
Introduction to
Parallel Processing

ACF Spring HPC Training Workshop
Match 15-16, 2016

Kwai Wong

Acknowledgements:

• Support from NSF, UTK, JICS, NICS

• Efforts from many colleagues, collaborators, and students

• Credits to many researchers and industrial practitioners for a lot of
materials that I use in this talk, plenty of new science, new
technologies and applications in HPC

• www.olcf.ornl.gov, www.xsede.org, www.nics.utk.edu,
www.jics.utk.edu/recsem-reu

University of Tennessee – GO VOLS

Contents

• Landscape of Supercomputers

• Performance Ranking : Top500, HPL

• Supercomputers => Big Science + Big Data

• Programming Model on High Performance Computers

• General Practices

• JICS is a joint research center between UTK and ORNL since 1991 to advance
computational sciences activities

• Joint Faculty, research staff, National Institutes for Computational Sciences

• Projects : Kraken, RDAV, Keeneland, Beacon, XSEDE, ACF

• Total JICS funding > $100M

Joint Institute for Computational Sciences

NICS – beacon (Xeon Phi), darter (XC30, kraken-E)

kraken: 1st Academic PetaFLOPS Computer (3rd 2009), 100 Cabinets, 112896 cores

• World’s premier computing facility
• Nation’s largest concentration of open

source materials research

• Nation’s most diverse energy portfolio
• $1B+ Spallation Neutron Source project
• Managing the $1B+ U.S. ITER project

ORNL is the U.S. Department of Energy’s
largest science and energy laboratory

Oak Ridge Leadership Computing Facility (OLCF)

ü (CPU) 2.26 x 4 x 18688 = 2.392 ; (GPU) 1.31 x 18688 x 14 = 24.27 PF, Peak=26.67
ü 17.5 PFLOPS (HPL) 64.8% ; ~ 10 times faster than jaguar; 9 Megawatt,
ü 900 W/apartment – 10000 apartments !! --- Currently No. 5 in the world

Sumway : Fastest Computer : TOP500

• Wuxi
• June

2016
• 15.3 MW
• 93 PF

Sunway - Wuxi - China

Top500 – Nov. 2017 – top500 list every 6 months
Solving a Ax=b : A is dense NxN Matrix ; MM

STATISTICS

jaguar XT4 jaguarpf XT5
Peak Performance 263.16 TFLOPS 2.33 PFLOPS
System Memory 61 TB 292 TB

Disk Space 750 TB 10,000 TB
Disk Bandwidth 44 GB/s 240 GB/s

Interconnect Bandwidth 157 TB/s 374 TB/s

Jaguar: 2009 World’s Most Powerful Computer
www.olcf.ornl.gov

Go to Menu

TOP 500 – www.top500.org

www.top500.org

Numbers : Lots of Them: bit, byte, FLOP (S)
• Core : computing unit : processor

• Dual core machine (Intel or AMD CPU) : a CPU with 2 cores, each core is a 2.4
GHz computing unit with 2GB of RAM (memory in the processor not disk space)

• Binary bits (b) : “0” or “1” , 1 Byte (B) = 8 bits

• Binary number : 11111111= (27 + 26 + 25 + 24 + 23 + 22 + 21 + 20) = (28 -1) = 255 !!

• 32 bits machine or operating system => largest integer (all positive) = (232 -1) =
(4,294,967,296 -1) or range of integer = -(231) to (231 -1)

• 64 bits machine or operating system => range of integer = -(263) to (263 -1)

• Kilo (K) = 103 (or 210) ; Mega (M) = 106 (or 220); Giga (G) = 109 (or 230); Tera (T
billion) = 1012 (or 240) ; Peta (P) = 1015 (or 250)

• FLoating Point Operation (+, -, / , *) : (10.1 + 0.1) * 1.0 / 2.0 = 5.1 => 3 FLOP

• FLOPS = FLOP per second :: 1 PetaFLOPS (kraken) = 1015 FLOP in one second
• FLOPS in a core = (clock rate) x (floating point operation in one clock

cycle)

• Peak Rate = (FLOPS in one compute unit, core) x (no. of core)

HPL (High Performance Linpack): Solving Ax = b
http://www.netlib.org/benchmark/hpl/

http://wiki.math.msu.edu/index.php/Gaussian_Elimination

Total operation count for Gaussian
elimination with backward substitution

• FLOPS – FLoating Point Operation Per Second

• GFLOPS = 10^9 FLOPS ; TFLOPS = 10^12 ; PFLOPS = 10^15

• FLOPS = (clock rate) x (floating point operation in one clock cycle)

• Peak Rate = (FLOPS in one CPU) x (no. of CPU)

• Cray XT5 one core AMD Opteron :
– Rpeak : (2.6 GHz) x (4) x (224162 cores) = 2331284 GFLOPS
– Rmax : 1759000 GFLOPS è 75.4% of peak

Jaguar (ORNL) : World Fastest Computer, 1.759 PF (2009)

• Solve a very big system of equations : Ax = b using a standard
benchmark C program (HPL)

• Nmax : Size of A for HPL (Solve Ax=b) = 5474272

• Total Memory needed = (Nmax) x (Nmax) x (8 Bytes) = 239741 GB

• Memory needed per core = 1.07 GB

• Elapse Time : 2(Nmax)(Nmax)(Nmax)/3/Rmax ~ = 13 hrs

jaguar: What does it do?

Computer Benchmark (HPL) - Big Science, Big Memory Storage
• HPL - Solve a system of equations : Ax = b, a standard benchmark C

program to rank the top500 computers

• Size of matrix A = Memory used on a computer

• A = (Nmax) x (Nmax) x (8 Bytes) = 239741 GB (on jaguar)

• Jaguar : Nmax=5474272, Memory = 240 TB, ~ 1.07 GB/core

• Elapse Time : 2(Nmax)(Nmax)(Nmax)/3/Rmax ~ 13 hrs (jaguar)

• Titan ~ 10 times faster : Nmax ~ 8000000 : 1.7 GB / core; titan ~20 hrs,
65% of peak performance

Turbulent Combustion
(DNS, S3D)

SuperconductivityMolecular Biology
Organic Polymer
(MD, LAMMPS)

HPCG : Conjugate Gradient solver : MV

Big Computer
Big Science
Model base

Compute intensive

Climate Simulations and Weather (Storms) forecast

www.caps.ou.edu

Simulating the Big One on Kraken
Southern California Earthquake Center

5.E+05

5.E+06

1000 10000 100000G
rid

po
in

ts
up

da
te

d/
st

ep
/s

ec
/c

or
e

Number of Cores

AWP-ODC Code Scaling on Kraken

On Kraken XT5
Before Upgrade
with
Asynchronous
Communication

On Kraken XT5
Before Upgrade
with
Synchronous
Communication

On Kraken XT5
After Upgrade
with Single-CPU
Optimization

• Biggest Earthquake Simulation on San Andreas Fault,
the Big One

• Simulated in a 32 billion grid point subset of the SCEC
Community Velocity Model (CVM) V4 with a minimum
shear-wave velocity of 500 m/s up to a maximum
frequency of 1 Hz.

• 96,000 processor cores used for production runs on
Kraken, 2.6 hrs WCT, 53 sustained TeraFlop/s

24

Separation of quantum and classical degrees of freedom

Quantum (U is on!) Classical (U is off)

Materials Science Modeling
Bohmian Dynamics: graphene hydrogenation using DFTB

Modeling of Heart and Lung

Air Flow Simulation B747 - Validation

Road Map to Exascale Computing

Go to Menu

• 1962 (CDC 1604), 1976 (Cray 1), 1982 (XMP), 1988 (YMP), 1994 (T90)

• 1992 – DOE HPCC - High Performance Computing and
Communication 3T Initiative – 1 teraflops, 1 terabytes of memory, 1
terabytes/s bandwidth

• 1993 – launch of top500 list, CM5, Intel Paragon, ~100GFLOPS

• 1995 – ASCI – DOE Accelerated Strategic Computing Initiative,
intended to do nuclear stockpile simulation

• 1996 – first Terascale computer, ASCII RED SNL

• 1998 – Boewulf, PC cluster – Commodity Components

• DOE – supercomputers, projects –, SciDAC, Human Genome
project, HER, Climate, INCITE – terascale to petascale

• NSF Track I, II Teragrid, XSEDE -1st petascale

• DOE Leadership Computing Program – CORAL program, Exascale

• National Strategic Computing Initiative NSCI

Do It Yourself : A Typical PC Cluster (1999)

• One server node with dual CPU & SCSI Drive
• 5 Fat worker node with 1 GB RAM
• 16 Worker nodes with 512 MB RAM
• one 24 Port 100Mb Switch, total cost ~$40000

Simple Hardware Schematic

Simple Parallel Computer

Many commodity units connected by a COS interconnect

From ICL Dr. Jack Dongarra : icl.cs.utk.edu

Accelerator
(MIC)

Modern Supercomputers

From ICL Dr. Jack Dongarra : icl.cs.utk.edu

Scale to the Future

Over 100%
increase in
Flop/s for

K2M2 Tests

Tesla

Fermi

Predicted 80%+
Increase in
Flop/s

Kepler (to P100, to V100)
Intel MIC (Landing)

Kepler will implement
Virtual Memory Space
→Will allow larger problems
On GPU/CPU “shared” space

Ride the
technology
curve

Ride on the Hardware Technology Curve

Volta..

Kepler (2012), ~TFLOPS64 cores, ~TFLOPS

ORNL – TITAN
20 PFLOPS

TACC – Stampede
10 PFLOPS

jaguar kraken

Transformational Science : RT Simulation

Summit: Next Generation Supercomputer at ORNL (Exascale)

Go to Menu

EXAFLOPS : 1018

Source - “Oak Ridge Leadership Computing Facility by Jack Wells : SciDAC PI Meeting 23 July 2015

Challenges : Power limitation, Scaling application performance

Capability vs Capacity Computing

Go to Menu

Capability Computing, Single extreme
scale, problem, shortest Time

Capacity Computing, medium scale
problems, data engine, analysis

Challenges : Power limitation, scaling

Challenges : Data Movement, scaling

Big Science, Big Data, Big Iron

Dealing with the Knowns and Unknowns
Uncertainty Quantification – Data Analytics

“As we know there are known knowns.

There are things we know we know.

We also know there are known unknowns.

That is to say, we know there are some things we do not know.

But there are also unknown unknowns.

The ones we don’t know we don’t know,” D. Rumsfeld

Given enough data, can we find the
unknowns and predict the knowns?

Four Tiers – Computational Ecosystem

Go to Menu

Big Data Predictive Model
ü A collection of large data sets that are asymmetric or too large to be processed by

traditional tools. Often the data sets are noisy and heterogeneous but in general
could be co-related to some significant events.

ü Challenges include storage, classification, mining, sharing, visualization..

ü Need capacity, infrastructure, domain knowledge + compute , CS, Math..

Programming Models & Tools Ecosystem:

• Flat file, Excel, CVS

• Database, SQL,

• Distributed DD, HDFS

• Large graph, matrix, SVD

• Storage, I/O, network

• Sensors, big instruments

• Data Mining, searching, compression, neural network, deep
learning, smart detection, predictive models, visaulization

• Images (picture, neutron, thermal, x-ray…), spatial temporal data,
noise, signal, voice, smell, ….

• Healthcare, social, politics, science, finance, agriculture,
entertainment, geographic, transportation ….

• Perhaps layman sense?!

Big Data is inter-disciplinary,
Need community effort to coordinate

creation of tools

Milestones –Capacity (Big data)

Go to Menu

• 1973 – Internet was “officially” named

• 1990s Internet widely used

• 1993 Mosaic (NCSA), web browser.. netscape, IE, Mozzilla, Firefox..

• 1995- Google, Amazon

• 1996 – IBM Deep Blue Chess machine, first Terascale, ASCII RED

• 1999 – Grid Computing

• 2000 – Baidu

• 2004 – Facebook, MapReduce

• 2005 – Hadoop

• 2006 deep learning, Geoffrey Hinton, Neural Computing

• Clouds, machine learning framework, GPU

• 2015 – NSCI

• 2015 – NSF - Big Data Hub

Big Data – Transportation
Ph.D Students Needed- (Dr. Han, UTK)

Big Data – Modeling
Auto Pilot, GPS

Spatial Database

Go to Menu
Source - “From GPS and Virtual Globes to Spatial Computing,” Shashi Shekhar. IEEE Big Data Conference 2015

Big Data Applications: Healthcare

Go to Menu
Source - IEEE Big Data Conference 2015

Big Data vs HPC

Source - “ Adaptive Large Scale Computing Systems : Need vs Want,” Dan Reed, IEEE Big Data Conference

Challenges (Exascale/Big Data)
• Energy budget limitation

• Interconnect tightly couple

• Memory, hierarchical

• Scalable system software

• Programming systems

• Data management

• Network, Workflow engine

• Exascale Algorithms

• Algorithm for recovery, fault
tolerance, hard crashing

• Correctness, reproductively

• Science productivity

• Real time simulation

• Energy Consumption

• Interconnect wide and open

• Memory, flat and big

• Scalable storage system

• Programming tools

• Data management

• Network, Workflow engine

• Exabyte Data Algorithms

• Algorithm for recovery, fault
tolerance, soft landing

• Stochastic convergent,
reproductively

• Conclusive guidance and predictive
conclusion

Challenges - Big Data/Exascale

Source - “ Adaptive Large Scale Computing Systems : Need vs Want,” Dan Reed, IEEE Big Data Conference

Big Data in Machine Learning – GPU acceleration

Source captured frin - Julie Bernauer – HPC Advisory Council Stanford Tutorial – 2017/02/07

Source captured frin - Julie Bernauer – HPC Advisory Council Stanford Tutorial – 2017/02/07

Gateway, Workflow, Unified Tools, Instrumentation

Go to MenuSource - IEEE Big Data Conference 2015

Need of Parallel Computer

• Requirement of computational capacity depends on applications and formulations
and what you want to achieve

• Length Scale (memory) - resolution of the dimension, e.g. number of grid points
• Time Scale (fast) - resolution of duration, e.g. number of time step

• 2D problem :
• grid points 100x100 = 10000 pts
• a vector of 10000 elements ~ 80 KB
• need 10 such vectors ~ 800KB
• Steady State in seconds

• 3D problem :
• grid points 10000x10000 x100 = 10e10

pts
• 10e10 unknowns ~ 80 GB
• need 10 such vectors ~ 800 GB MEMORY
• 100 years simulation !!

NEED MULTIPLE WORKERS and MEMORY – PARALLEL COMPUTER

Parallel Computing
Division of work into smaller tasks

Multiple computers work on smaller tasks simultaneously
>> Reduce Wall Clock Time <<

W

W

O

R

K

O

R

K

Issues of Parallel Computing

• Pros :
– decrease wallclock time
– deliver huge amount of

memory
– Allow realistic simulation

• Cons :
– Difficult to construct
– Efficient parallel algorithm may

need some thoughts
– Cost of program development

KEYS:
1) LOAD BALANCE - same amount of work for every processor
2) LOCALITY - minimize communications among processors
3) PORTABILITY - work well on different platforms of computers
4) SCALABILITY - can solve larger problem efficiently

Parallel Programming Example:
Calculating Pi

• Use numerical integration to compute Pi

• Let f(x) = 4 / (1+x2) then integrate f(x) from x = 0 to 1

• Using the rectangle rule

where n = the number of intervals, h = 1/n is the rectangle width and
xi = h.(n-0.5) is the midpoint of each rectangle

R f h f xn i
i

n

() ()=
=
å
1

f(x)

x 10

curve f(x)

Pi = area under f(x)

Pi Using Rectangles

• Method: Divide area under curve into rectangles and distribute
the rectangles to the processors

• Suppose there are 3 processors, how should the distribution be
done?

f

x 10

curve f(x)

f

x 10

curve f(x)

1 1 1 1 2 2 2 2 3 3 3 1 2 3 1 2 3 1 2 3 1 2

Parallel Performance Measure

• Using multiple processors you hope your program will go faster
• Observed Speedup using N processors to accomplish a task

• To be fair, should use the “best” serial algorithm on 1 processor, not the
parallel algorithm, simply restricted to 1 processor

• Linear speedup:
– Two processors take 1/2 the time of 1 processor, so speedup =2
– N processors take 1/N the time of 1 processor, so speedup =N

• Superlinear speedup
– May be obtained occasionally, usually due to cache and memory

improvements

Speedup
Time taken using 1 processor

Time taken using N processors
=
T
T N

()
()

1

Amdahl’s Law

• Maximum speedup is limited by the serial fraction of a program
• Serial code

– Time taken: 100
• Parallel code (using num procs P >> 10)

– Time taken =10, maximum speedup=10, regardless of P

parallelizable (90) Serial (10)

parallel (0) serial(10)

Speedup

Number of Processors

Linear speedup

Large serial fraction

Parallel Computers (simple story)

M

P/N

M

P/N

M

P/N

Communication
Network

inter-node

Distributed Memory Systems (MPP)
(IBM SP, Cray XT or PC Cluster)

(USE MESSAGE PASSING)

Shared Memory Systems (SMP)
(Multicore Node)

(Thread-base, OpenMP,)

P/C P/C P/C

Intra-node, switch

shared
memory

From ICL Dr. Jack Dongarra : icl.cs.utk.edu

Accelerator
(Intel PHI)

Modern Supercomputers

Accelerator
(GPU Volta)

Pnmath
GPU architecture :

Reference: http://nvidia.com

Streaming Multiprocessors
(SMs)

32 cores

Pnmath

§ GPU accelerator is called device,
CPU is host.

§ GPU code (kernel) is launched and
executed on the device by several
threads.

§ Threads grouped into thread
blocks.

§ Program code is written from single
thread's point of view.
Ø Each thread can diverge and

execute a unique code path (can
cause performance issues)

§ Compute Unified Device
Architecture (CUDA)

GPU programming model:
Thread Hierarchy

Grid

Block (1,1)

Block (1,0)Block (0,0)

Block (0,1)

Thread (0,1) Thread (1,1) Thread (2,1) Thread (3,1)

Thread (0,0) Thread (1,0) Thread (2,0) Thread (3,0)

Block (1,0)• Threads:
– 3D IDs, unique in block

• Blocks:
– 3D* IDs, unique in grid

• Dimensions are set at
kernel launch

• Built-in variables for device
code:
– threadIdx, blockIdx

– blockDim, gridDim

* Since CUDA4

Pnmath

§ Compute Unified Device Architecture

§ CUDA is a C/C++ language extension for
GPU programming.
ØPGI has developed similar FORTRAN 2003

extension.

§ Two APIs: Runtime and Driver

Introduction to CUDA:

Pnmath
CUDA applications:

Good Practices

Use existing libraries
Understand the issues

Does it worth it to start from scratch
Ask the experts

Improving Scientific Computing: the process

– 1.Write the program, or build it from previous codes, etc.
– 2. Debug your code (with optimization switches off)
– 3. Ensure mathematical correctness of the program!
– 4. Profile your code – determine where most of the computing time is spent
– 5. Optimize the algorithm, the data mapping, the communication, the I/O
– 6. Try out different combinations of compiler flags and/or compiler directives
– 7. Profile your code again
– 8. Re-examine blocks of code that consume the most execution time
– 9. Repeatedly apply various optimizations to such blocks
– 10. Rerun optimized code, compare performance, and start again until

“satisfied”.

Final thoughts: Strategies for Improved
Performance
• Improving performance is a complex task, and the amount of time and effort put

into it might not always be worth it.
• A certain trade-off must be reached between the developmental time and the

"final" production run time.
• If you need to work on a previously existing code, then take the time to learn the

details of its logic (if possible). Sometimes you might be better off rewriting the
whole code directly in parallel!

• If you write the program from scratch, take some time to think about the different
performance issues presented here and/or elsewhere.

• Examine benchmark results and know the limits of the computing platform
Finally: What else can be done?

– Practice, try new approaches, innovate, ask others
– Remember to concentrate only on subroutines worth improving
– Rethink the whole algorithm from scratch !?
– Remember to re-check the results for “correctness” (whenever possible!)
– Change parallel method (?), or change parallel machine (?)
– (ask someone else to do the calculations! ;-)

Mapping Problem : Decomposition

• Each processor should have a similar amount of work

• Expensive communications should be minimized.

• Communications should be:
– eliminated where feasible
– localized otherwise (i.e. communicate between close CPU neighbors)

(not crucial anymore)

• Concurrency should be maximized

• NOTE: finding the best mapping is an NP-complete problem! :-(

PE

2

PE

0

PE

1

PE

3

PE 0 PE 1

PE 2 PE 3

1D Decomposition 2D Decomposition 2D Block Cyclic

Load Balancing

• Static
– Data or tasks are partitioned initially among the existing node processors
– Problem: finding a good initial mapping of data or tasks to the processors

• Dynamic
– Assumes there is a pool of tasks which can be selected and distributed at

runtime (e.g. a task queue or bag_of_tasks)
– Next available task is assigned to a free processor
– Or, it implies that the data can be redistributed appropriately during

execution of program
– Problem: Synchronization issues

Communication Characteristics

• Relatively slow communication vs. computation
– Peak bandwidths: ~1 MB/sec w/ethernet connections
– 12.5 MB/sec with a 100 Mbit/sec switch network
– 150 MB/sec on the SP2
– 9.6 GB/sec On the Cray XT5 between nodes
– Implies advantage of using either coarse -or medium- grained

parallelism

• The bigger communication cost is in the "startup" or latency

• overhead - 40 usec (software) latency on the SP2
– sending separate 1-byte messages --> 1s/40us = 25 KBytes/sec !!
– better sending few large messages rather than many small ones
– Cray XT5 – latency : a few us

• Bottom line: try to minimize the ratio of
– (# messages) / (# computations)

Communication Issues

• Contentions, or traffic jams

– Have good distribution of messages. Circular or round-robin methods
in one or two dimensions are fairly efficient for certain problems.

– Avoid as much as possible the use of indirect addressing.

– Use threads on multicore

• Ready mode in MPI or post receive before send

– use MPI_Rsend when you are *sure* that a matching receive
(MPI_Recv) has been posted appropriately

– this allows faster transfer protocols

– -HOWEVER! behavior is undefined if receive was not posted in time!

– Post receive before send on Cray

• Mask communication with computation

– Use asynchronous mode,

– Avoid barrier

I/O and Parallel I/O

• I/O can be a serious bottleneck for certain applications. The time to read/write
data to disks could be an issue. But sometimes the shear size of the data file is a
problem.

• Parallel I/O systems allow (in theory) the efficient manipulation of huge files

• Unfortunately, parallel I/O is only available on some architectures, and
software is not always good. (MPI-2 has parallel MPI-IO on ROMIO
implementation)

• They are restricted to few (around 4 or so) parallel disk drives, through
designated I/O nodes.

• On the IBM with GPFS

• Lustre on the ACF System

• One single files vs file/process

• Using local /tmp for input output

• Progress is still needed in this area!

Strategies for Improved Performance
• Improving performance is a complex task, and the amount of time and effort put

into it might not always be worth it.

• A certain trade-off must be reached between the developmental time and the
"final" production run time.

• If you need to work on a previously existing code, then take the time to learn the
details of its logic (if possible). Sometimes you might be better off rewriting the
whole code directly in parallel!

• If you write the program from scratch, take some time to think about the different
performance issues that we have been presenting here.

• Examine benchmark results and know the limit of the computing platform

• profilers "prof" give information on:
– how much time (seconds) is spent in each subroutine
– what percentage of time each subroutine is consuming
– the cummulative time
– the # of calls to subroutines made
– the time (msecs) per call
– Use available system tools

Performance Tuning Process
– 1. Debug your code (with optimization switches off)
– 2. Ensure mathematical correctness of the program!
– 3. Profile your code
– 4. Optimize the algorithm
– 5. Compile with optimization switches on
– 6. Profile your code
– 7. Examine blocks of code that consume the most execution time
– 8. Repeatedly apply various optimizations to such blocks
– 9. Ensure again the numerical correctness of the program!

• Finally: What else can be done?
– Practice, try new approaches, innovate, ask others
– Concentrate only on subroutines worth improving
– Rethink the whole algorithm from scratch !?
– Re-check the results for correctness (whenever possible!)
– Change parallel method (?)
– Change parallel machine (?)
– (ask someone else to do it! ;-)

Writing Parallel Programs

• Use prewritten programs

– There are parallel database codes, genetic algorithms, neural

networks, linear algebra, etc available

• Writing code to take advantage of parallel libraries

– Use libraries like ScaLAPACK (Scalable Linear Algebra Package),

and other optimized parallel libraries in your code

– Usually much faster and more robust than code you could easily

write

• Writing your own code from scratch

– The hardest choice… but used by many because of its flexibility

79

The End

Quote: “I think there is a world market for maybe five computers”
Thomas Watson, chairman of IBM, 1943

