
Scientific Linraries

ACF Spring HPC Training Workshop
Match 15-16, 2016

Kwai Wong



Basic Computing Kennel (serial)
Basic Linear Algebra Subprograms(BLAS)



HPL (scalLAPACK) - Parallel Gausssian
Elimination

Ax = b
change  A into A = L U in parallel

L

U
=A

so   LUx = b
first solve   Ly = b   by direct downward solve

then solve Ux = y  by direct upward solve



Basic Linear Algebra Subprograms (BLAS)

• BLAS is a library of standardized basic linear algebra 
computational kernels created to perform efficiently on serial 
computers taking into account the memory hierarchy of modern 
processors.

• BLAS1 does vectors-vectors operations.
• Saxpy = y(i) = a* x(i) + y(i),  ddot= S x(i) *y(i)

• BLAS2 does matrices - vectors operations. 
• MV : y = A x + b

• BLAS3 operates on pairs or triples of matrices. 
– MM : C = aAB + bC,  Triangular Solve : X = aT-1X

• Level3 BLAS is created to take full advantage of the fast cache 
memory. Matrix computations are arranged to operate in block 
fashion. Data residing in cache are reused by small blocks of 
matrices. 

• Atlas, openBLAS, MKL, ESSL, libsci



MM Multiplication

• Simple MM  - q = average number of flops per memory reference  ~ 2

= + *

C(i,j) C(i,j) A(i,1:n)

B(1:n, j)

• Performance of MM can be improved by rearranging the order of 
multiplication indices in column fashion in Fortran or in row fashion 
in C.  
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k - j - i  ordering for FORTRAN



Analysis on MM
(www.cs.berkeley.edu/ /~demmel/cs267_Spr99/)

• To quantify the analysis, a simple model of two levels of memory hierarchy, 
fast and slow, are used. All data initially resides in slow memory.  Define
m = number of memory references to slow memory needed just to read 

the input data from slow memory, and write the output data back 
f = number of floating point operations
q = f/m = average number of flops per slow memory reference

• Hence,  the higher is the value of q , the more efficient the algorithm
m = n^3 ---> read each column of B n times +

n^2 ---> read each row of A for each I +
2*n^2 ---> read/write each entry of C once  --------> n^3 + 3* n^2

f = 2* n^3
q = f/m = (2* n^3) / (n^3 + 3* n^2)  ~ 2

• Ideal value of q = n/2
ideal value of m = 4* n^2 ----> read each A(I,j), B(I,j), C(I,j) once, 

write each C(I,j) once  
hence, ideal value of q = f/m = n/2



Square blocked MM

• Consider C to be an n-by-n matrix of n/N-by-n/N subblocks Cij, with A and B 
similarly partitioned.

for j = 1 : N
for j = 1 : N

Read Cij into fast memory
for k = 1 : N

Read Aik into fast memory
Read Bkj into fast memory

Cij = Cij + Aik *  Bkj
end for
Write Cij back to slow memory

end for
end for

• The inner loop is an n/N-by-n/N matrix multiply. The fast memory is large enough 
to hold the 3 subblocks Cij, Aik, and Bkj.
m = # memory refs = N * n^2 -----> read each Bkj N^3 times

+ N * n^2 ------> read each Aik N^3 times
+ 2 * n^2 --------> read/write each Cij once =   (2 * N + 2 ) * n^2



Block MM

• q = f/m = (2*n^3) / ((2*N + 2) * n^2)  ~  n / N
• If N is equal to 1, the algorithm is ideal. However, N is bounded by the amount of 

fast cache memory. However, N can be taken independently to the size of matrix, n. 
• The optimal value of N = sqrt (size of fast memory / 3 )

= + *
Cij Cij Aik

Bkj

Cij Cij Aik Bkj= +
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ATLAS
• Automatically Tuned Linear Algebra Software

• It generates a set of optimized linear algebra routines on 
different computer architectures taking the advantages of their 
specific memory hierarchies and pipelined functional units.

• In version 3.0, it supports all level of BLAS kernels as well as 
some LAPACK routines.

• It also provides interfaces to standard C (need cblas.h) and  
fortran 77.

• Prebuilt ATLAS for various computer architectures are readily 
available on the web.

• Good for Linux Platform

• www.netlib.org/atlas



Linear Algebra Package
(LAPACK)
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Gausssian Elimination

Ax = b
change  A into A = L U

L

U
=A

so   LUx = b
first solve   Ly = b   by direct downward solve

then solve Ux = y  by direct upward solve
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Gaussian Elimination

• For each column i, zero out the element below the diagonal by 
adding multiples of row i to later rows

for i= 1 to n-1
for j = i+1 to n

for k = i to n
A(j,k) = A(j,k) - (A(j,i) / A(i,i)) * A(i,k)

0

0

0

0

0

0

…..0

After i=1 After i=2 After i=n-1
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Gaussian Elimination (2)

(i,i) (i,k)

(j,i) (j,k)

column i column k

row i

row j
ACTIVE PART

A(j,k)=A(j,k)-m*A(i,k)

• To improve the implementation, the constant  A(j,i) / A(i,i) is removed from the innermost 
loop. Zeros below the diagonal is ignored

for i = 1 to n-1
for j = i+1 to n

m = A(j,i) / A(i,i) ----> m = A(j,i)
for k = i to n
A(j,k) = A(j,k) - m * A(i,k)

m = A(j,i) / A(i,i)--->A(j,i)
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LAPACK (LU)

• The inner loop  consists of BLAS1 and one BLAS 2 operations.

for i = 1 to n-1
for j = i+1 to n

A(j,I) = A(j,i) / A(i,i)   <------ BLAS1 ( to BLAS2)
for k = i+1 to n
A(j,k) = A(j,k) - A(j,i)* A(i,k)   <----BLAS2 ( to BLAS3)

=
(i,i) (i,k)

(j,i)A
(j,

i)

A(i,k)

A(j,k)-
A(j,i)*A(i,k)

(BLAS2)

(i,i)

j

ki A(j,k)
(update)

-

A
(j,

i) A(i,k)*A(j,k)



LAPACK GE Block Algorithm
• The block size of bk columns will depend on the machine architectures. 

It is generally small enough so that bk columns currently used for 
factorization fit in the fast memory of the machine, and bk is also large 
enough to make matrix matrix multiplication perform effectively. 

• The principle is the same as in the ordinary GE algorithm above. Instead 
of working with one column, A(j,i) or one pivot entry, A(I,I), a block of 
columns and a square block of matrix are used. Hence, BLAS1 
operations will become  BLAS2 operations, and  BLAS2 operations will 
become BLAS3 operation 

choose a block size bk
for ib = 1 , n , bk

1)  L U factorize the column block of bk
2)  compute the pivoting block of rows
3)  update the remaining block of the square matrix



LAPACK GE Block Algorithm

A11 A21 A13

A21 UU

LL
A23

A31 A32 A33

ib end

ib

end

bk

Completed part of U
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I) Choose bk

II) for ib = 1 to n-1 step bk

Work the colored portion 
of A

1) LU factorize A22+A32

A32 <--( UU, LL, A32)

2) Update A23 : triangular 
solve

(A23) <-- LL \ A23

3) Update A33

A33 <-- (A33, A23, A32)

III) Triangular solve for 
unknown

n

n

A22

A(end+1:n , end+1:n)



LAPACK GE Algorithm
Choose appropriate size for bk

for ib = 1 to n-1 step bk

point to the end of block of bk columns

end = min (ib+bk-1,n)

for I = ib to end 

find and record k where

|A(k,i) | = max | A(j,i)|

if |A(k,i)| = 0, exit with a warning, A is singular

if I not equal to k, swap rows of i and k of A

A(i+1:n,i) = A(i+1:n,i) /A(i,i)

A(i+1:n,I+1:end) = A(i+1:n,i+1:end) - A(i+1:n,i)* A(i,i+1:end)

Let LL be the bk-by-bk lower triangular matrix whose subdiagonal entries are 

stored in A(ib:end, ib:end), and with 1s on the diagonal. Do delayed update 

of A(ib:end , end +1 : n) by solving n-end triangular system

A(ib:end,end+1:n) =  LL \ A(ib:end, end+1 : n)

Do delayed update of the rest of matrix using matrix-matrix multiplication

A(end+1:n,end+1:n) = A(end+1:n,end+1:n)-

A(end+1:n,ib:end)*A(ib:end,end+1:n)



Example (1)

• Solve the following system of linear equations

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 5 0

=
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Example (2)

• Choose the column block size bk = 2, so ib = 1, 3, and 5
• For b = 2, ib = 1, n = 6, end = 2

1) For i = ib to end ( i = 1,2)
i = 1  a)  A(i+1: n,I) = A( i+1: n, I) / A(i,i) => A(2:6, 1)=A(2:6, 1) / A(1,1) 

A(i+1:n,i+1:end) = A(i+1:n, i+1:end) - A(i+1:n, I) * A(i, i+1:end)
b) only update columns i+1 (2) to end (2) , so only column 2

A(2:6, 2:2) = A(2:6, 2:2) - A(2:6, 1) * A(1, 2:2)
i = 2 a) A(3:6, 1) = A(3:6, 1) / A(2, 2),  since A(2,2) = 1 => DONE

4
0

2
-2
-2

/ 2 = 

2
0

1
-1
-1

1a)

A(2:6,1) / A(1,1) = A(2:6,1)

1b) 1
-1

-1
0
0

2
0

1
-1
-1

0

- =

1
-1

-1
0
0

A(2:6, 2:2) - A(2:6, 1) * A(1, 2:2)= A(2:6,2)



Example (3)

• For bk = 2 , n = 6, end = 2, ib=1
2) Do delayed update of A(ib:end, end+1:n) by solving n-end triangular system

A(1:2, 3:6) = LL \ A(1:2, 3:6)

LL = 
1 0
2 1

UU= 2 0
0 1

1 0
2 1

? ? ? ?
? ? ? ?

-1 1 0 2
-3 4 1 4=

LL * new A(1:2, 3:6) = A(1:2, 3:6)

=> ? ? ? ?
? ? ? ?

A(1:2, 3:6)= -1 1 0 2
-1 2 1 0

=



Example (4)

• For bk = 2, ib = 1, n = 6, end = 2
2) Do delayed update of rest of matrix using matrix-matrix multiplication
A(end+1:n, end+1:n) = A(end+1:n, end+1:n) -A(end+1:n, ib:end)  *A(ib:end, end+1:n)

A(3:6, 3:6) = A(3:6, 3:6) -A(3:6, 1:2) * A(1:2, 3 : 6)

0

1
-1
-1

-1

-1
0
0

-1 1 0 2
-1 2 1 0 =

1 1 -2 -1
0 1 1 -2

1 -1 -3 2
-2 -2 -3 2

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 -3 0

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -1 -3 2
-1 0 -2 -2 -3 2

2 -1 -3 -1
0 0 0 0

2 -2 -3 0
-1 -3 -3 0

-



Example (5)

• Choose the column block size bk = 2, so ib = 1, 3, and 5
• For bk = 2, ib = 3, n = 6, end = 4

1) For I = ib to end ( I = 3,4)
i= 3  a)  A(i+1: n, i) = A( i+1: n, i) / A(i,i) => A(4:6, 3)=A(4:6, 3) / A(3,3) 

b) only update columns i+1 (4) to end (4) , so only column 4
A(i+1:n,i+1:end) = A(i+1:n, i+1:end) - A(i+1:n, i) * A(i, i+1:end)

A(4:6, 4:4) = A(4:6, 4:4) - A(4:6, 3) * A(3, 4:4)
i = 4 a) A(5:6, 4) = A(5:6, 4) / A(4, 4),   A(4,4) = 1,  => DONE

0
1

-2

/ 1 = 
0
1

-2

1a)

A(4:6,3) / A(3,3) = A(4:6,3)

1b) 1

-1
-2

0
1

-2

1
-

=

1
-2

0

-2

0

-2

0
/ 1 = 2a) A(5:6,4) = A(5:6,4)/A(4,4)

A(4:6,4)-A(4:6,3) * A(3,4)=A(4:6,4)



Example (6)

• For bk = 2 , n = 6, end = 2, ib=3
2) Do delayed update of A(ib:end, end+1:n) by solving n-end triangular 

system
A(3:4, 5:6) = LL \ A(3:4, 5:6)

LL = 
1 0
0 1

UU= 1 1
0 1

1 0
0 1

? ?
? ?

=

LL * new A(3:4, 5:6) = A(3:4, 5:6)

=> ? ?
? ?

A(3:4, 5:6)= -2 -1
1 -2

=

-2 -1
1 -2



Example (7)

• For bk = 2, ib = 3, n = 6, end = 2
2) Do delayed update of rest of matrix using matrix-matrix multiplication
A(end+1:n, end+1:n) = A(end+1:n, end+1:n) -A(end+1:n, ib:end)*A(ib:end, end+1:n)

A(5:6, 5:6) = A(5:6, 5:6) -A(5:6, 3:4) * A(3:4, 5 : 6)

-2 -1
1 -2

1 -2
-2 0

-3 2
-3 2

- * =
1 -1
1 0

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 -3 0

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -1 -3 2
-1 0 -2 -2 -3 2

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -2 1 -1
-1 0 -2 0 1 0



Example (8)

• For bk = 2, ib = 5, n = 6, end = 6
1) For i = ib to end ( i = 5,6)

i= 1  a)  A(i+1: n,i) = A( i+1: n, i) / A(i,i) => A(6, 5)=A(6, 5) / A(5,5) 
b) only update columns i+1 (2) to end (2) , so only column 2

A(i+1:n, i+1:end) = A(i+1:n, i+1:end) - A(i+1:n, i) * A(i, i+1:end)
A(6, 6) = A(6, 6) - A(6, 5) * A(5, 6)= 1    => DONE

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 -3 0

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -1 -3 2
-1 0 -2 -2 -3 2

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -2 1 -1
-1 0 -2 0 1 1



Example (9)

=

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 -3 0

1 0 0 0 0 0
2 1 0 0 0 0
0 -1 1 0 0 0

1 -1 0 1 0 0

-1 0 1 -2 1 0
-1 0 -2 0 1 1

2 0 -1 1 0 2
0 1 -1 2 1 0
0 0 1 1 -2 -1

0 0 0 1 1 -2

0 0 0 0 1 -1
0 0 0 0 0 1

*

A L U= *

Solve Ax = b
=> L U x = b

=> L y = b , U x = y

For  j =  1 to n
y(j) = b(j)
for j = 1 to n-1
y(j) = y(j) / L(j,j)

for i = j+1 to n
y(i) = y(i) - y(j)*L(i,j)



Triangular Solve
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LAPACK GE Solver

• Driver subroutine to compute the solution of a real system of linear 
equations, Ax=b

• SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
– N : The order of the matrix A
– NRHS : The number of right hand side, the number of columns of b
– A : matrix A, dimension (LDA, N), on entry, the NxN coefficient matrix A, on 

exit, the factors L and U from factorization
– LDA : The leading dimension of the array A
– IPIV : The pivot indices that define the permutation matrix P
– B : On entry, the right hand side of b, on exit, the solution x
– LDB : The leading dimension of the array b,
– INFO : output info, 0 = successful exit

• The DGESV subroutine calls the DGETRF subroutine which does 
the LU factorization and the DGETRS which solves the triangular 
systems.



Scalable Linear Algebra Package
(ScaLAPACK)
www.netlib.org/scalapack



Data Layout

• ScaLAPACK is an extension of the LAPACK subroutines to 
perform on distributed memory parallel computers or a network 
of workstations running PVM or/and MPI.

• Data layout of matrices on processors will strongly affect the 
performance of an algorithm. There are primarily four ways to 
partition a matrix

• Row-wise block or column-wise block partitioning

• Row-wise block cyclic or column block cyclic partitioning

• 2D block block partitioning

• 2D block cyclic partitioning



Data Distribution

• Column Blocked Layout: 
– In this layout, a block of columns of matrix A is stored per processor as 

shown below.
– This layout has the same disadvantage of the row-wise stripe partition 

because as soon as the first few columns have completed the elimination, 
the processors storing those columns remain idle for the rest of the 
elimination process.

• Column Block Cyclic Layout :
– This layout tries to address the problem of load balancing by assigning 

blocks of columns of matrix A to processors in a cyclic fashion. However, 
this layout has the disadvantage that the factorization of A(ib:n, ib:end) will 
take place perhaps in just one processor. This would be a serial bottleneck

Column block Layout Column Block Cyclic layout



2D Block Cyclic Layout

• The Row and Column (2D) Block Cyclic Layout will be a good 
compromise between the Block and Cyclic Layouts. It will 
alleviate the problem of load balancing and avoid the 
situation of a serial bottleneck. Two dimensional block 
structures allows efficient implementation of BLAS3 update 
of A(ib;end , end+1:n)

2D Block Cyclic Layout

0 0 0

0 0 0

0 0 0

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

3 3 3

3 3 3

3 3 3



ScaLAPACK
(www.netlib.org/scalapack)

• ScaLAPACK (version 1.7) is an extension of LAPACK using PVM or MPI
on parallel computers.  

• It chooses 2D block cyclic data distribution to optimize BLAS3 operations.

• It is composed of LAPACK, BLAS, PBLAS, and BLACS.

• The BLACS, Blasic Linear Algebra Communication Subprograms, are a 
message passing library designed for linear algebra.

• PBLAS is a set of parallel basic linear algebra subroutines similar to BLAS.

• There are four basic steps to call a ScaLAPACK routine.
– Initialize the process grid (BLACS)

– Distribute the matrix on the process grid (DESCINIT)

– Call ScaLAPACK driver routine 

– Release the process grid (BLACS)



Solve a System of Equations

• General matrix factorization
– call PDGETRF( M, N, A, IA, JA, DESC_A, IPVT, INFO)

• General matrix solve
– call PDGETRS(TRANSA, N, NRHS, A, IA, JA, DESC_A, IPVT, 

B, IB, JB, ESC_B, INFO)
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2D Block Cyclic Distribution (Scalapack)

• Consider an 8 x 8 
system of linear 
equations using a 2D 
blocked cyclic data 
distribution

• Matrix A is first 
decomposed into 2x2 
blocks starting at its 
upper left corner, bk=2.

• These blocks are then 
uniformly distributed 
across a 2x2 processor 
grid, nprow = npcol =2.

• There are 4 processes 
in the 2D process grid, 
nbrow = nbcol = 2.

A(1,1)
2

A(1,2)
0

A(1,3)
-1

A(1,4)
1

A(1,5)
0

A(1,6)
2

A(2,1)
4

A(2,2)
1

A(2,3)
-3

A(2,4)
4

A(2,5)
1

A(2,6)
4

A(3,1)
0

A(3,2)
-1

A(3,3)
2

A(3,4)
-1

A(3,5)
-3

A(3,6)
-1

A(4,1)
2

A(4,2)
-1

A(4,3)
0

A(4,4)
0

A(4,5)
0

A(4,6)
0

A(5,1)
-2

A(5,2)
0

A(5,3)
2

A(5,4)
-2

A(5,5)
-3

A(5,6)
0

A(6,1)
-2

A(6,2)
0

A(6,3)
-1

A(6,4)
-3

A(6,5)
5

A(6,6)
0

A(1,7)
0

A(1,8)
0

A(2,7)
0

A(2,8)
0

A(3,7)
0

A(3,8)
0

A(4,7)
0

A(4,8)
0

A(5,7)
0

A5,8)
0

A(6,7)
0

A6,8)
0

A(7,7)
1

A(7,8)
0

A(8,7)
0

A(8,8)
1

A(7,1)
0

A(7,2)
0

A(7,3)
0

A(7,4)
0

A(7,5)
0

A(7,6)
0

A(8,1)
0

A(8,2)
0

A(8,3)
0

A(8,4)
0

A(8,5)
0

A(8,6)
0



Data Distribution on Local Processors

A(1,1)
2

A(1,2)
0

A(1,5)
0

A(2,1)
4

A(2,2)
1

A(2,5)
1

A(5,1)
-2

A(5,2)
0

A(5,5)
-3

A(1,3)
-1

A(1,4)
1

A(1,7)
0

A(2,3)
-3

A(2,4)
4

A(2,7)
0

A(5,3)
2

A(5,4)
-2

A(5,7)
0

A(3,1)
0

A(3,2)
-1

A(3,5)
-3

A(4,1)
2

A(4,2)
-1

A(4,5)
0

A(7,1)
0

A(7,2)
0

A(7,5)
0

A(3,3)
2

A(3,4)
-1

A(3,7)
0

A(4,3)
0

A(4,4)
0

A(4,7)
0

A(7,3)
0

A(7,4)
0

A(7,7)
1

Process grid (0,0) Process grid (0,1)

Process grid (1,0) Process grid (1,1)

A(16)
2

A(2,6)
4

A(5,6)
0

A(6,1)
-2

A(6,3)
0

A(6,5)
5

A(6,6)
-3

A(1,8)
0

A(2,8)
0

A(5,8)
0

A(6,3)
-1

A(6,4)
3

A(6,7)
0

A(5,8)
0

A(3,6)
-1

A(4,6)
0

A(7,6)
0

A(8,1)
0

A(8,2)
0

A(8,5)
0

A(8,6)
0

A(3,8)
0

A(4,8)
0

A(7,8)
0

A(8,3)
0

A(8,4)
0

A(8,7)
0

A(8,8)
1

• The leading dimension of local 
process grid, LLD, are the same 
(in this case) and is equal to 4

• The number of rows of matrix A 
that a process own (in this case) 
is 4.

• The number of columns of 
matrix A  that a process own is 
4.

• Process (0,0) is chosen as the 
process containing the first 
matrix entry in its local 
memory, thus, the process row 
over which the first row of 
matrix A is distributed, 
RSRC=0,  and process column 
over which the first column of 
matrix A is distributed, CSRC=0



3/15/18 37

ScaLAPACK GE Subroutine

• ScaLAPACK is composed of LAPACK, BLAS, PBLAS, and BLACS.
• The BLACS, Blasic Linear Algebra Communication Subprograms, are 

a message passing library designed for linear algebra.
• PBLAS is a set of parallel basic linear algebra subroutines similar to 

BLAS.
• There are four basic steps to call a ScaLAPACK routine.

– Initialize the process grid
– Distribute the matrix on the process grid
– Call ScaLAPACK driver routine
– Release the process grid

• BLACS routines are used to initialize the process grid
• A ScaLAPACK tools routine, DESCINIT, can be used to distribute the 

matrix layout (or Iinitializes the Descriptor)
• A ScaLAPACK routine is called to perform a specific task
• A BLACS routine is then used to release the process grid
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Distributed GE (1st sweep)

Step (1), (2), (3), (4) Step (7), (8)

Step (9) Step (10), (11)
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Distributed GE (2nd sweep)

Step (1), (2), (3), (4) Step (7), (8)

Step (9) Step (10), (11)
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Distributed GE (3rd sweep)

Step (1), (2), (3), (4) Step (7), (8)

Step (9) Step (10), (11)
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ScaLAPACK Linear Solver

• All global matrices must be distributed on the process grid prior 
• CALL DESCINIT(DESCA, M, N, MB, NB, RSRC, CSRC, ICTXT, LLDA, INFO)
• CALL DESCINIT(DESCB, N, NRHS, NB, NBRHS, RSRC, CSRC, ICTXT, LLDB, INFO)

Call the solver routine  
• CALL PDGESV(N,NRHS,A,IA,JA,DESCA,IPIV,B,IB,JB,DESCB,INFO)
• CALL PDGETRF,  CALL PDGETRS

Release the process grid
• CALL BLACS_GRIDEXIT(ICONTXT)
• CALL BLACS_EXIT(0)

Data Distribution

Process grid initialization
CALL BLACS_PINFO(MYID, NPROCS)

! Initialize the process grid, obtain system default context
CALL BLACS_GET(-1,0,ICTXT)

! Map the available processes to a BLACS process grid
CALL BLACS_GRIDINIT(ICTXT,’Row-major’,NPROW,NPCOL)

! Query the process grid to identify each process’s coordinate, (MYROW, MYCOL)
CALL BLACS_GRIDINFO(ICTXT,NPROW,NPCOL,MYROW,MYCOL)



SCALAPACK Exercise

• TRAINING/MPI_WORKSHOP/Fortran/SCALAP
ACK

• Use PE-Intel MKL library. Makefile-intel
• Use PE-gnu MKL Library, Makefile-gnu
• https://software.intel.com/en-us/articles/intel-mkl-

link-line-advisor
• Use PE-gnu Scalapack, lapack, ATLAS, Makefile-

scal
• mpirun –np 4 ./xdlu < LU.dat



HPL Exercise

• TRAINING/MPI_WORKSHOP/C/HPCC
• tar zxvf hpl-2.2.tar.gz
• cd hpl-2.2
• cp setup/Make.Linux_Intel64 .
• Use PE-intel MKL Library, Makefile
• Change TOPdir to your current directory in 

Make.Linux_Intel64, use ‘pwd’ to show your 
current directory

• Make arch=Linux_Intel64
• mpirun –np 4 ./xhpl



Krylov Subspace Solvers in Parallel 
Matrix Vector Multiple (HPCG)

PETSc, HYPRE, TRILINOS



Iterative Methods
• Iterative methods are generally used to solve system of equations which is too 

large to be handled by direct methods. Iterative methods do not guarantee a 
solution for every system of equations. However,, when they do yield a 
solution, they are usually less expensive than direct methods.

• A sequence of approximations to the solution vector is usually generated by 
performing a matrix vector multiplication to the iterative matrix T or A matrix

• Iterative methods can be expressed in the simple form,  xk = T xk-1 + c .                            
There are two main types of iterative methods, stationary iterative methods and 
non-stationary iterative methods, dependent on the nature of T and c during the 
iteration process.

• Traditional iterative methods such as Jacobi, Gauss Siedel, and SOR methods 
are stationary methods which are applicable to limited problems.

• Conjugate Gradient methods  and  Conjugate Gradient look-alike methods
which are known as Krylov Subspace Method are the most widely used 
iterative methods nowadays.
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Iterative Methods
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Conjugate Gradient Method

• The value of iterates x is actually a function of initial value of x and power of 
matrix vector product of residual r and matrix A. We call that Krylov Subspace, 
and thus x belongs to the Krylov Subspace.

• Conjugate Gradient method is to find an x by systemically searching through the 
Krylov Subspace. Minimization of the residuals in the Krylov Subspace produce 
sequences of values of a and p which build the value of x.

• In every iteration of the method,  the approximate solution x is updated with 
respect to a search direction,p, multiple by a constant a,  x= x + a p. Minimization 
of the error lead to a specific choice of a and p which can be efficiently 
constructed in a three term recursion relation.
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CG Algorithm – A Parallel Solver  (MV)

i    = 0
x(0) = 0
r(0) = b - A*x(0) = b
f(0) = rT(0)r(0)
while (f(i) > tolerance) and (i < maximum iteration) 
do

if (i = 0) then p(1) = r(0)
else p(i+1) = r(i) + f(i)*p(i) / f(i-1)
i    = i + 1
- matrix-vector multiplication 
w(i) = A*p(i)
- vector dot product 
a(i) = f(i-1) / pT(i)*w(i)
x(i) = x(i-1) + a(i)*p(i)
r(i) = r(i-1) - a(i)*w(i)
- vector dot product 
f(i) = rT(i)*r(i)

end while
x = x(i)



Libraries for Sparse Matrices
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Storage Schemes of Sparse Matrix

• There are a lot of different sparse matrix storage schemes. We will introduce a few  common 
types which can be used for general sparse matrix. Sparse storage generally consists of 
several vectors which stores the nonzero values of the matrix and pointers of location of the 
nonzero values. Obviously, the most logical and efficient storage scheme for this block 
tridiagonal matrix will be the Diagonal Storage scheme.  The scheme stores the values of the 
matrix using individual vector array for each diagonal and a position pointer relative to the 
main-diagonal of the matrix.
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0

0
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-4

0

-3

0

-2

-1
-1

-1

1

1

1

aval(:,1)=(0,0,0,1,1,1) , apos(1)=-3
aval(:,2)=(0,-4,0,-3,0,-2), apos(2)=-1 
aval(:,3)=(10,9,8,7,6,5), apos(3)=0
aval(:,4)=(4,0,3,0,2,0), apos(4)=1
aval(:,5)=(-1,-1,-1,0,0,0), apos(5)=3

Matrix vector product:
do I=1,N

do k=1,5
w(I) = w(I) + aval(I,k) * p(I-apos(k))
enddo

enddo



Coordinate Storage Scheme

• The Coordinate Storage scheme consists of three vector arrays, one stores the 
nonzero values, one stores the row locations of the nonzero entries, and the last 
one stores the the column locations of the nonzero entries. The order of storing 
the nonzero entries can be arbitrary, however, rowwise or columnwise storing 
orders are used for computing efficiency.  As can be observed later, storage of 
one of the location pointer can be reduced.
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1
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Coordinate Storage Scheme:
aval(I) = (10,4,-1,-4,9,-1,8,3,-1,1,-3,7,1,6,2,1,-2,5)
irow(I) = (1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6)
jcol(I) = (1,2,4,1,2,5,3,4,6,1,3,4,2,5,6,3,5,6)

Matrix vector multiplication
do i=1,N

w(irow(i))=w(irow(i)+aval(i)*p(icol(I))
end do



Compressed Row and Column Storage Schemes
• The Compressed Row Storage (CRS) scheme put the subsequent non-zeros of the matrix row 

in contiguous memory locations. Three vectors are used. One contains the values of the 
nonzero entries (aval), one stores the column number of each nonzero entries (icol), and the 
last one stores the pointers to the first entry of the ith row in aval and icol (jprow)

• The Compressed column Row Storage (CCS) scheme is identical to CRS scheme except the 
matrix nonzero entries are stored in columnwise fashion.

• Due the structural symmetry of the following example, the position indicators of the CRS and 
CCS are the same!   
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Compressed Row Storage:
aval(I) = (10,4,-1,-4,9,-1,8,3,-1,1,-3,7,1,6,2,1,-2,5)
icol(I) = (1,2,4,1,2,5,3,4,6,1,3,4,2,5,6,3,5,6)
jprow(I) = (1,4,7,10,13,16,19)

Compressed Column Storage:
aval(I) = (10,-4,1,4,9,1,8,-3,1,-1,3,7,-1,6,-2,-1,2,5)
jrow(I) = (1,2,4,1,2,5,3,4,6,1,3,4,2,5,6,3,5,6)
ipcol(I) = (1,4,7,10,13,16,19))
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Matrix Vector Product for CRS and 
CCS

• Compressed Row Storage : w=A*p
do I=1,NROW

w(I)=0
do j = jprow(I), jprow(I+1) -1

w(I) = w(I) + aval(j) * p(icol(j))
end do

end do

• Compressed Row Storage

Do I=1,NROW
w(I)=0

end do
do I=1,NCOLUMN

do j = ipcol(I), ipcol(I+1) -1
w(jrow(j)) = w(jrow(j)) + aval(j) * p(I)

end do
end do



Example – 1D Diffusion Problem

• A ten  meters long iron rod is supported at both ends by two water tanks as 
shown. The temperatures of the water in the banks are maintained at 100C and 
0C. The temperature, T(I), at any point on the iron rod is approximated by the 
average value of the temperatures of its neighboring points, i.e. T(1) = (T(0) + 
T(2))/2. As a result, the temperature of the iron rod at any location of x can be 
represented by the following  system of equations.

100C 0C

x=0 x=101 2 3 4 5 6 7 8 9

T(0) = 100, T(1)={T(2)+T(0)}/2,    T(2)={T(3)+T(1)}/2,     
T(3)={T(2)+T(4)}/2 T(4)={T(3)+T(5)}/2,     T(5)={T(4)+T(6)}/2, 
T(6)={T(5)+T(7)}/2, T(7)={T(6)+T(8)}/2, T(7)={T(6)+T(8)}/2, 
T(8)={T(7)+T(9)}/2, T(9)={T(8)+T(10)}/2, T(10)=0



Resultant Matrix
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CG in Parallel 

100C 0C
0 1 2 3 4 5 6 7 8 9 10

Processor 0 Processor 2

Processor 1
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2D Heat Equation
• The one dimensional equation can be generalized to a two dimensional case. 

Approximation of the derivatives by Taylor’s series is carried out with respect to x 
and y similarly as before.
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2D Heat Equation FD Formulation

• A 2D square plate is discretized uniformly in x and y directions with Dx= 
Dy=h, and the time step Dt=k, the second derivation of the u at any grid 
points with respect to x and y can be approximated by the average value of 
the neighbors in the north, south, west, and east directions.
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• The 2D Backward Euler’s formula is
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Resultant matrix 

• The 2D Crank-Nicholson scheme will be the average of the explicit and implicit 
Euler’s schemes.
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• The result is a block tridiagonal matrix as shown below. Each block is a 9x9 matrix.
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2D Domain Decomposition
• The 2D grid is decomposed into four sections with overlapped grid points, each of 

them assigned to a processor.
Processor2 Processor3

Processor0 Processor1

2D domain decomposition



3/15/18 61

Parallel Implementation of Explicit Scheme
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Parallel Implementation of Implicit Scheme
• Gaussian elimination can be used to solve the linear system of equation resulting from 

the Backward Euler’s or Crank Nicholson schemes. LAPACK and ScaLAPACK 
provide a band solver subroutine for solving such system of equations. Iterative solvers 
such as the Jacobi ,SOR, and Conjugate Gradient  methods can also be used.

• If only the steady solution of the problem is sought. The time dependency, the partial 
derivative with respect to time, can be eliminated. The result is a 2D Laplace equation. 

• The one dimensional Laplace equation was examined earlier. The resulting matrix of 
the 2D equation is block tridiagonal as shown below.
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Conjugate Gradient Method
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• Conjugate gradient method can be used to solve the system of equations. To 
make the matrix symmetric, the boundary values are incorporated to the right 
hand side, only the interior nodes will be used. As a result, the system matrix will 
be as follows. 
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2D CG Calculations in Parallel

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

1 2 3 4

6 7 21 22

28 29 30 31

37 38 39 40 41

43 44 45 46

5

23

32

row0

row1

row2

row3

row4

row5
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Global Matrix Data Distribution

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7
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Matrix Vector Multiplication

* =

R
ow

 1
R

ow
 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Matrix A

Correct value of A*p product
has to include red dot values. Hence 
matrix A of processor 0 should include
extra value on the domain partition
for the calculation.

Vector p Product A*p
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CG Parallel Implementation for 2D Laplace Equation
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Example Grid (5x5)
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Parallel FE Assembly, Example, 5 x 5 Mesh : 
Process 0

0 1 2 3 4

98765

10 11 12 13 14

15

20

16

21

17

22

18

23

19

24

P0

P1

P2

P4

P3

E0 E1 E2 E3

X X X X
X X X X X X

X X X X X X
X X X X X X

X X X X

0

0

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

Process 0 
Process Grid : 0, 1, 2, 3, 4 
Element :  E0, E1, E2, E3
Compute Grid:

0,1,2,3,4,5,6,7,8,9

Process 0 
Process Grid : 0, 1, 2, 3, 4 
represents global matrix
row 0, 1, 2, 3, 4
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Parallel FE Assembly, Example, 5 x 5 Mesh : 
Process 1

0 1 2 3 4
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E0 E1 E2 E3

X X X X
X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X X X X

X X X X X X

0

4

1 2 3 4 5 6 7 8 9 10

5

6

7

8

9

10

Process 1 
Process Grid : 5, 6, 7, 8, 9 
Element :  E0, E1, E2, E3,

E4, E5, E6, E7
Compute Grid:

0,1,2,3,4,5,6,7,8,9,10
11,12,13,14

Process 1 , Process Grid : 5, 6, 7, 8, 9 represents global matrix row 5, 6, 7, 8, 
9

E4 E5 E6 E7

11 12 13 14
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Distributed Global GWS FE Matrix Structure
X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X

X X X X X X

X X X X X X X X X
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Store x only in 
P0

Store x only in 
P1

Store x only in 
P2

Store x only in 
P3

Store x only in 
P4



Global to Local Representations

15 16 17 18 19
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Aztec Representation (DMSR)

15 16 17 18 19
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Process 0
nupdate = 5 ; iupdate = {0, 1, 2, 3, 4}
ibindx = {6, 9, 14, 19, 24, 27, 

1, 5, 6, 
0, 2, 5, 6, 7,
1, 3, 6, 7, 8
2, 4, 7, 8, 9
3, 8 9 }

Process 2
nupdate = 5 ; iupdate = {10, 11, 12, 13, 14}
ibindx = {6, 11, 19, 27, 32, 

5, 6, 11, 15, 16
5, 6, 7, 10, 12, 15, 16, 17
6, 7, 8, 11, 13, 16, 17, 18
7, 8, 9, 12, 14, 17, 18, 19
8, 9, 13, 18 ,19}



Unstructured Grid
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Parallel Finite Element Mesh
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Non-Lexicographic Grid Partitioned for 3 Processors
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Domain Decomposition with METIS*

Mesh: 22,797 nodes and 119,210 elements
Partitioned into 20 domains

*METIS: A Software Package for 
Partitionng Unstructured Graphs, 
Partitioning Meshes, and Computing Fill-
Reducing Orderings of Sparse Matrices, 
Version 4.0,  G. Karypis and V. Kumar, 
University of Minnesota, Dept. of Computer 
Science, Minneapolis, MN, September 20, 
1998.

ptw 3/5/01
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The End

Quote: “I think there is a world market for maybe five computers”
Thomas Watson, chairman of IBM, 1943


