LICS A

Computational Sciences

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Introduction to
Parallel Processing

ACF Spring HPC Training Workshop

Match 15-16, 2016
Kwai Wong

THE UNIVERSITY OF
L0l TENNESSEE

HEALTH SCIENCE CENTER.

Acknowledgements:

o Support from NSF, UTK, JICS, NICS
o Efforts from many colleagues, collaborators, and students

o Credits to many researchers and industrial practitioners for a lot of
materials that | use in this talk, plenty of new science, new
technologies and applications in HPC

e www.olcf.ornl.gov, www.xsede.org, www.nics.utk.edu,
www.jics.utk.edu/recsem-reu

....................................... THE UNIVERSITY OF OAK
IS NICS)y TENNESSEE RIDGE

Joint Institute for |
Computational Sciences KNOXVILLE National Laboratory

University of Tennessee — GO VOLS

Contents

Landscape of Supercomputers

Performance Ranking : Top500, HPL

Supercomputers => Big Science + Big Data
Programming Model on High Performance Computers

General Practices

Jl:s - THE UNIVERSITY OF THE UNIVERSITY OF
TomtInstitats Tor) 8l TENNESSEE TENNESSEE
Computational Sciences

KNOXVILLE HEALTH SCIENCE CENTER.

Joint Institute for Computational Sciences

JICS is a joint research center between UTK and ORNL since 1991 to advance
computational sciences activities

Joint Faculty, research staff, National Institutes for Computational Sciences
Projects : Kraken, RDAV, Keeneland, Beacon, XSEDE, ACF
Total JICS funding > $100M

nu UNIVERSITYof
TENNESSEE

OAK

T NATIONAL

=== | INSTITUTE FOR
COMPUIATIONAL
SCIENCES

NICS — beacon (Xeon Phi), darter (XC30, kraken-E)

] &

WORLD RECORD!

Intel® Xeon® + Intel Xeon Phi™
Cluster
First to Deliver
2.499 GigaFLOPS / Watt
71.4% efficiency
#1 on current Green500

| S(eon Phi

P A

|

% '1 R

0
,

T T |

[1] A

| .f
Ef'llﬂﬂ -

7 -‘l[l El'l i!ﬂr

—— —‘ —— —— — ——— w
i .
fiy ||
|
I

e B

:; &! . e lkil‘ "E b

‘wl'ﬂ

-“EE.- e

ORNVDL’s “Titan” Hybrid System:
Cray XK7 with AMD Opteron and
NVIDIA Tesla processors

SYSTEM SPECIFICATIONS:
» Peak performance of 27 PF
» 24 5 Pflop/s GPU + 2.6 Pflop/s AMD
» 18,688 Compute Nodes each with:
"¢ 16-Core AMD Opteron CPU
» 14-Core NVIDIA Tesla “K20x” GPU
» 32 GB + 6 GB memory
» 512 Service and I/O nodes
» 200 Cabinets
» 710 TB total system memory
» Cray Gemini 3D Torus Interconnect
* 9 MW peak power 2 OAK

S
'~’¢ e
7\7’

4,352 ft2
404 m?

111 PFI?H

v (CPU) 2.26 x 4 x 18688 = 2.392 ; (GPU) 1.31 x 18688 x 14 = 24.27 PF, Peak 26.67
v 17.5 PFLOPS (HPL) 64.8% ; ~ 10 times faster than jaguar; 9 Megawatt,
v' 900 W/apartment — 10000 apartments !! --- Currently No. 5 in the world

Sumway : Fastest Computer : TOPS500

P

computing sy stem\\
y \)

network system

Sunway - Wuxi - China

Database System Web
______________ servers_ _ _ C°""°|59W€'51 __Senvers . __Sseners_ _ _
I

I LI

1 1 1] N

Application

-

2
! f

}
||

Management Network

[[11 | [1] [11
Central Switch Network

|

(]

s oa—

———
-

Cabinet
=4
Super
nodes

L _ Lk 1
Storage System Import/Export Management

Nodes Nodes

Supernode Supernode Supernode

Supernode

256 Nodes = 1 Supernode 256 Nodes = 1 Supernode 256 Nodes = 1 Supernode 256 Nodes = 1 Supernode

TopS00 — Nov. 2017 — top500 list every 6 months
Solving a Ax=b : A is dense NxN Matrix ; MM

Site ; Manutacturer A conpu 7 er 7 Country Cores
Sunway TaihuLight
y| Nelonal Supercomputing NRCPC NRCPC Sunway SW26010, China | 10,649,600 930 15.
Center in Wuxi 260C 145G He
Tianhe-2
2 'g::"" ‘;“"’:’“V ot NUDT NUDT TH-IVB-FEP, China | 3,120,000 339 17.8
nse Technology Xeon 12C 2.2GHz. Inte[Xeon Phi
Piz Daint
Swiss National Supercomputing
3 Cray Cray XC50, Switzerdand 361,760 19.6| 227
Centre (CSCS) Xeon E5 12C zecﬂ:y Aries, NVIDIA Teska P100
5 Gyoukou
4 "“’;‘lx“:" M"’T':“"" Earth | EvaScaler ZettaScaler-2.2HPC System, Japan | 19,860,000 19.1 1.3
chnology Xeon 16C 1.3GHe, IBEDR, PEZY-SC2 700Mhz
Titan
Oak Ridge
5 Cray Cray XK7, USA 560,640, 17.6] 8.21]
National Laboratory Opteron 16C 2.2GHz, Gemini, NVIDIA K20x
Sequoia
Lawrence Livermore
6 IBM BlueGene'Q, USA 1,572,864 17.2| 7.89
National Laboratory Power BOC 16C 1.6GHz, Custom
Trinity
7 Lﬁmru Cray Cray XCA0, USA 979,968 141 3.84
Intel Xeon Phi 7250 68C 1.4GHz. Aries
Cori
8 ekt Cray Cray XC40, USA 622,06 14.0] 3.94
Laboratory Intel Xeons Phi 7250 68C 1.4 GHz, Arles
JCAHPC Oakforest-PACS
9 Fujitsu PRIMERGY CX1640 M1, Japan 556,104| 136| 272
Joint Center for Advanced HPC intel Xeons Phi 7250 68C 1.4 GHz, OmniPath
qo| FIKENAdvancedintihetor | ., SPARGSA Vithe 2.0He, Japan 705,024 108 127
Computational Science Tofu Interconnect

Vendors System Share

Accelerator/Co-Processor System Share

N
P

= 4

Countries
China

United States
Japan
Germany
France

United Kingdom

Count
202
143

35
21
18
1S

Interconnect System Share

® HPE

® Lenovo
Inspur

@ Cray Inc.

® Sugon

® BM

@ Huawei

@ Bull

@ Dell EMC

@ Fujitsu

@ Others

@ NVIDIA Tesla P100
@ NVIDIA Tesla K40
) NVIDIA Tesla K80

@ NVIDIA Tesla K20x

@ NVIDIA Tesla P100 NVLink

@ NVIDIA Tesla P40
@ Intel Xeon Phi 7120P
@ NVIDIA 2050
@ PEZY-SC2 500Mhz
@ Intel Xeon Phi 5120D
@ Others
System Share (%)
40.4
28.6
7
4.2

3.6

STATISTICS

Rmax (GFlops)
298.876.659
249,829,543

80,874,702
38,424,229
30.818.432
32,268,888

Rpeak (GFlops)
524,584,484
391,614,117
136.440.166

51.507.986
42,250,454

41.186.451

@ 10G Ethernet
® Infiniband FDR

Aries interconnect
@ Infiniband EDR
@ Intel Omni-Path
@ 25G Ethernet
. Custom Interconnect
@ Infiniband QDR
@ Tofu interconnect 2
@ Cray Gemini interconnect
@ Others

@ China

@ United States

) Japan

@ Germany

® France

® United Kingdom

@ ltaly

® Netherlands
@ Canada

@ Poland

@ Others

Cores
22,797,764
12,078,694
26.331.160
1,656.870
1.370.664
1.296.368

Jaguar: 2009 World’s Most Powerful Computer
WW.0l cf.ornl. gov

Menu

TOP 500 - www.top500.0rg

TOPS500 List - November 2009 (1-100)

R and R
ax pea

m k

Power data in KW for entire system

Rank Site

Oak Ridge National Laboratory
United States

DOE/NNSA/LANL
United States

National Institute for Computational
Sciences/University of Tennessee
United States

4 Forschungszentrum Juelich (FZJ)
Germany

National SuperComputer Center in
5 TianjinNUDT
China

Computer/Year Vendor Cores

Jaguar - Cray XT5-HE Opteron Six Core 2.6
GHz / 2009
Cray Inc.

224162

Roadrunner - BladeCenter QS22/L.S21
Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC
1.8 GHz, Voltaire Infiniband / 2009

IBM

Kraken XTS5 - Cray XT5-HE Opteron Six
Core 2.6 GHz / 2009

Cray Inc.

IBM

Tianhe-1 - NUDT TH-1 Cluster, Xeon

ES540/E5450, AT| Radeon HD 4870 2, 71680

Infiniband / 2009
NUDT

max

1759.00

825.50

563.10

values are in TFlops. For more details about other fields, check the TOP500 description.

peak

2331.00

1375.78

1028.85

1002.70

1206.19

nex

Power

2345.50

2268.00

Performance Development

845 PFlop/s
93 PFlop/s

1 Eflop/s
100 Pflop/s
10 Pflop/s
1 Pflop/s
100 Tflop/s
10Tflop/s
1 Tflop/s -
100 Gflop/s -
10 Gflop/s

1 Gflop/s
100 MﬂOp/S '*M Dolisl Ledlsed Tab Uslad Vaalobalisl Dadeddedal Colibvd Talndolsl Taledsial Della] Bl
1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Hear more about this and the latest data at our BoF following at 5:15pm. @.5'60

Numbers : Lots of Them: bit, byte, FLOP (S)

« Core : computing unit : processor

* Dual core machine (Intel or AMD CPU) : a CPU with 2 cores, each core is a 2.4
GHz computing unit with 2GB of RAM (memory in the processor not disk space)

- Binary bits (b) : “0” or “1” , 1 Byte (B) = 8 bits
- Binary number : 11111111= (27+ 25+ 25+ 244 234 224+ 214+ 20 = (28.1) = 255 ||

32 bhits machine or operating system => Iargest integer (all positive) = (2°2-1) =
(4,294,967,296 -1) or range of integer = -(2°") to (2°"-1)

- 64 bits machine or operating system => range of integer =-(2%) to (2%-1)

- Kilo (K)=10° (or 2'°) ; Mega (M) = 10° (or 22°); Giga (G) = 10° (or 2°°); Tera (T
billion) = 10"2 (or 2°%) ; Peta (P) = 10" (or 2%°)

* FLoating Point Operation (+,-,/,*) :(10.1+0.1)*1.0/2.0=5.1 =>3 FLOP
- FLOPS = FLOP per second :: 1 PetaFLOPS (kraken) = 10" FLOP in one second

e FLOPS in a core = (clock rate) x (floating point operation in one clock
cycle)

e Peak Rate = (FLOPS in one compute unit, core) x (no. of core)

HPL (High Performance Linpack): Solving Ax =b
http://www.netlib.org/benchmark/hpl/

2r) + 229 + 223 =1

2 2 2 1
3xy + 4xo + Sz = 2 A=10 1 2 b= 1/2
dxy + 6xg + Tzz = 3. 4 6 T 3
"2 2 2] 1] "2 2 2] 1
A=13 4 5], b=|2 A=1]10 1 2 b= | 1/2
46 7 |3 02 3 1
2 2 2] 1 (2 2 2] 1
A=10* x|, b=| A=|01 2 b= | 1/2
O * x | x| 00 -1 0
T3 = 0, $2=1/2—.’173=1/2, 2r1+ 2,24+ 2x3=1 = x1 = 0.
Total operation count for Gaussian 2pp 3 B 7T
elimination with backward substitution I:;’n -+ §n — En

http://wiki.math.msu.edu/index.php/Gaussian_Elimination

Jaguar (ORNL) : World Fastest Computer, 1.759 PF (2009)

FLOPS - FLoating Point Operation Per Second

GFLOPS =109 FLOPS ; TFLOPS =10212 ; PFLOPS = 10715
FLOPS = (clock rate) x (floating point operation in one clock cycle)
Peak Rate = (FLOPS in one CPU) x (no. of CPU)

Cray XT5 one core AMD Opteron:
— Rpeak : (2.6 GHz) x (4) x (224162 cores) = 2331284 GFLOPS
— Rmax : 1759000 GFLOPS = 75.4% of peak

jaguar: What does it do?

Solve a very big system of equations : Ax = b using a standard
benchmark C program (HPL)

Nmax : Size of A for HPL (Solve Ax=b) = 5474272

Total Memory needed = (Nmax) x (Nmax) x (8 Bytes) = 239741 GB
Memory needed per core = 1.07 GB

Elapse Time : 2(Nmax)(Nmax)(Nmax)/3/Rmax ~ =13 hrs

Computer Benchmark (HPL) - Big Science, Big Memory Storage

e HPL - Solve a system of equations : Ax = b, a standard benchmark C
program to rank the top500 computers

o Size of matrix A = Memory used on a computer

e A =(Nmax) x (Nmax) x (8 Bytes) = 239741 GB (on jaguar)

o Jaguar : Nmax=5474272, Memory = 240 TB, ~ 1.07 GB/core

o Elapse Time : 2(Nmax)(Nmax)(Nmax)/3/Rmax ~ 13 hrs (jaguar)

e Titan ~ 10 times faster : Nmax ~ 8000000 : 1.7 GB / core; titan ~20 hrs,
65% of peak performance

Organic Polymer _ N
(MD, LAMMPS) Molecular Biology Superconductivity

Turbulent Combustion
(DNS. S3D)

Theoretical
Peak

HPL
Benchmark
Flop/s

HPL % Peak
HPCG
Benchmark
HPCG % Peak
Compute Nodes

Node

Sockets

Node peak
performance

Node Memory

System Memory

Configuration

ORNL Titan
27 Pflop/s =
(26 CPU+245
GPU) Pflop/s

17.6 Pflop/s

65.19%
0.322 Pflop/s

1.2%
18.688

AMD Optron
Interlagos (16
cores, 2.2 GHz)
plus Nvidia
Tesla K20x (14
cores, .732
GHz)

18.688
Interlagos +
18.688 Nvidia
boards

1.4508 Tflop/s

(.1408 CPU +

1.31 GPU)
Tflop/s

32GBCPU+6
GB GPU
J10PB=

(.598 PB CPU
and .112 PB
GPU)

4 nodes per
blade, 24 blades

NUDT Tianhe-2

54 .9 Pflop/s =

(6.75 CPU + 48.14

Coprocessor)
Pflop/s

30.65 Pflop/s

55.83%
0.580 Pflop/s

1.1%
16.000

2 —Intel Ivy Bridge
(12 cores, 2.2 GHz)
plus 3 - Intel Xeon

Phi (57 cores, 1.1
GHz)

32,000 Ivy Bridge

+48.000 Xeon Phi
boards

3.431 Tflop/s =
(2*2112CPU +
3*1.003
Coprocessor)
Tflop/s

64 GB CPU +3*8

GB Coprocessor
14PB=

(1.024 PB CPU and

384 PB
Coprocessor)

2 nodes per blade,
16 blades per

Sunway TaihuLight
125 4 Pflop/s = CPEs +MPEs
Cores per Node =256 CPEs + 4
MPEs
Supemode = 256 Nodes
System = 160 Supernodes
Cores =260 * 256 * 160 = 10.6M
93 Pflop/s

74.16%
371 Pflop/s

0.30%
40,960

256 CPEs + 4 MPEs

40,960 nodes with 256 CPEs and 4
MPEs per node

3.06 Tflop/s

CPE: 8 flops/core/cycle

(1.45 GHz*8*256 = 2.969 Tflop/s)
MPE (2 pipelines)

2*4*8 flops/core/cycle

(1.45 GHz*1= 0.0928Tflop/s)

32 GB per node

1.31 PB (32 GB*40.960 nodes)

Node peak performance 1s 3.06
Tflop/s, or 11.7 Gflop/s per core.

HPCG : Conjugate Gradient solver : MV

Rank
(HPL)

1(2)

2 (5)
3(1)

4 (4)

5(3)

6 (7)

7 (6)

= 1-10

NSCC/ Guangzhou

RIKEN Advanced Institute for
Computational Science

National Supercomputing Center in

Wuxi

DOE/NNSA/LLNL

DOE/SC/Oak Ridge Nat Lab

DOE/NNSA/LANL/SNL

DOE/SC/Argonne National Laboratory

8 (11) TOTAL

9 (15) NASA /Mountain View

10 (9) HLRS/University of Stuttgart

Computer
Tianhe-2 NUDT, Xeon 12C

2.2GHz + Intel Xeon Phi 57C
+ Custom

K computer, SPARC64 VIIIfx
2.0GHz, Tofu interconnect
Sunway TaihuLight --
SW26010, Sunway

Sequoia - IBM BlueGene/Q
Titan - Cray XK7 , Opteron
6274 16C 2.200GHz, Cray
Geminiinterconnect, NVIDIA
K20x

Trinity - Cray XC40, Intel E5-
2698v3, Aries custom

Mira - BlueGene/Q, Power
BQC 16C 1.60GHz, Custom
Pangea -- Intel Xeon E5-
2670, Infiniband FDR
Pleiades - SGI ICE X, Intel

E5-2680, E5-2680V2, E5-
2680V3, Infiniband FDR

HazelHen - Cray XC40, Intel
E5-2680v3, Cray Aries

Cores Rmax
3,120,000 33.863
705,024 10.510
10,649,600 93.015
1,572,864 17.173
560,640 17.590
301,056 8.101
786,432 8.587
218592 5.283
185,344 4.089
185,088 5.640

HPCG

0.5800

0.5544

0.3712

0.3304

0.3223

0.1826

0.1670

0.1627

0.1555

0.1380

HPCG/HPL% of Peak
1.7% 1.1%
5.3% 4.9%
0.4% 0.3%
1.9% 1.6%
1.8% 1.2%
2.3% 1.6%
1.9% 1.7%
3.1% 2.4%
3.8% 3.1%
2.4% 1.9%

B T S

’.

=
ﬁ‘

-‘
- — .

=
Gt ey
&
L%

(km)

Climate Simulations and Weather (Storms) forecast

GEOS3 O 010701 at 00:00 GMT L=1 (0.3 km)

...

3 31 60 E [ppbv]
www.caps.ou.edu : 01Z MAY 21, 2009

SPC1 (4640x2880x50, dx=1 km) T

WRF Forecast starting at 00Z Thu 03 Jun 201

00:00Z Thu 3 Jun 2010 T=0.0 s (0:00:00)

R T
{ane
)
1

2000 80

1000

\ -
il ’?“v') |) Al

\)
i b S e o S L b v e e TR

i} 1000 2000 3000 4000

(km)

Simulating the Big One on Kraken
Southern California Earthquake Center

+ Biggest Earthquake Simulation on San Andreas Fault,
the Big One

« Simulated in a 32 billion grid point subset of the SCEC
Community Velocity Model (CVM) V4 with a minimum
shear-wave velocity of 500 m/s up to a maximum
frequency of 1 Hz.

* 96,000 processor cores used for production runs on
Kraken, 2.6 hrs WCT, 53 sustained TeraFlop/s

AWP-ODC Code Scaling on Kraken

5.E+06

—=—— On Kraken XT5
Before Upgrade
with
Asynchronous
Communication

@ « = e On Kraken XT5
Before Upgrade
with
Synchronous
Communication

e O Kraken XT5
After Upgrade
with Single-CPU
Optimization

5.E+05 T
1000 10000 100000

Number of Cores

Gridpoints updated/step/sec/core

Materials Science Modeling
Bohmian Dynamics: graphene hydrogenation using DFTB

Separation of quantum and classical degrees of freedom

VideoMach unregistered VideoMach unregistered

~—

. - - P ———— g e
_ _,_———“\‘ e e W e R e W ™ .

.~

e

Quantum (U is on!) Classical (U is off)

Modeling of Heart and Lung

20ms 25ms 150ms

Air Flow Simulation B747 - Validation

FAA-CAMI Cabin Seat Row _

Tuesday, October 22, 13

THE JOURNEY BEGINS.

#= MARCH22,2013 @ -

DreamWorks has a "render farm" of servers
made up of about 20,000 processors (HP
BladeSystem c-Class server blades).

The image rendering jobs are broken up
into small pieces, distributed out to the
server farm, and are later recompiled to
create the final images for a film.

Required a whopping 80 million compute
hours to render, |5 million more hours than
DreamWorks' last record holder, "The Rise

of the Guardians."

Between 300 and 400 animators worked on
"The Croods" over the past three years.

After completing a film, about 70TB worth
of data (things like background art or plants)
is stored for future usage in future
productions.

Road Map to Exascale Computing

1962 (CDC 1604), 1976 (Cray 1), 1982 (XMP), 1988 (YMP), 1994 (T90)

1992 — DOE HPCC - High Performance Computing and
Communication 3T Initiative — 1 teraflops, 1 terabytes of memory, 1
terabytes/s bandwidth

1993 — launch of top500 list, CMS5, Intel Paragon, ~100GFLOPS

1995 — ASCI — DOE Accelerated Strategic Computing Initiative,
intended to do nuclear stockpile simulation

1996 — first Terascale computer, ASCIl RED SNL
1998 — Boewulf, PC cluster - Commodity Components

DOE - supercomputers, projects —, SCIDAC, Human Genome
project, HER, Climate, INCITE - terascale to petascale

NSF Track |, Il Teragrid, XSEDE -1st petascale
DOE Leadership Computing Program — CORAL program, Exascale
National Strategic Computing Initiative NSCI

vienu

Do It Yourself : A Typical PC Cluster (1999)

One server node with dual CPU & SCSI Drive
5 Fat worker node with 1 GB RAM

16 Worker nodes with 512 MB RAM

one 24 Port 100Mb Switch, total cost ~$40000

Simple Hardware Schematic

Schematic of the SSD PC Cluster

y2k.ssd.ornl.gov y2k01.ssd.ornl.gov
128.219.23.248 128.219.37.25

NIS Slave

NIS Private
Domain Name
v2kssd3
192. 168. 3. XX

y2k02

2 Dells 5 Fat Workers 14 Thin Workers

Simple Parallel Computer

Many commodity units connected by a COS interconnect

S

DN

7107 ‘g7 3snSny ‘sdiy) 101 ‘sosAy) 981095 :22.m0;

Modern Supercomputers

<~ Commodity plus Accelerator Today

Commodity Accelerator (GPU) 2088 ‘e
Intel Xeon Nvidia K20X “Kepler” | = |
8 cores 2688 “Cuda cores”
3 GHz .732 GHz
8”4 ops/cycle 2688~ cle
Accelerator 96 Gflop/s (DP) 1.31 Tflop/s (DP)

(MIC)

m“"m HH H ‘ TESH Thread EXECUTIOR Control Unit
|

m

HHI|
S

o

Jossac0.1do) Jauio0) saybiuy

Device Memory

PCI-X 16 lane
Gb/s (8 GB/s

1GWis From ICL Dr. Jack Dongarra : icl.cs.utk.edu

{\
»
ICL

Example of typical parallel machine

Shared memory programming between processes on a board and
a combination of shared memory and distributed memory programming

between nodes and cabinets

Knights Corner Coprocessor

KNC Card
Intel” Xeon® ~
(A Processor \S &

AVIDIA

$

System Memory.

Source: George Chrysos, Hot Chips, August 28, 2012
AN~

-~
Node/Board NotRe/Board

/7 7 T
Chip/§0cket — GPU | ... Chj)Book\e&WL—. GPU Chip/Socket — GPU
/ - 3 L
'
L,
/
Core Core Core Core Core

From ICL Dr. Jack Dongarra : icl.cs.utk.edu

Scale to the Future

Tesla

Over 100%
increase in

lop/s for i

2M2 Tests Ride the
technology

curve

Predicted 80%+
Increase in
Flop/s

Kepler will implement

Virtual Memory Space

—Will allow larger problems
On GPU/CPU “shared” space

NVIDIA

Kepler (to P100, to V100)
Intel MIC (Landing)

Ride on the Hardware Technology Curve

TACC - Stampede EVEREST facility ORNL - TITAN
10 PFLOPS = 35 million pixel, = Interactive, large-scale, 20 PFLOPS
' - - 27-tile PowerWall collaborative data analysis —

+ 27 NVIDIA 8800 GTX GPUs, - 30 feet by 8 feet
dedicated Linux cluster

.....

| ' ™) i
1 | | .. \ '
18G° 150°W 120°W 90°W BO"W 30°W 0°

AR Kepler (2012), ~TFLOPS

Transformational Science : RT Simulation

Summit: Next Generation Supercomputer at ORNL (Exascale)

TITAN VS
SUMMIT

Challenges : Power limitation, Scaling application performance

Compute System

Comparison

ATTRIBUTE
Compute Nodes

Processor
Accelerator
Memory per node
CPU-GPU
Interconnect

System Interconnect

Peak Power
Consumption

2010

Jaguar: 2.3 PF
Multi-core CPU
7MW

TITAN
18,688

(1) 16-core AMD
Opteron per node

(1) NVIDIA Kepler

K20x per node

32GB (DDR3)

PCI Gen2

Gemini

9 MW

2013
Source - “Oak Ridge Leadership Computing Facility by Jack Wells : SciDAC Pl Meeting 23 July 2015

<3

Mellanox NVIDIA.

SUMMIT
~3,400

(Multiple) IBM
POWER 9s per node

(Multiple) NVIDIA
Volta GPUs per node

>512GB
(HBM+DDR4)

NVLINK (5-12x
PCle3)

Dual Rail EDR-IB (23
GB/s)

10 MW

Titan: 27 PF

Hybrid GPU/CPU

9 MW

2017

SUMMIT

Scale new heights. Discover new solutions.

Ok R Natonad Labor atory

Summit: 5-10x Titan
Hybrid GPU/CPU
10 MW

CORAL System

2022

S

OLCF5: 5-10x Summit
~20 MW

EXAFLOPS : 1018

m

Capability vs Capacity Computing

Challenges : Power limitation, scaling Capability Computing, Single extreme

Tianhe-2

L00E+15 RR,_/%‘{:& scale, problem, shortest Time

100E+15 - -
Earth Simulator ianhe-1A
LO0E+14 r _~T
ASCIRed ﬂ.. Senert
A

CDC 7600
100E+07 CBE6606——F el

100E+06 ———t8M7080 A
_~— _ IBM360/195

q

Capacity Computing, medium scale
problems, data engine, analysis

Figure 3. Growth of Amazon S3 objects.

2,500

Challenges : Data Movement, scaling'000

2,000 /
1,500 /

00 ¢ 4 7/m/m/m/m///———~>1666

566

500

29 14 40 262
02

T I T I 1 I 1 I
Q42006 Q42007 Q42008 Q42009 Q42010 Q42011 Q42012 Q42013

0

W .
Google’s Datacenter Lenu

Big Science, Big Data, Big Iron

“The first great scientific breakthrough of the new
century — the decoding of the human genome
announced in February 2001 — was a triumph of

large- scale computational science.”
(Computational Science: Ensuring America’s Competitiveness, 2005)

“Computational science has become the third
pillar of the scientific enterprise, a peer alongside

theory and physical experiment.”
(Computational Science: Ensuring America’s Competitiveness, 2005)

\J

Nature

. { I‘.) — - » =

\3 ~——— Theory < > Experiment

“A Guide to Monte Carlo Simulations in Statistical Physics”, David Landau, Kurt Binder

Dealing with the Knowns and Unknowns
Uncertainty Quantification — Data Analytics

“As we know there are known knowns.
There are things we know we know.
We also know there are known unknowns.
That is to say, we know there are some things we do not know.
But there are also unknown unknowns.

The ones we don’t know we don’t know,” D. Rumsfeld

Given enough data, can we find the v
unknowns and predict the knowns? & BESING WITK
I BUT A SNGLE
STEP. ‘
THE MORE YOU KNOW, THE ONCE You BECOME YOU REALIZE THAT NOTHING | BEING A MAN OF ACTION,
HARDER 1T IS TO TAKE INFORMED , YOU START 1S AS CLEAR AND SIMPLE | [CANT AFFORD TO TAKE
DECISIVE ACTION. 4 | SEEING COMPLEXITIES | AS IT FIRST APPEARS. THAT RISK. o
AND SHADES | A ULTIMATELN |, KNOWLEDGE)
OF GRAY ~ 1S PARALNZING . YOURE IGNORANT,
*\‘3{ BUT AT LEAST
Y A i OO ACT ON (T

3 =|i
%@ &

NY
\

A SRy Pt A

Four Tiers — Computational Ecosystem

Advanced Computing c ting Sci
Architectures 5 ompq '"Eg .clences
. * Programming Environments
_I?n;?rgtlergoArchl:ttgctures * Programming Languages
actical Lomputing . + Software Integration
Next Generation Computing - B
Systems d =
High Performance Networkingand | I &
Memory —— G —=
RRY it
Compute

High Performance

T e

Predictive Simulation

D
Sciences S A b
Computational Math & Algorithms T =
Scientific Computing - A
\erification, Validation & | o
Uncertainty Quantification

Applied Computer Modeling and
Analysis

Computing
- Ecosystem -

Data Intensive Sciences

+ Sciences of Large Data

+ Computational Math for Data
Analytics

* Real-time Data Access & Analytics

Menu

Big Data Predictive Model

v" A collection of large data sets that are asymmetric or too large to be processed by
traditional tools. Often the data sets are noisy and heterogeneous but in general
could be co-related to some significant events.

Big Data Characterized by

e Volume
— How much data
o \Velocity
— The speed at which data arrives and the speed with which
decisions based on it must be made
o Variety
— Heterogeneity of storage platforms, data types, representation,

Volume

semantic interpretation, and security classification or other e el

distribution limitations
o \Veracity Velocit Big
g Do o Spectrum

— How trustworthy is the data, what is its uncertainty, and what is the e Data
error associated with it

Value

* Geolocation data * Spectrum management

Variety

* Crowd sensing

* Geolocation database
« Heterogeneous sensors
« Different data types

o Value s
1 -Vm:abletelev:ance_ -Daiamcu_taimy
— What is the data worth i i

v" Challenges include storage, classification, mining, sharing, visualization..

v" Need capacity, infrastructure, domain knowledge + compute , CS, Math..

Programming Models & Tools Ecosystem:

Big Data is inter-disciplinary,

Need community effort to coordinate sodal Media (2
creation of tools Video
Flat file, Excel, CVS M g

Email
Database, SQL, Texts
Distributed DD, HDFS
Transactional Data
Large graph, matrix, SVD machine/sensor (&
Documents
Storage, 1/0, network sorringne @Y
Sensors, big instruments mges (2

Data Mining, searching, compression, neural network, deep
learning, smart detection, predictive models, visaulization

Images (picture, neutron, thermal, x-ray...), spatial temporal data,

noise, signal, voice, smell, s Find
. rinda x

Healthcare, social, politics, science, finance, agriculture, -
entertainment, geographic, transportation

Perhaps layman sense?! Here it ...

Milestones —Capacity (Big data)

1973 — Internet was “officially” named
1990s Internet widely used W =(d/o[o/0

1993 Mosaic (NCSA), web browser.. netscape, IE, Mozzilla, Firefox..

1995- Google, Amazon

1996 — IBM Deep Blue Chess machine, first Terascale, ASCII RED
1999 — Grid Computing

2000 — Baidu

2004 - Facebook, MapReduce
2005 — Hadoop

2006 deep learning, Geoffrey Hinton, Neural Computing

Clouds, machine learning framework, GPU
2015 — NSCI
2015 — NSF - Big Data Hub

Big Data — Transportation - F‘
Ph.D Students Needed- (Dr. Han, UTK)

smartway.tn.gov

Facebook STEM Talk t Behind the. TED and ST. Let's Talk S. stream1.ne. Expect dela SmantWay T... Doctoral Gr.

| HI7TWAY INCIDENT RESPONSE UNi

© Location Menu = Feature Menu \ i E' b

. /
D4 JEMORVIPIACERIE=
ray Cemetery

Iebrook e

Crescent Bend b %
House & Garden 8 L

Big Data — Modeling
Auto Pilot, GPS

| -
. , '1.‘ .
. Internet g Connect
access h

-

O e

Traffic

Navigation
system

Spatial Database

Parallelize
§ Range Queries

Shortest Paths

8o Denglary Oppstonse

Storing graphs in disk blocks

Evacutation Route Planning

Reception Center located at
OSSEO JUNIOR HIGH SCHOOL
10223 93rd Avenue North
Osseo, Minnesota

= only in old plan
= Only in new plan
= |n both plans

saeo Jr. Migh Sch wil
W22 93rd Avenue N

Menu

Source - “From GPS and Virtual Globes to Spatial Computing,” Shashi Shekhar. IEEE Big Data Conference 2015

Big Data Applications: Healthcare

f7 — Proportion Necrosis f5 — Proportion Enhancing

(2) None (5) 34-67%

Integrative Cancer Research with Integrative Analysis: OSU BISTI ()
Dlgltal Pathology NBIB Center \

High-resolution whole-slide microscopy .
, S Big Data (2005)
— e OF

histology

Associate genotype with phenotype

Big science experiments on cancer,
heart disease, pathogen host
response

Tissue specimen -- 1 cm3

0.1 p resolution — roughly 10%°
bytes

Molecular data (spatial location) can
add additional significant factor;
e.g. 102

Multispectral imaging, laser

clincal\pathology captured microdissection,

- —— - Imaging Mass Spec, Multiplex
Qb

Multiple tissue specimens; another

factor of 103

Integrated

Analysis R Total: 10%° bytes -- 100 exabytes
per big science experiment

Source - |IEEE Big Data Conference 2015

[enu

Applications

Characterized
by

Prevalent data
abstractions

Programming
Models

Failure Model

System Cost

Big Data vs HPC

S g

Data analytics:
Social networks, industry

Typically, independent file
operations, database queries

Graphs (sparse), databases, text
files

Map-Reduce/HIVE/Giraph etc.

Assume failures common, need
to be tolerated

Use the technology with the best
price-performance ratio

Large-scale scientific simulation:
government, industry

Typically map to 3-D grid to
represent physical space

Arrays (dense and sparse),
objects

MPI/OpenMP/CUDA widely
used

Assume failures infrequent
(spend $)

Use the fastest possible
processors/network

Source - “ Adaptive Large Scale Computing Systems : Need vs Want,” Dan Reed, IEEE Big Data Conference

Challenges (Exascale/Big Data)

Energy budget limitation
Interconnect tightly couple
Memory, hierarchical
Scalable system software
Programming systems
Data management
Network, Workflow engine
Exascale Algorithms

Algorithm for recovery, fault
tolerance, hard crashing

Correctness, reproductively
Science productivity

Real time simulation

Energy Consumption
Interconnect wide and open
Memory, flat and big
Scalable storage system
Programming tools

Data management

Network, Workflow engine
Exabyte Data Algorithms

Algorithm for recovery, fault
tolerance, soft landing

Stochastic convergent,
reproductively

Conclusive guidance and predictive
conclusion

Challenges - Big Data/Exascale

Integration is challenging in both directions

Applications and Community Codes

Application Level Mahout, R and Applications

N || Hive || Pig || Sqoop Flume FORTRAN, C, C++ and IDEs
1R
n § Map-Reduce Storm Domain-specific Libraries Perf &
ol |5 > Debug
& |8 > MPI-OpenMP g,
il |9 Hbase BigTable o CUDA /ge" cL || NALibs PAPI)
. o & _ pen

Middleware & 2|3 (key-value store)

Management § l § . PFS Batch System
i’ai - HDFS (Hadoop File System) (e.g, Lustre) || Scheduler Monitoring
o |
b
i VMs and Cloud Services

System Software

&)

O

=
O

S

o

=

Linux OS variant Linux OS variant

r
1
1
1,

Ethernet Local Node Commodity IB+ Enet SAN+Local x86 +GPUs or
Cluster Hardware Switches Storage X86 Racks Switches Storage Accelerators
Data Analytics Software Stack Computational Science Software Stack

Source - “ Adaptive Large Scale Computing Systems : Need vs Want,” Dan Reed, IEEE Big Data Conference

Big Data in Machine Learning — GPU acceleration

Recommendation

Engines Sentiment Analysis

BEHAVIOR

mxnet w
Mocha.jl .

Julia TSN MINERVA & ..o Pylearn: ~ " theano

CUBLAS CUSPARSE
CuDNN m :

I

Source captured frin - Julie Bernauer — HPC Advisory Council Stanford Tutorial — 2017/02/07

GOOGLE DATACENTER STANFORD Al LAB

2,000 CPUs « 16,000 cores

1,000 CPU Servers ' 600 kWatts 3 GPU-Accelerated Servers 4 kWatts

55,000,000 12 GPUs - 18,432 cores $33,000

Source captured frin - Julie Bernauer — HPC Advisory Council Stanford Tutorial — 2017/02/07

Gateway, Workflow, Unified Tools, Instrumentation
—- |

o
ulf = —tﬁwm",o,l—w"‘
a 12 X2

where k? = «? + B2. Both v
hibit orthogonal properties:

mp o mp 7
w? u? =0 and (Zmp >

56 Tier-2
sites

General purpose
Scientific Networks

Dedicated LHC
Optical Private
Network

Class
Facilities

Controller

S roca (e.g. Amazon)
Scheduler

Provisioner >

T2/ :
‘

Every Tier-1 is Every Tier-2 is Every Tier-2 is
connected to the Tier-0 connected to connected to
and other Tier-| sites every Tier-| site every Tier-2 site

Full-Mesh Network Topology goyrce - IEEE Big Data Conference 2015 Menu

Need of Parallel Computer

Requirement of computational capacity depends on applications and formulations
and what you want to achieve

Length Scale (memory) - resolution of the dimension, e.g. number of grid points
Time Scale (fast) - resolution of duration, e.g. number of time step

GECS3 O 010701 at G0:00 GMT L=1 (0.3 km)

* 2D problem : « 3D problem:

* grid points 100x100 =10000 pts . grid points 10000x10000 x100 = 10e10
« a vector of 10000 elements ~ 80 KB pts

* need 10 such vectors ~ 800KB * 10e10 unknowns ~ 80 GB
« Steady State in seconds * need 10 such vectors ~ 800 GB MEMORY
* 100 years simulation !!

NEED MULTIPLE WORKERS and MEMORY — PARALLEL COMPUTER

Parallel Computing

Division of work into smaller tasks
Multiple computers work on smaller tasks simultaneously

>> Reduce Wall Clock Time <<

Issues of Parallel Computing

 Pros: « Cons:
— decrease wallclock time — Difficult to construct
— deliver huge amount of — Efficient parallel algorithm may
memory need some thoughts
— Allow realistic simulation — Cost of program development
KEYS:

1) LOAD BALANCE - same amount of work for every processor
2) LOCALITY - minimize communications among processors

3) PORTABILITY - work well on different platforms of computers
4) SCALABILITY - can solve larger problem efficiently

Parallel Programming Example:
Calculating Pi

Use numerical integration to compute Pi
Let f(x) =4/ (1+x2) then integrate f(x) fromx =0to 1

Using the rectangle rule

R,(f)= thﬂxi)

where n = the number of intervals, h = 1/n is the rectangle width and
X; = h.(n-0.5) is the midpoint of each rectangle

f(x) m

I
Pi = area under f(x) |
|
|

0 X 1

Pi Using Rectangles

* Method: Divide area under curve into rectangles and distribute
the rectangles to the processors

* Suppose there are 3 processors, how should the distribution be
done?

Parallel Performance Measure

Using multiple processors you hope your program will go faster
Observed Speedup using N processors to accomplish a task

7(1) Time taken using 1 processor

Speedup =
bECEtb T(N) Time taken using N processors

To be fair, should use the “best” serial algorithm on 1 processor, not the
parallel algorithm, simply restricted to 1 processor

Linear speedup:
— Two processors take 1/2 the time of 1 processor, so speedup =2
— N processors take 1/N the time of 1 processor, so speedup =N
Superlinear speedup

— May be obtained occasionally, usually due to cache and memory
improvements

Amdahl’s Law

« Maximum speedup is limited by the serial fraction of a program
« Serial code

[
parallelizable (90) Serial (10)

— Time taken: 100

« Parallel code (using num procs P >> 10) —

parallel (0) serial(10)
— Time taken =10, maximum speedup=10, regardless of P

Linear speedup

Speedup

Large serial fraction

Number of Processors

Parallel Computers (simple story)

Shared Memory Systems (SMP)
(Multicore Node)
(Thread-base, OpenMP,)

shared
memory

Distributed Memory Systems (MPP)
(IBM SP, Cray XT or PC Cluster)
(USE MESSAGE PASSING)

Communication
Network
inter-node

S

DN

2107 ‘8z 3sn8ny ‘sdiy) 10H ‘s0s£1y) 981095 :22.n0;

Modern Supercomputers

£
< Commodity plus Accelerator Today
Commodity Accelerator (GPU) paag e coresiSHX
Intel Xeon Nvidia K20X “Kepler” =
8 cores 2688 “Cuda cores”
3 GHz 732 GHz
8”4 ops/cycle 26882~ cle
Accelerator 96 Gflop/s (DP) 1.31 Tflop/s (DP)
(Intel PHI) SW“ Thread EXecuTIon Control Unit Accelerator
e R : (GPU Volta)

0 1

TR RTBIT 77 ainie B cboie B cie

”'””l ”lMl |‘ AL Procemons. il Procson
g Host ; :
Memory ta e
= Mamcey _ Nemery

A Device Memory
lerconnect
PCI-X 16 lane 8

1GWis From ICL Dr. Jack Dongarra : icl.cs.utk.edu

tecture

GPU arch

-GED GED aED e
LLELR NIRRT RN
ssassene
assassene
L assassene
i ssassene

LLELE NIRRT LN
ssassene
ssssesnne
L assassene
i ssassene

A ..-..-.—
N M

\ ‘

R DP

32 cores

Streaming Multiprocessors

Msr)
(§efere ce: http://nvidia.com

GPU programming mode

= GPU accelerator is called device,
CPU is host. E——

Thread (0,0) | Thread (1,0) | Thread (2,0) | Thread (3,0)

= GPU code (kernel) is launched and
executed on the device by several
threads. Thread (0,1) |Thread (1,1) | Thread (2,1) [Thread (3,1)

= Threads grouped into thread
blocks.

= Program code is written from single Grid

thread's point of view. T eoecoo I soccio Ll

» Each thread can diverge and %%%%é %%%é
execute a unique code path (can

cause performance issues) B.ockgé B.ocké é

|

= Compute Unified Device
Architecture (CUDA)

Introduction to CL

= Compute Unified Device Architecture

= CUDA is a C/C++ language extension for
GPU programming.

» PGI has developed similar FORTRAN 2003
extension.

= Two APIs: Runtime and Driver

e

Computational 1, Computational

<ad .
ey R
-—
~

Geoscience Bl X Chemistry

Computational

Medicine

Computational

Science

28| Computational

Finance

Computational

Modeling

2y Computational

Image

Processing

Good Practices

Use existing libraries
Understand the issues
Does it worth it to start from scratch
Ask the experts

Improving Scientific Computing: the process

— 1.Write the program, or build it from previous codes, etc.

— 2. Debug your code (with optimization switches off)

— 3. Ensure mathematical correctness of the program!

— 4. Profile your code — determine where most of the computing time is spent
— 5. Optimize the algorithm, the data mapping, the communication, the 1/0

— 6. Try out different combinations of compiler flags and/or compiler directives
— 1. Profile your code again

— 8. Re-examine blocks of code that consume the most execution time

— 9. Repeatedly apply various optimizations to such blocks

— 10. Rerun optimized code, compare performance, and start again until
“satisfied”.

Final thoughts: Strategies for Improved
Performance

» Improving performance is a complex task, and the amount of time and effort put
into it might not always be worth it.

A certain trade-off must be reached between the developmental time and the
"final" production run time.

* If you need to work on a previously existing code, then take the time to learn the
details of its logic (if possible). Sometimes you might be better off rewriting the
whole code directly in parallel!

* If you write the program from scratch, take some time to think about the different
performance issues presented here and/or elsewhere.

* Examine benchmark results and know the limits of the computing platform

Finally: What else can be done?

Practice, try new approaches, innovate, ask others

Remember to concentrate only on subroutines worth improving

Rethink the whole algorithm from scratch !?

Remember to re-check the results for “correctness” (whenever possible!)
Change parallel method (?), or change parallel machine (?)

(ask someone else to do the calculations! ;-)

Mapping Problem : Decomposition

Each processor should have a similar amount of work
* Expensive communications should be minimized.

e Communications should be:
— eliminated where feasible

— localized otherwise (i.e. communicate between close CPU neighbors)
(not crucial anymore)

* Concurrency should be maximized

NOTE: finding the best mapping is an NP-complete problem! :-(

<
PE 0 PE 1

- - am PE 2 PE 3

1D Decomposition 2D Decomposition 2D Block Cyclic

Load Balancing

Static
— Data or tasks are partitioned initially among the existing node processors

— Problem: finding a good initial mapping of data or tasks to the processors

Dynamic

— Assumes there is a pool of tasks which can be selected and distributed at
runtime (e.g. a task queue or bag of tasks)

— Next available task is assigned to a free processor

— Or, it implies that the data can be redistributed appropriately during
execution of program

— Problem: Synchronization issues

Communication Characteristics

* Relatively slow communication vs. computation

Peak bandwidths: ~1 MB/sec w/ethernet connections
12.5 MB/sec with a 100 Mbit/sec switch network

150 MB/sec on the SP2

9.6 GB/sec On the Cray XTS5 between nodes

Implies advantage of using either coarse -or medium- grained
parallelism

* The bigger communication cost is in the "startup" or latency

* overhead - 40 usec (software) latency on the SP2

sending separate 1-byte messages --> 1s/40us = 25 KBytes/sec !!
better sending few large messages rather than many small ones

Cray XTS5 - latency : a few us

* Bottom line: try to minimize the ratio of

(# messages) / (# computations)

Communication Issues

* Contentions, or traffic jams

— Have good distribution of messages. Circular or round-robin methods
in one or two dimensions are fairly efficient for certain problems.

— Avoid as much as possible the use of indirect addressing.

— Use threads on multicore

* Ready mode in MPI or post receive before send

— use MPI_Rsend when you are *sure* that a matching receive
(MPI_Recv) has been posted appropriately

— this allows faster transfer protocols
- -HOWEVER! behavior is undefined if receive was not posted in time!

— Post receive before send on Cray

* Mask communication with computation

— Use asynchronous mode,

— Avoid barrier

1/0 and Parallel 1/0

* 1/0 can be a serious bottleneck for certain applications. The time to read/write
data to disks could be an issue. But sometimes the shear size of the data file is a
problem.

* Parallel I/0 systems allow (in theory) the efficient manipulation of huge files

¢ Unfortunately, parallel I/O is only available on some architectures, and
software is not always good. (MPI-2 has parallel MPI-IO on ROMIO
implementation)

* They are restricted to few (around 4 or so) parallel disk drives, through
designated 1I/0 nodes.

* On the IBM with GPFS

* Lustre on the ACF System

* One single files vs file/process

* Using local /tmp for input output

* Progress is still needed in this area!

Strategies for Improved Performance

* Improving performance is a complex task, and the amount of time and effort put
into it might not always be worth it.

* A certain trade-off must be reached between the developmental time and the
"final" production run time.

* If you need to work on a previously existing code, then take the time to learn the
details of its logic (if possible). Sometimes you might be better off rewriting the
whole code directly in parallel!

¢ If you write the program from scratch, take some time to think about the different
performance issues that we have been presenting here.

* Examine benchmark results and know the limit of the computing platform

e profilers "prof" give information on:
— how much time (seconds) is spent in each subroutine
— what percentage of time each subroutine is consuming
— the cummulative time
— the # of calls to subroutines made
— the time (msecs) per call
— Use available system tools

Performance Tuning Process

1. Debug your code (with optimization switches off)

2. Ensure mathematical correctness of the program!

3. Profile your code

4. Optimize the algorithm

5. Compile with optimization switches on

6. Profile your code

7. Examine blocks of code that consume the most execution time
8. Repeatedly apply various optimizations to such blocks

9. Ensure again the numerical correctness of the program!

* Finally: What else can be done?

Practice, try new approaches, innovate, ask others
Concentrate only on subroutines worth improving
Rethink the whole algorithm from scratch !?

Re-check the results for correctness (whenever possible!)
Change parallel method (?)

Change parallel machine (?)

(ask someone else to do it! ;-)

Writing Parallel Programs

« Use prewritten programs
— There are parallel database codes, genetic algorithms, neural
networks, linear algebra, etc available
« Writing code to take advantage of parallel libraries

— Use libraries like ScaLAPACK (Scalable Linear Algebra Package),

and other optimized parallel libraries in your code
— Usually much faster and more robust than code you could easily
write
« Writing your own code from scratch

— The hardest choice... but used by many because of its flexibility

The End

Quote: “l think there is a world market for maybe five computers”
Thomas Watson, chairman of IBM, 1943

79

