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Abstract

QMCPACK is open-source scientific software designed to perform Quan-
tum Monte Carlo simulations, which are first principles methods for de-
termining the properties of the electronic structure of atoms, molecules,
and solids. One major objective is finding the ground state for a physical
system. We will investigate possible alternatives to the existing method
in QMCPACK such as QR factorization for evaluating single-particle up-
dates to a system’s electron configuration by improving the computational
efficiency and numerical stability of the algorithms.
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1 Introduction

Quantum Monte Carlo (QMC) simulations can be used to accurately de-
scribe physical systems (Ceperly/Chester 3081). These simulations use Slater-
Jastrow trial wave functions to evaluate possible changes to the system, one
particle at a time, for their potential effect on the overall energy of the system
(Nukala/Kent 130).

The Slater determinant factor of the trial wave function for the entire system
of n electrons can be represented as

Ψ(x1,x2, · · · ,xn) = 1√
N !
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where χ1,2···n represents the single-particle wave functions: χ(ri) =

∑n
j=1 φjcjri

.

A single particle’s contribution to the overall energy of the system is there-
fore encoded in a single row of the above matrix, and the effect of a proposed
single-particle position change on the overall energy of the system can be as-
sessed by altering a single row of the matrix with the proposed change, and
re-computing the determinant. The ratio of the resulting new determinant to

the existing determinant,
det(A′)

det(A)
, determines whether or not the change is ac-

cepted. The proposed change is accepted if the ratio is greater than 1. If the
ratio is less than 1, it is compared to a randomly generated value x from 0 to
1, and accepted only if the ratio is greater than x. This additional acceptance
criterion prevents “stagnant” simulation states.

2 Background

The current implementation in QMCPACK for this procedure uses LU de-
composition on the above matrix, matrix A, yielding lower and upper triangular
factors from which the inverse and determinant of A can be easily found. If a
proposed single change to a column k is represented as A + ue′k where ue′k is
the outer product of column vector u (the desired new values for A(:, k) minus
the old values of A(:, k)) and standard basis vector e′k, the Sherman-Morrison
formula can be employed to compute the inverse of A corrected for the change:

(A + ue′k)−1 = A−1 − A−1ue′k
1 + e′kA

−1u

With this updated inverse, and the existing cofactor of A, the determinant
as modified by the single column change is computed. If the change is accepted
after the evaluation of the ratio of modified determinant to existing determi-
nant as described in Section 1, the addition A = A + ue′k is performed. By
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repeating this process for all proposed column changes, each can be evaluated,
accepted/rejected, and added to the system represented by Aif appropriate.

Figure 1: A flowchart for the existing QMCPACK single column update.

Unfortunately, LU decomposition is not always numerically stable when piv-
oting is employed, especially for certain pathological value patterns in A. In
other words, the inverse of A after computing the LU decomposition, such that
A−1cal = LUP−1 can be multiplied to the original Ao to obtain AoA

−1
cal, is not

always precisely equal to the true A−1 defined by AoA
−1 = I.

Additionally, after several single column updates using the Sherman-Morrison
formula, it is possible that the computed A−1 will diverge from the mathemati-
cal A−1, requiring another LU decomposition be performed on A to update A−1.

3 Concept

We will examine possible improvements that could be made to the current ap-
proach within the context of QMC simulations.

3.1 Improvements related to QR factorization

The proposed approach includes computing and utilizing the QR factoriza-
tion of A, QR = A, where Q is an orthogonal matrix and R is upper triangular,
as opposed to the current LU factorization. Even though both LU and QR
factorization utilize O(n3) operations, QR factorization is often less sensitive to
ill-conditioned matrices than LU decomposition, and can provide greater rela-
tive stability after changes are made. This obviates the need for the QMCPACK
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to periodically recompute the explicit inverse of A.

In addition, the change vector u can be applied to the right side of the rela-
tionship A = QR:

(A + ue′k)−1 = QR + ue′k = Q(R + Q′ue′k)

Because Q is orthogonal, det(Q) = ±1 and det(R) = ±det(A) we can deter-

mine how a column change to A will affect the ratio of
det(A′)

det(A)
by evaluating

det(R + Q′ue′k)

det(R)
.

If the proposed change is accepted, then A can be updated simply by per-
forming the addition R = R + Q′ue′k. R must be returned to upper triangular
form at this point, but this process can be performed with great efficiency by
utilizing some known features of R, as we will demonstrate in Section IV. If,
instead, the addition is delayed, we can also limit the need to re-triangularlize
R.

3.2 Triangular Solve

In our proposed scheme, the vector w to update R is calculated by the prod-
uct of the transpose of Q and the updated column vector u. Unlike the previous
approach that involves the Sherman Morrison formula to explicitly calculate
inverse of A, we proposed to simply use the triangular solve between the trans-
pose of R and e′kto obtain a row of modified R. Then this row of the inverse of
modified R can be plugged into a matrix determinant lemma:

det(R + WV′) = det(Im + V′R−1U)det(R)

to estimate the determinant of R. As with the existing approach, this estimated
determinant can be utilized later to determine the feasibility of the proposed
column update.

3.3 Rank-k updates

To limit the need to re-triangularize R, contiguous accepted change columns,
Q′ue′k can be stored in the columns of a submatrix W , but not yet added to
R. Then, the estimated determinant for a series of changes can still be found
using the Matrix Determinant Lemma for the rank-k case by using the following:

det(R + WV′) = det(1 + v′R−1u)det(R)

where for previously accepted (but not added) changes i...n − 1, and change
being evaluated n, V ′ is the zero matrix matching A−1 in size, but with trans-
posed standard basis vectors ek(i...n) in the i to n columns of V ′.
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Observe that the product V ′R−1U is a small matrix relative to R, whose
determinant with Im can be quickly computed, especially if certain helpful tech-
niques are employed. Multiple column changes can thus be evaluated, and then
added to R en bloc, delaying the process of returning R to upper triangular
form.

4 Implementation

Figure 2: A flowchart for the existing QMCPACK single column update.

The flowchart from Figure 2 presents the algorithm for the rank-1 up-
date. This algorithm has been implemented using CUDA and tested on a GPU
equipped node of the Beacon cluster at the National Institute for Computational
Sciences at Oak Ridge. The GPU accelerator is a Tesla K20Xm with a GK110
processor. The program begins with driver that invokes two primary kernels
to perform rank-1 updates to a test set of randomly generated floating-point
matrices.

First, for each test matrix A, QR decomposition is performed. As mentioned
in section 2, since Q is orthonormal, the absolute value of the determinant of A
can be calculated using the determinant of the upper triangular matrix R. A set
of u vectors, the proposed column changes to A to be evaluated, are randomly
generated in the program. Once matrices Q and R and vectors u have been
determined, the estimate delta kernel is invoked first. Inside the estimate delta
kernel, vector w contains the update as applied to R, calculated as the product
of Q′ and u. It also utilizes a triangular solve child kernel to determine the delta
required for the determinant check.

If the proposed column update passes the determinant check, we will proceed
to update R immediately by calling the update QR kernel. One important point
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to highlight is that unlike the existing approach, there is no longer an inverse
check to ensure that the inverse of A is still mathematically correct since we do
not require calculating any matrix inverse.

This updated column k of R will be logically permuted to the end of matrix,
while the columns to the right of the kth column will be shifted left one posi-
tion, although no columns of R are ever moved in physical memory. In this way,
the updated R is upper Hessenberg, and a permutation vector maps the logical
column locations to the physical column locations. Givens rotation matrices
are used to annihilate non-zero entries below the diagonal as shown in Figure
3. These operations are also applied to matrix Q to maintain the A = QR
relationship. Using these methods, a series of updates can be evaluated and
applied for each test matrix.

Figure 3: Applying Givens Rotations.

5 Results

5.1 Findings

The estimated memory footprint (GPU DRAM) for this algorithm is: (2n2+
2n) * sizeof( 〈floating point datatype used〉 ) per matrix, where n is the size of
the input matrix A.

For a single execution of both kernels, about 15n2 flops are required per
matrix. This figure is determined by summing the cost of one matrix vector
multiplication, a triangular solve with one right hand side, a matrix vector ad-
dition and from 1 to n iterations of finding and applying Givens rotations. We
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measured the flops executed by our kernels using the Nvidia Visual Profiler and
found that the flop cost in practice is extremely close to our 15n2 estimate.

The efficiency of the algorithm measured in column updates per second (both
evaluation and application) for different input matrix sizes and number of test
matrices is displayed below.

Figure 4: Updates Per Second Graph.

The most significant trend demonstrated is the ”flattening” of parallelization
gains as the matrix size increases. Since we are well within the computational
capability of the GPU accelerator, we can be sure that control flow or memory
latency issues exist within our current implementation.

5.2 Analysis

Two potential avenues for improvement were identified.

1) We observe that the transformations used to return R to upper triangu-
lar form, Givens rotations, may not be ideal in our specific case (annihilating a
single subdiagonal nonzero entry in several columns of a dense, square matrix).
While our algorithm uses a sequential Givens algorithm, it is not clear that
existing parallel Givens QR algorithms, many of which are based on the Sameh
and Kuck scheme (Sameh and Kuck, 1978) and exploit the need to annihilate
multiple nonzero entries in each column, will provide much increased efficiency.

Instead, we believe that using Householder reflectors may be more helpful.
The flop cost of this technique may be greater in our case, outlined above, but
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many of these flops will be contained in a highly optimized Level 3 BLAS call
(GEMM).

2) The use of matrix permutations, requiring a vector to map logical columns
to their physical (in memory) locations, is another source of control flow com-
plexity.

A well-known technique to make a rank-1 column update to an upper trian-
gular matrix, resulting in an upper Hessenburg matrix, could be helpful (Golub
and Van Loan, 1996, p. 607). Using this method, we could avoid maintaining
the permutation vector, and obviate the need to use custom kernels/functions
that accomodate the permutations.

In addition to these changes, better aligning our implementation with CUDA/
cuBLAS best practices could provide a significant increase in efficiency.

6 Conclusion

We still need to evaluate our method with the existing procedure for a mean-
ingful comparison of numerical stability and execution efficiency. Our work to
this point indicates that using the QR factorization may be an effective method
for proposing and apply rank-1 updates within QMCPACK.
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