization

To combat all these issues, ModMaker utiilzes a very modular
approach to tackle the problem. Three basic categories (Function
Title, Statement, Variable) were set to allow different settings, or
different expectation of syntactic freedom when dealing with
replacement candidates. New exceptions which need to be handled
can then be quickly implemented.

Timer A timer would be implemented to facilitate the use of both

testing and optimization. We plan to provide the time, efficiency as
well as improvements as a result of utilizing openDIEL, which
ultimately should lead to better optimization in future development
as well as for future users.

Multiple 1/0 This would be more of an actualization of visions, as we
enable multiple copies of parallel modules to input and output into
separate folders. Unlocking full potential of openDIEL and greatly
enhancing user experience by fulfilling their expectation.

ModMaker — Fortran support Fortran has a much stricter formatting
rules than C which is very different form the origin. However, as
openDIEL gains better capability at handling Fortran code, ModMaker
has to keep up to provide better and all-rounded user experience.
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