tHE[UNIVERSITYof
']ENNESSEE

chgz N

Joint Institute for
Computational Smences Computational

Sciences

OAK
RIDGE

National Laboratory

User Interfaces Development in openDIEL

Argens Ng (HKU), Tanner Curren (Maryville College)
Mentor: Kwai Wong (UTK)

ModMaker — Workflow

What is openDIEL? ModMaker — Syntactic Freedom

OpenDIEL stands for open Distributive Interoperable Executable
Library. It aims at facilitating cooperation between loosely coupled
modules under the MPI (Message Parsing Interface) system. With
user-defined configuration file and driver, openDIEL can output a
single executable doing the work of multiple modules, which can be
a crucial function in scenarios where users have to conduct
microsimulations in very small time intervals side by side.

Compiled together as libraries into

runnable executable

COMMLIB

What is the problem?

Notice that openDIEL takes in modules for its operation. These have
to follow the format of openDIEL and users had to conduct changes
in their source code accordingly. In terms of modularity and
encapsulation, this practice is highly problematic and hence the need
for enhancements becomes apparent..

What enhancements are made?

There are four main enhancements. The first one is a module maker,
or modMaker. It scan the user’s code and suggest transformation
under the formatting rules of openDIEL. The second one is the
addition of timer, which we hope can be both used for early-stage as
well as late-stage development. The third one is I/O improvement
and last Fortran support, as we believe that many antique codes are
written in Fortran and they are still used in many simulation models.

To conduct module transformation, we look into the syntax of C.
Basically every statement, declaration, variable has its identifying
feature. For example “int” followed by spaces, tabs then “main”
represents the main program. This pattern can only exist once per
program (or twice if we separate declaration and implementation).

However, while we can identify target strings with identifying
feature, we almost always need to change more than just it.
Difference between identifying feature and replacement candidate
would be explained in Syntactic Freedom.

Locating Finding Prompting
Identifying Replacement User

Feature Candidate Confirmation

We then prompts the user confirmation for any change, because we
believe the user knows the most about their own code.

ModMaker — Pattern Matching

ModMaker works off the principle of pattern matching of strings. It
basically treats a C program as a document line by line, then attempts
to locate “identifying features”, or target pattern. Earlier attempts
tried to conduct multi-degree string search in one scan, ie. For each
character, attempt to:

(1) seeifitis the start of any target string; and
(2) seeifitis the continuation of candidate target string.

However we soon realize that reduction of time complexity is
impossible without human optimization. This then gives the same
complexity as string wise search, with n = total character of string list
& s = total character of document:

O(n,s) =ns

This is because information is ultimately proportional to number of
comparisons. Looking for individual target string in a document one-
by-one is no different from matching each character for all strings.

Text /*This is

Pattern 1 i nt main

Pattern 2 MP 1 | nit

Nomatchx2 / *Th i s i

No match X 2 X T h i s i S Fig 1. Attempting to do all comparisons in one iteration

of document

Text |/[*Thlils |i|s

Pattern 1 int main We cannot get more
No match /*This i information from same number

_ _ of comparison. We can only
No match *This is

waste less comparison, which is
impossible to automate in this
I 1 case.

n
No match [*This i
No match *This

Pattern 2 MP | |

I S

Fig 2. Focusing on each target pattern one at a time

When transforming modules, syntactic freedom was both a nuisance
and convenience. It is a challenge for both identifying and modifying.

1) int main(int argc,char**argv) {\n

2) NPI_Init(&argc,_&argv);
3) rc=NPI Init(&argc, &argv) ;
4) int rc=NPI _Init(&argc, &argv) ;

5 int main(intargc,char**argv) {\n

Locating replacement candidate

In (1), we can clearly see that while “int main” is the identifying
feature, the declaration of argument also needs to be replaced. The
light-underlined segment is the “replacement candidate”.

Spaces
Highlighted in (2) and (5) are the importance of spaces. While

humans can clearly the difference, interpreters require more rules to
determine if a space is crucial or not. Also we need to deal with
indefinite spaces and tabs between tokens.

Variable Declaration

As we can see in (2), (3) and (4), function returns can be either
abandoned, used, or used to declare. This translates into 3 forms of
handling, which ultimately results in a more complex system.

SOLUTION — modularization

To combat all these issues, ModMaker utiilzes a very modular
approach to tackle the problem. Three basic categories (Function
Title, Statement, Variable) were set to allow different settings, or
different expectation of syntactic freedom when dealing with
replacement candidates. New exceptions which need to be handled
can then be quickly implemented.

Timer A timer would be implemented to facilitate the use of both

testing and optimization. We plan to provide the time, efficiency as
well as improvements as a result of utilizing openDIEL, which
ultimately should lead to better optimization in future development
as well as for future users.

Multiple 1/0 This would be more of an actualization of visions, as we
enable multiple copies of parallel modules to input and output into
separate folders. Unlocking full potential of openDIEL and greatly
enhancing user experience by fulfilling their expectation.

ModMaker — Fortran support Fortran has a much stricter formatting
rules than C which is very different form the origin. However, as
openDIEL gains better capability at handling Fortran code, ModMaker
has to keep up to provide better and all-rounded user experience.

Acknowledgements

This project is made possible only with the support by our menor Dr.
Wong, the NSF, the University of Tennessee and Oak Ridge National
Laboratory.

Text __/*This lis

Pattern 1 I nt main
Pattern 2 MPI I nit
Nomatchx2 / *This i
Nomatchx2 *This is

Software C

Software A Software B

Text _/*This is

4
4
4

Pattern 1 | nt ma I n
No match [*This i
No match *This i ModMaker ModMaker ModMaker

Pattern 2 MP Il I nit
No match [*This i
No match *This s Module A

<

Module B

< l<

<

Compiled together as libraries into
runnable executable

Source

ModMaker Module
Code

, , ModMaker
Text |/ *|Tlhli]s| |ils| |a [c| Ip|rlolg/rlalm*|/]i|n|t]| Imaliln

Pattern 1 I n t ma i n

Pattern 2 MP Il | ni t

Nomatchx2 / * T hi s i
No match x 2 *This is Module A MOdUle B Module C

SOurce No match x 2 This i S

Code ModMaker ‘ ‘ ‘

Text _/|*[Tlhlils| [ils| lal [C| plrloglrlalm*)/ int main Compiled together as libraries into

Pattern 1 I n t ma i n

No match / *This i runnable EXECUtable
No match *T h i s i s

No match T his | S

Pattern 2 MP | | ni t

No match / *This |

No match *T h i s S

No match T his | S

HPOROUIPIVELEEVERS 0112000001112 PVVAVAVOVOVAAALL VAUUUL00101000 1110111110 1 oe 2 AT SO0 00011 e il
o J‘"'f"']‘lf:f;:jﬁ:gé;?&l;;mf}]Umo1o;‘.OlOlUOlOL‘IOOLDlOlCIDUO]m111{:1;",1'_:_‘1"-11‘!1‘1‘“'1;»:}.;#“nl il.:l}:","":"" A
0001 10 .
010 010 10 0101
JIIIIT OSUI0V1 0 goo1111 01010001 00011111 0100010 00011
WO9Ier 1010101 00 1010100 10100100 10100001 1010101 000
Nne 10w o 001101111 00101010
AT 0N0Y 10 1010101010 00001010 J10010
b SURL__OT__0O0L 09101010003 000RIIIL | 0T00° 201000 L . o
g oL W WL 1010300200 10200001 1 20000 Q0TI0L A0 e

W09 010510 o0M03MaN 00ROAD1D 00N L1 OA
o L 10101030 || 00003000 . DIOOIL. . Dol
111950703 MANOUI1110710101600029160 000711121101 020001 001 RN S 5y gl
n’l_

AL TTS0T0 0t Foam3010A01010010101010010000101010000101nmlomlulodl—foff'?‘- 3131 QU0LLCLARAEAAE e ST L

